Geotechnical Investigation Report

Northern Regional Library Facility Phase 4 Expansion University of California, Berkeley Richmond, California

SUBMITTED TO:

Mr. John Fiske Project Manager – Construction and Design University of California, Berkeley 1936 University Avenue, 2nd Floor Berkeley, CA 94704-7027 <u>jfiske@berkeley.edu</u>

February 15, 2018

February 15, 2018

Mr. John Fiske Project Manager – Construction and Design University of California, Berkeley 1936 University Avenue, 2nd Floor Berkeley, California 94704-7027 <u>ifiske@berkeley.edu</u>

RE: Geotechnical Investigation Report Northern Regional Library Facility (NRLF) Phase 4 Expansion University of California, Berkeley Richmond, California

Dear Mr. Fiske:

The attached report presents the results of A3GEO's geotechnical investigation for the proposed Northern Regional Library Facility (NRLF) Phase 4 Expansion, which will be located at the Richmond Field Station, which is part of the Berkeley Global Campus in Richmond, California. This work has been conducted in accordance with our proposal dated 27 September 2017, and our subsequent Scope and Fee Revision Requests for Added Services dated 22 November and 27 December 2017. A list of references is provided at the end of the report, followed by a series of Plates, Tables, Figures, and Appendices.

Subsurface explorations at the site identified approximately three to seven feet of soft, compressible, expansive soils at ground surface, overlying stiffer or denser naturally deposited alluvial soils. The proposed structure will need to meet stringent performance criteria for differential settlement in accordance with "ultra-flat" requirements. Based on our observations and analyses, the proposed structure can be supported on a mat foundation, provided mitigation measures are incorporated to both address the presence of soft, compressible, expansive soils at/near the ground surface, and to minimize consolidation settlement in the underlying, compressible alluvial soils. Details of our investigation, analyses (including a three-dimensional settlement analysis), and geotechnical recommendations are provided herein.

The conclusions and recommendations presented in this report were developed in accordance with generallyaccepted geotechnical principles and practices at the time the report was prepared. No other warranty, expressed or implied, is made.

Thank you for inviting us to complete this work, and we look forward to our continued service during final design and subsequent construction phases of the project. Should you have questions or concerns regarding our findings, the design concepts discussed, or our recommendations, please do not hesitate to call.

Yours very truly,

A3GEO, Inc.

Lama)

Laura Buchanan, PE Senior Project Engineer (510) 919-0280

Wayne Magnusen, PE, GE Principal Engineer (510) 325-5724

TABLE OF CONTENTS

1.	Intro	oduction	
	1.01	Overview and Proposed Construction	
	1.02	Purpose and Scope of Services	
	1.03	Elevation Datum	
		hods of Investigation	
	2.01	Review of Existing Information	
2	2.02	Test Borings	
	2.02		3
	2.02		
2	2.03		
	2.03		4
	2.03		
	2.03		
3.	Geo	blogic, Seismic, and Historical Setting	
	3.01	Regional Geology	
	3.02	Regional Active Faults	
	3.03	Regional Seismicity	
	3.04	Local Geology	
	3.05	Geologic Hazard Mapping	
4.		e Conditions1	
	1.01	Surface Conditions1	
4	1.02	Adjacent Structures1	
	4.02		
	4.02		
	4.03	Site Soil and Bedrock Conditions1	
	1.04	Hydrogeology1	
		luations and Conclusions	
ł	5.01	Geologic Hazard Considerations1	
	5.01		
	5.01		
	5.01		
	5.02	Geotechnical Feasibility and Foundation Support1	
	5.03	Soft and Expansive Near-Surface Soils1	
!	5.04	Soil Compressibility and Settlement1	
	5.04		
	5.04		
	5.05	Construction Adjacent to Existing Structures1	
	5.06	Construction Considerations1	
6.		commendations	
	5.01	California Building Code Seismic Parameters	
	5.02	Mat Foundation1	
(5.03	Earthwork	
	6.03	5 1	
	6.03		20
	6.03	0	
	5.04	Utilities	
(6.05	Exterior Flatwork	
	6.05		
	6.05		
	6.05		
7	6.05	0	
7.	Γuίl	ure Geotechnical Services	-4

7.01	Supplemental Subsurface Investigations	.24
	Design-Phase Consultations and Plan Review	
	Construction-Phase Geotechnical Services	
	itations	

References

Plate 1 – Site Location

Plate 2 – Vicinity Map Plate 3 – Quaternary Fault Map Plate 4 – Historical Map Plate 5 – Geologic Map Plate 6 – Quaternary Geologic Map Plate 7A – Liquefaction Potential Map Plate 7B – Liquefaction Potential Map Plate 8 - Landslide Potential Map Table I – Summary of Subsurface Data Table II – Soil Analytical Data Figure 1 – Exploration Location Plan Figure 2 - Settlement Analysis - Summary of Approach Appendix A – Historic Boring Logs Appendix B – A3GEO Boring Logs (This Study) Appendix C – Historical Geotechnical Laboratory Testing Data Appendix D – A3GEO Geotechnical Laboratory Testing Data (This Study) Appendix E – Environmental Analytical Data Reports (This Study) Appendix F – NRLF Phase 3 – Lime Treatment Plan Appendix G – Groundwater Data by Others Appendix H – 3D Settlement Analysis

Appendix I – USGS Ground Motion Reports

1. INTRODUCTION

1.01 Overview and Proposed Construction

This report presents the results of a geotechnical investigation by A3GEO, Inc. (A3GEO), for the Northern Regional Library Facility (NRLF) Phase 4 Expansion (Project), at the University of California, Berkeley's Richmond Field Station (RFS) in Richmond, California. The Project (Site) location is shown on Plates 1 and 2 and Figure 1.

We have coordinated our work with the following project team members:

- Owner: University of California, Berkeley (UCB);
- Architect: EHDD, Inc. (EHDD);
- Structural Engineer: Rutherford + Chekene, Inc. (R+C).

The proposed NRLF Phase 4 Site is located in the northwest portion of the Richmond Field Station, southwest and adjacent to the existing Building 400 (UCB, 2018a) (Plate 2, Figure 1). The proposed Project will be an expansion of the existing NRLF facility, which was previously constructed in three phases: 1) NRLF Phase 1 consists of a 98,000 square foot (sf) structure completed in 1982; 2) NRLF Phase 2 is an 84,000 sf stack annex completed in 1990; and 3) NRLF Phase 3 is a 67,000 sf storage module and reading room completed in 2005 (UCB, 2018b). The locations of NRLF Phase 1 through 3 facilities are shown on Figure 1. The NRLF facility is a cooperative storage facility for infrequently used library materials belonging to UCB, as well as other University of California and California State University libraries. As of June 2017, the existing NRLF facility holds over 7.1 million items (UCB, 2018b).

It is our understanding that the purpose of the proposed Project is to provide 15 years of new storage capacity to the existing NRLF facility. Specifically, NRLF Phase 4 will store approximately 3.1 million volume equivalents of materials (EHDD, 2017). Unlike earlier NRLF Phases, Phase 4 will not include catwalks or upper floors, but rather high shelves will be reached by operators riding motorized order-pickers, using an arrangement known as the "Harvard System" (EHDD, 2017). The proposed Phase 4 footprint will be approximately 27,519 gross sf, broken down as follows:

- Harvard System, one story, tall stacks 22,052 sf;
- Administrative space 4,427 sf;
- Utility Rooms 1,040 sf (EHDD, 2018).

Based on conversations with the project team, we understand the Harvard System motorized order-pickers require finished floor slabs meeting "ultra-flat" criteria to operate correctly. Specifically, ultra-flat criteria translates to the following slab tolerances:

- +/- 0.084 inch (in) over the 5 foot (ft) wide wheel base in the longitudinal direction; and
- +/- 0.071 in over 3.75 ft wide wheel base in the transverse direction.

The top of the proposed finished floor will be at Elevation (El.) 24.46 feet (ft), to match floor elevations in the existing NRLF Phase 3 facility (EHDD, 2018). The building foundation will consist of an 18-inch-thick structural mat, which will be topped with a 6-inch thick ultra-flat topping slab. The bottom elevation of the structural mat will be above the level of the existing site grades; fill will be placed to raise site grades, replace near-surface unsuitable soils and reduce post-construction differential settlement. As currently envisioned, the project will utilize lightweight cellular concrete¹ fill to reduce undesirable differential settlement effects.

¹ Cellular concrete is a flowable lightweight fill material also known propriety names such as Elastizell or Geofill.

1.02 Purpose and Scope of Services

The purpose of our services was to explore and characterize geotechnical, geologic, and seismic conditions at the Site and to prepare this report presenting data, conclusions, and recommendations for the Project. Specifically, the scope of our services included:

- Reviewing existing data;
- Performing subsurface explorations consisting of geotechnical borings within the footprint of the proposed NRLF Phase 4 facility;
- Performing geotechnical laboratory testing, including consolidation tests;
- Consulting with the project team on geotechnical-related issues including differential settlement and performance requirements for the ultra-flat slab;
- Performing geotechnical analyses, including a three-dimensional settlement analysis to understand soil behavior under proposed loading configurations;
- Characterizing geotechnical and geologic conditions,
- Developing geotechnical recommendations for the design and construction of the Project;
- Discussing our methods and findings with an outside geotechnical consultant (Drs. Chris Hunt and Juan Pestana of Geosyntec Consultants) to discuss numerical modeling methods and our interpretation of UCB-run constant rate of strain (CRS) consolidation tests; and
- Preparing this report.

1.03 Elevation Datum

Elevations in this report are in feet (ft) and reference a Project Datum (PD) that references a benchmark at the top of a fire hydrant at El. 25.58, as shown on the survey by David J. Russell, dated June 1988 (Bellecci & Associates, 2017a). Based on communication with the project team, we understand the datum shift between the PD and North American Vertical Datum of 1988 (NAVD 88) is 2.48 ft. Based on information from the National Oceanic and Atmospheric Administration (NOAA)'s VERTCON – North American Vertical Datum of 1929 (NGVD 29) and NAVD 88 is 2.69 ft, which leads us to believe that the PD and NVGD 29 are not equivalent. Long term groundwater monitoring data for the RFS references NGVD 29 (Tetra Tech, 2017b).

The following elevation datum conversions should be used:

- To convert from PD to NAVD 88, add 2.48 ft (Bellecci & Associates, 2017a);
- To convert from NGVD 29 to NAVD 88, add 2.69 ft (NOAA, 2018);
- To convert from NGVD 29 to PD, add 0.21 ft;
- To convert from NGVD 29 to mean sea level (MSL), subtract 0.58 ft. This assumes MSL for the Site is derived from the NOAA Richmond Inner Harbor tidal gauge (Tetra Tech, 2017b).

2. <u>METHODS OF INVESTIGATION</u>

2.01 Review of Existing Information

We reviewed a variety of references containing information on the geologic, seismic, and historical setting of the Site. Selected references are described below; a list of references used is available at the end of this report. Our review of existing information included subsurface data contained in existing geotechnical reports pertaining to NRLF Phases 1 through 3 (WCC, 1980b; WCC, 1980a; WCC, 1988b; WCC, 1988a; WCC, 1990; URS, 2001; and URS, 2004), and as-built drawings for NRLF Phases 1, 2, and 3 (EHDD, 1981; Ripley Associates, 1989; EHDD, 2005).

We also reviewed existing groundwater data collected as part of ongoing environmental remediation at the Berkeley Global Campus at Richmond Bay (Tetra Tech, 2017b).

2.02 Test Borings

Locations of subsurface explorations are shown on Figure 1, and a summary of explorations in provided in Table I.

2.02.1 <u>Test Borings by Others</u>

Geotechnical test borings were advanced by others for design of previous NRLF Phases 1 through 3. Where available, logs of test borings by others are provided in Appendix A.

2.02.1.1 NRLF Phase 1 Geotechnical Test Borings by Woodward-Clyde

In 1979, Woodward-Clyde Consultants (WCC) advanced two test borings, #1 and #2, as part of a preliminary investigation for an alternative NRLF Phase 1 building configuration than was ultimately not selected (WCC, 1980b). Logs of the test borings for the 1979 study were not available at the time this report was prepared.

In February 1980, WCC advanced five geotechnical test borings, identified as #3 through #7, to inform design of the NRLF Phase 1 facility. Total boring depths ranged from 31.5 to 61 ft below ground surface (bgs), corresponding to approximately El. -8.5 to El. -40. None of the borings encountered bedrock (WCC, 1980b).

In November 1980, WCC advanced four additional geotechnical test borings, identified as A through D, within the NRLF Phase 1 footprint. Borings A through D were advanced as part of a supplemental geotechnical investigation program, the purpose of which was to obtain additional supplemental subsurface information to refine estimates of predicted building settlement. Total boring depths ranged from 81 to 101.5 ft bgs, corresponding to approximately El. -59 to El. -80, and each of the borings encountered bedrock (WCC, 1980a).

2.02.1.2 NRLF Phase 2 Geotechnical Test Borings by Woodward-Clyde

In February 1988, WCC advanced three geotechnical test borings, identified as #8, #9, and W-1, for design of the NRLF Phase 2 facility. Test borings were advanced to depths of 110.5, 91, and 26 ft bgs, respectively, corresponding to El. -91, El. -70, and El. -3. Boring #8 encountered bedrock, and Boring #9 encountered possible bedrock based on rig refusal. W-1 was advanced for the installation of a standpipe piezometer (WCC, 1988a).

2.02.1.3 NRLF Phase 3 Geotechnical Test Borings by URS

In February and March 2001, URS Corporation (URS) advanced three geotechnical test borings, identified as #10 through #12, for design of the NRLF Phase 3 facility. Test borings were advanced to depths ranging from 31.5 to 51.5 ft bgs, corresponding to El. -8 to El. -29.5. None of the borings encountered bedrock (URS, 2001).

2.02.2 NRLF Phase 4 Test Borings by A3GEO (This Study)

In November 2017, A3GEO undertook a subsurface investigation program at the Site to inform the design of the proposed Project. Specifically, the objectives of the drilling program were as follows:

- Characterize subsurface conditions within the footprint of the proposed NRLF Phase 4 facility;
- Collect and submit soil samples for geotechnical laboratory testing. Use data from geotechnical laboratory testing to approximate soil properties for use in geotechnical analyses; and
- Collect limited soil samples for environmental analytical testing. We performed this work at the request of the UCB Office of Environment, Health & Safety (EHS).

Prior to conducting field activities, we conducted a site reconnaissance to observe Site conditions and discuss drilling program logistics with representatives from UCB and from UCB EHS. Additionally, A3GEO prepared a Health & Safety Plan in accordance with EHS requirements, marked boring locations and contacted Underground Service Alert (USA) more than 48 hours prior to advancing borings, and subcontracted with GeoTech Utility Locating of Moraga, California, a private utility locating company, to screen each location for underground utilities.

A3GEO subcontracted with Pitcher Drilling Company (Pitcher) of East Palo Alto, California, to advance two test borings, identified as A3-17-1 and A3-17-2, using truck-mounted rotary wash drilling equipment. Boreholes were advanced by hand auger to approximately 5 ft bgs to clear potential underground utilities prior to advancing with the drill rig. Boreholes A3-17-1 and A3-17-2 were subsequently advanced to depths of approximately 114.6 and 124.4 ft bgs, respectively, corresponding to approximately El. -94.1 and El. -105.4.

During drilling, an A3GEO field representative logged the borings, directed the drilling, and obtained soil samples. Soils were visually/manually classified in general accordance with ASTM D2488 classifications, which are based on the Unified Soil Classification System (USCS). Field classifications were subsequently checked and revised, where appropriate, based on laboratory test data. The logs of the borings are attached in Appendix B, preceded by a Key to Exploratory Boring Logs that describes the USCS and the symbols used on the logs.

Soil samples were obtained using a 2-inch outer-diameter (O.D.) Standard Penetration Test (SPT) sampler without liners, a 3-inch O.D. California Modified sampler with liners, a 3-inch O.D. Shelby tube, or a 3-inch O.D. Pitcher barrel sampler. The SPT and California Modified samplers were driven with a 140-pound mechanically automated trip hammer with an approximate 30-inch fall. The hammer blows required to drive the sampler the final 12 inches of each 18-inch drive are presented on the boring logs. Where a full 12-inch drive could not be achieved, the number of blows and amount of penetration achieved is shown. Sampler blow counts presented on the logs are adjusted N-values. Blow counts have been adjusted for sampler type only.

Drilling and non-dedicated sampling equipment was decontaminated between borings, in accordance with EHS requirements. Following drilling, boreholes were backfilled with grout using the tremie method. Investigation-derived waste (mixed spoils) from borings A3-17-1 and A3-17-2 was containerized separately in labeled 55-gallon drums, and drums were stored onsite at a location dictated by UCB EHS prior to offsite transport and disposal.

2.03 Laboratory Testing

2.03.1 <u>Geotechnical Laboratory Testing by Others</u>

Geotechnical laboratory testing was performed on samples of soil obtained from investigations for NRLF Phases 1 through 3. Results of moisture content, dry density, and unconfined compressive strength analysis are presented on the boring logs (Appendix A). Results of other analyses, including Atterberg Limits, sieve analysis and consolidation, are presented in Appendix C.

2.03.2 <u>Geotechnical Laboratory Testing by A3GEO (This Study)</u>

Our geotechnical laboratory testing program was directed toward a quantitative and qualitative evaluation of the physical properties of the soils at the Site. Additionally, our program focused on quantifying the consolidation properties of the soils underlying the proposed building footprint to model potential settlement behavior under proposed Project loads. The following geotechnical laboratory tests were performed:

- Atterberg Limits by ASTM D4318;
- Sieve analysis by ASTM D422 or D1140;
- Moisture content by ASTM D2216;
- Dry density by ASTM D2937;
- 1-D consolidation using incremental loading by ASTM D2435; and
- 1-D consolidation using controlled rate of strain (CRS) by ASTM D4186.

Geotechnical laboratory testing was performed by Cooper Testing Laboratory in Palo Alto, California, except for CRS tests, which were performed by Prof. Michael Riemer, Ph.D. at the UCB geotechnical engineering laboratory, and subsequent index testing of the CRS samples, which was performed by B. Hillebrandt Soils Testing, Inc., of Alamo, California. Geotechnical laboratory testing data sheets from this study are presented in Appendix D.

2.03.3 Environmental Analytical Testing by A3GEO (This Study)

Two environmental soil samples were collected from each A3GEO test boring A3-17-1 and A3-17-2, at depths of 15 and 40 ft bgs, for a total of four samples. Samples were analyzed for volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Method 8260B. VOC samples were collected with Terra Core samplers and were transferred to 40-mililiter volatile organic analysis (VOA) vials filled with either 10-mililiters of methanol, or 5-mililiters of deionized water and a stir bar. Soil samples were stored in an ice-chilled cooler pending transport by courier to Enthalpy Analytical Laboratory in Berkeley, California, following standard chain-of-custody procedures.

Environmental analytical results for soil samples are presented in Table II. Analytical data reports are included in Appendix E.

3. <u>GEOLOGIC, SEISMIC, AND HISTORICAL SETTING</u>

3.01 Regional Geology

The San Francisco Bay Region (SFBR) is characterized by hills and valleys that generally trend southeast/northwest. This characteristic topography is partly the result of the SFBR's location at the boundary between the North American and Pacific crustal plates, which are in relative motion with respect to each other. Over geologic time, the topography of the region formed through a complex series of processes that have included deposition, accretion, faulting, folding, uplift, volcanism and changes in sea level. San Francisco Bay and the adjacent flatlands presently occupy a structural depression between the East Bay Hills and the roughly parallel hills of the San Francisco Peninsula and Marin County.

The SFBR includes three "basement" rock complexes; the Great Valley complex, the Franciscan Complex and the Salinian complex. All were formed in the Mesozoic Era (225 to 65 million years ago) and have been brought together by movement occurring along faults. These Mesozoic basement rock complexes are locally overlain by a diverse sequence of Cenozoic Era (younger than 65 million years) sedimentary and volcanic rocks. Since their deposition, the Mesozoic and Cenozoic rocks have been extensively deformed by repeated episodes of folding and faulting. Significantly, the Bay Area experienced several episodes of uplift and faulting during late Tertiary Period (about 25 million to 2 million years ago) that produced the region's characteristic northwest-trending mountain ranges and valleys.

World-wide climate fluctuations during the Pleistocene (about 1.8 million to 11 thousand years ago) resulted in several distinct glacial periods. A lowering of sea level accompanied each glacial advance as water became stored in vast ice sheets. Melting of the continental glaciers during warm intervals caused corresponding rises in sea level. High sea levels favored rapid and widespread deposition in the bay and surrounding floodplains. Low sea levels during glacial advances steepened the gradients of streams and rivers draining to the sea thereby encouraging erosional downcutting. The most recent glacial interval ended about 15,000 years ago. Evidence suggests that during the maximum extent of this latest glaciation, sea level was 300 to 400 feet below its present elevation and the valley now occupied by San Francisco Bay drained to the Pacific Ocean more than 30 miles west of the Golden Gate.

Near the beginning of the Holocene age (about 11 thousand years ago) the rising sea re-entered the Golden Gate, and sediments accumulated rapidly beneath the rising San Francisco Bay and on the surrounding floodplains. The sediments that now cover the bottom of the bay and blanket much of the adjacent lower flatlands are less than 11,000 years old. The Holocene-age surface deposits are generally less dense, weaker and more compressible than the adjacent/deeper Pleistocene-age soils that predate the last sea level rise.

3.02 Regional Active Faults

Within the SFBR, the relative motion of the Pacific and North American crustal plates is presently accommodated by a series of active northwest-trending faults that exist over a width of more than 50 miles (Plate 3). Faults that are defined as active exhibit one or more of the following: (1) evidence of Holocene-age (within about the past 11,000 years) displacement, (2) measurable aseismic fault creep, (3) close proximity to linear concentrations or trends of earthquake epicenters, and (4) prominent tectonic-related aseismic geomorphology. Potentially active faults are defined as those that are not known to be active, but have evidence of Quaternary-age displacement (within about the past 2 million years).

The major active faults shown on Plate 3 include the Hayward, Rodgers Creek, San Andreas, San Gregorio, Concord-Green Valley, Calaveras, West Napa and Greenville faults. These major faults are near-vertical and generally exhibit right-lateral strike-slip movement (which means that the movement is predominantly horizontal and when viewed from one side of the fault, the opposite side of the fault is observed as being displaced to the right). Approximate distances and directions from the Site to major Bay Area active faults are presented in the table that follows.

Approximate Distances and Directions to Principal Bay Area Active Faults (Jennings and Bryant, 2010)

Fault System	Approximate Distance from Site	Approximate Direction from Site
Hayward-Rogers Creek	2 miles	East-Northeast
Concord-Green Valley	16 miles	East-Northeast
West Napa	17 miles	Northeast
San Andreas	17 miles	West-Southwest
San Gregorio	18 miles	West-Southwest
Calaveras	21 miles	East-Southeast
Pleasanton	21 miles	East-Southeast
Greenville – Clayton – Marsh Creek	21 miles	East-Southeast

3.03 Regional Seismicity

Since 1836, six earthquakes of magnitude 6.5 or greater have occurred in the region (Bakun, 1999); the dates, magnitudes (M) and epicentral locations of these six large earthquakes are summarized in the table that follows.

Magnitude 6.5 or Greater Earthquakes; 1836-1998 (Bakun, 1999; Tuttle and Sykes, 1992)

Date	Magnitude	Epicenter Location	
June 10, 1836	6.5	East of Monterey Bay	
June 1838	6.8 – 7.2	Peninsula section of the San Andreas fault	
October 8, 1865	6.5	Southwest of San Jose	
October 21, 1868	6.8	Southern Hayward fault (Hayward Earthquake)	
April 18, 1906	7.8	San Andreas fault (San Francisco Earthquake)	
October 18, 1989	6.9	Santa Cruz Mountains (Loma Prieta Earthquake)	

The Working Group on California Earthquake Probabilities (WGCEP) has developed authoritative estimates of the magnitude, location, and frequency of future earthquakes in California, which are published in Uniform California Earthquake Forecast (UCERF) reports. The most recent forecast (UCERF3) indicates the following likelihoods for one or more earthquake events of the specified magnitude occurring within the SRBR in the next 30 years (starting in 2014).

San Francisco Region UCERF3 Forecast (WGCEP, 2013)

Earthquake Magnitude (greater than or equal to)	30-year Likelihood of one or more earthquake events
≥ 5.0	100%
≥ 6.0	98%
≥ 6.7	72%
≥ 7.0	51%
≥ 7.5	20%
≥ 8.0	4%

The WGCEP has also made estimates of the likelihood of earthquakes with magnitude greater than or equal to 6.7 occurring on specific faults. These probabilities are summarized in the table below.

Earthquake Fault	30-year Likelihood of One or More Earthquake Events with M≥6.7
Hayward - Rodgers Creek	33%
Calaveras - Paicines	26%
San Andreas	22%
Hunting Creek, Berryessa, Green Valley, Concord, Greenville	16%
Maacama	8%
San Gregorio	6%

SFBR UCERF3 Forecast (Aagaard et al., 2016)

Compared to the previous forecast (UCERF 2; WGCEP, 2008) the likelihood of moderate-sized earthquakes (magnitude 6.5 to 7.5) are generally lower whereas the magnitude of larger earthquakes is higher. While UCERF3 results are generally in line with previous forecasts, UCERF 3 indicates lower probabilities for earthquakes occurring on the most well-known faults of the SFBR (Hayward and San Andreas), while the probabilities for earthquakes on lesser known faults has increased substantially in some case. The probability of an earthquake on the Calaveras fault was estimated at 7% in the UCERF 2 forecast, compared with 26% in the UCERF 3 forecast. This change reflects a better understanding of the regional fault system and the potential for multi-fault ruptures on many faults.

3.04 Local Geology

The RFS is located at the edge of a broad, gently-sloping alluvial plain that extends from the East Bay Hills down to San Francisco Bay. The 1903 Historical Map presented on Plate 4 shows the approximate location of the Site compared to the historical San Francisco Bay Shoreline (U.S. Coast and Geodetic Survey, 1903).

A portion of a United States Geological Survey (USGS) map of this area (Graymer, 2000) is shown on Plate 5. This map depicts the Site as underlain by Holocene natural levee deposits (map symbol QhI), which the accompanying USGS pamphlet describes as "loose, moderately-sorted to well-sorted sandy or clayey silt grading to sandy or silty clay" (Graymer, 2000). The Hayward Fault (Plate 3) transects the alluvial plain approximately two miles to the northeast within the East Bay Hills. A portion of a more recent USGS Quaternary geologic map of this area (Witter et al., 2006; Plate 6), maps the deposits underlying the Site as early to late Pleistocene alluvial fan deposits (map symbol Qof), suggesting the surficial deposits underlying the Site are older than mapped by Graymer in 2000.

There are no exposures of bedrock at the Site. However, to the northeast of the Site (i.e. northeast of Interstate 580), a series of local hills are mapped as Franciscan Complex mélange (Cretaceous to Late Jurassic; map symbol KJfm), with blocks/lenses of chert (fc) and greenstone (fg; Plate 5; Graymer, 2000).

The broad Pleistocene alluvial fan material and distributary channels that underlie the RFS and the Site were deposited by paleo-Wildcat and San Pablo Creeks, which currently flow northwest to an outlet in San Pablo Bay. Wildcat Creek has its origin in the hills east of Berkeley and flows north from the vicinity of Tilden Park towards the City of San Pablo where it exits the hills at the apex of the alluvial fan. San Pablo Creek has its origin further to the east (near Orinda), and flows north and then northwest.

3.05 Geologic Hazard Mapping

The official Seismic Hazard Map for the Site shows the Site within an "Area not evaluated for liquefaction or seismic landslides" (CGS, 2003b). The Site is not within an Alquist-Priolo (A-P) Fault Zone (CGS, 2003b). A 2000 USGS liquefaction susceptibility map (Plate 7a) based on the geologic mapping of Graymer, 2000 (Plate 5) shows the Site as located within an area of "Moderate" liquefaction susceptibility (Knudsen et al., 2000). A more recent USGS liquefaction susceptibility map (Plate 7b), based on the Quaternary geologic mapping of Witter et al., 2006 (Plate 6) which identified soils underlying the Site as Pleistocene in age, places the Site within an area of "Very Low" liquefaction susceptibility (Witter et al., 2006).

A 1997 USGS landslide susceptibility map (Plate 8) identifies the Site as within an area of "Flat Land", which is described as "areas of gentle slope at low elevation that have little or no potential for the formation of slumps, translational slides, or earth flows except along stream banks and terrace margins" (Wentworth et al., 1997). The Site is also above the line of maximum predicted run-up shown on the tsunami hazard map for Contra Costa County (CGS, 2009).

4. <u>SITE CONDITIONS</u>

4.01 Surface Conditions

The Site is presently predominantly a grassy area which slopes gently from the northeast (approximately El. 23) to the southwest (approximately El. 19) (Figure 1). A dirt access roadway, connecting the west side of NRLF Phase 3 with the south side of NRLF Phase 2, intersects the southwest portion of the Site. Based on conversations with UCB staff, portions of the Site are intermittently used as a practice facility for track and field. The Site is bordered to the west and southwest by coastal prairie (Rana Creek Design, 2017).

4.02 Adjacent Structures

4.02.1 NRLF Phase 2

The proposed NRLF Phase 4 facility will be bordered to the east by NRLF Phase 2. It is our understanding that the NRLF Phase 2 facility is founded on a shallow foundation system consisting of spread footings interconnected with grade beams and a concrete slab-on-grade (typically 8-inch thick). The top of the lowest level slab was reportedly constructed at El. 24.2, and footings are typically 3 ft in thickness (Ripley Associates, 1989).

Pre-construction recommendations for the Phase 2 facility called for over-excavation of the building footprint plus an over-width of 10 ft, where possible, to 3 ½ ft bgs, before backfilling with non-expansive engineered fill to reach footing or slab subgrade elevation (WCC, 1988a). Construction records indicate that soft soils were encountered at the base of the recommended over-excavation in an approximately 25 by 90 ft area, and that this area was thus over-excavated an additional approximately 2 ft to remove the soft materials (WCC, 1990).

4.02.2 NRLF Phase 3

The proposed NRLF Phase 4 facility will be bordered to the north by NRLF Phase 3. It is our understanding that the NRLF Phase 3 facility is founded on a 2-foot thick mat foundation with a 2 ½ inch topping slab, underlain by a 2 ½ inch mud mat. The top of the lowest level slab was reportedly constructed at El. 24.46 (EHDD, 2005), and we presume the bottom of the mud mat is at El. 22.04.

To mitigate the presence of soft, expansive soils at the NRLF Phase 3 site, lime treatment was performed within the limits of the building pad. Appendix F contains a figure showing the recommended bottom elevations of the various lime treatment zones. Generally, the depth of lime treatment ranged from approximately 3 to 6 ft below previously existing ground surface. Adjacent to the north edge of the proposed NRLF Phase 4 structure, the recommended bottom elevation of the lime treatment zone was reportedly at El. 16.75 or El. 17.5 (URS, 2004).

4.03 Site Soil and Bedrock Conditions

Available borehole data indicate that the Site is underlain by layered alluvial fine-to-coarse-grained deposits, unconformably overlying Franciscan Assemblage bedrock. Young Bay Mud is not recognized within these boreholes, but is suspected to exist to the south near the historical San Francisco Bay Shoreline (Plate 4). Fine-grained alluvium consisting of silt and clay is pervasive below the Site, although interbeds of coarse-grained (sand and gravel) deposits are also present.

The test borings closest to and/or within the NRLF Phase 4 footprint are A3-17-1, A3-17-2, #8, and #9. The discussion below focuses on conditions encountered in these four borings, however information from other NRLF borings and from borings drilled for other projects on the NRLF facility has been reviewed to understand the general Site geology. A summary of subsurface conditions encountered in NRLF borings for all phases is presented on Table I.

- <u>Soft Clay Topsoil</u> A layer of soft clay topsoil, typically consisting of dark brown fat clay with organic matter, was encountered at ground surface in each of the test borings. The contact between the bottom of this layer and the underlying upper alluvium was gradual, but was generally defined by a slight color change, the presence of less organic matter, and an increase in stiffness. The thickness of the soft clay topsoil typically ranged from approximately 3 to 5 ft, corresponding to bottom elevations ranging from approximately El. 14 to El. 17. A3GEO borings A3-17-1 and A3-17-2 were hand augered in the top 5 ft and as such, blow counts were not available. Discussions with UCB personnel indicated that when saturated after substantial rain events, the soft clay topsoil is incapable of supporting a truck or drill rig. This is in keeping with studies performed for NRLF Phases 1 through 3 (URS, 2001).
- Upper Alluvium The soft clay topsoil is underlain by a layer of upper alluvium, interpreted to be Pleistocene in age based on mapping by Witter et al., 2006. The thickness of the upper alluvium ranged from approximately 31.5 to 43.5 ft in the NRLF Phase 4 footprint, corresponding to bottom elevations of approximately El. -14.5 to El. -27. This unit consists primarily of discontinuous lenses of clayey sand and gravel interbedded with massive silt and clay overbank fine deposits. The coarse-grained deposits are inferred to represent distributary channels bounded by distal levee and overbank deposits during the waning stages of the Wildcat Creek fan deposition in the late Pleistocene to Holocene. These terrestrial deposits were mostly brown in color, and were typically stiff to very stiff or very dense, with unconfined compressive strengths typically ranging from approximately 2,000 to 8,000 pounds per square foot (psf). Clays were typically found to be medium to high plasticity.
- <u>Yerba Buena Mud</u> The upper alluvium is underlain by a Pleistocene marine deposit known as the Yerba Buena Mud based on a change in color from browns to greens and grays coupled with increases in stiffness/density. Some previous researchers refer to this layer as Old Bay Mud (Pouch, 1987; Bevc, 1984). The Yerba Buena Mud was encountered at depths ranging from approximately 35.5 to 47.5 ft bgs, and ranged from approximately 6.5 to 37 ft in thickness. This unit predominantly consists of stiff, fine-grained soils (clays and silts) inter-fingering with discontinuous zones of coarser-grained channel deposits. Fine grained soils ranged from low to high plasticity, with unconfined compressive strengths ranging from approximately 2,500 to 5,500 psf.
- <u>Lower Alluvium</u> the Yerba Buena Mud is underlain by a second alluvial sequence consisting primarily
 of reddish brown to brown clay, silt, sand, and gravel, interpreted to be middle Pleistocene in age. The
 lower alluvium was encountered at depths ranging from approximately 42 to 80 ft bgs, and ranged from
 approximately 39.5 to 49 ft in thickness. Soils in this unit were typically described as either stiff to hard
 or medium dense to very dense.
- <u>Franciscan Bedrock</u> Franciscan bedrock, including sandstone, shale, and claystone, underlies the lower alluvium within the NRLF Phase 4 footprint. Bedrock was encountered at depths ranging from 91 ft bgs in #9 to 124 ft bgs in A3-17-2, corresponding to El. -70 and El. -105, respectively. Generally, these observations are in keeping with NRLF site-wide trends of the bedrock surface dropping in elevation from the northeast to the southwest.

4.04 Hydrogeology

The hydrogeology of the RFS site has been studied previously by several researchers utilizing the well fields within the RFS (e.g. Geosciences and Sanitation Engineering Well Fields). Previous hydrogeologic studies generally subdivide the site stratigraphy into three hydrogeologic zones: a shallow zone between about 10 and 20 ft bgs; an intermediate zone between approximately 30 and 75 ft bgs; and a deep zone between about 90 and 100 ft bgs.

Shallow groundwater elevation contours for 2010 through 2016 are presented in the 2016 Groundwater Sampling Results Technical Memorandum, prepared by Tetra Tech, Inc. (Tetra Tech, 2016). Shallow groundwater generally shows a southwesterly gradient within the upper aquifer. Two existing monitoring wells are located in general proximity to the Site: 1) "NRLF" is located east of the northeast corner of NRLF Phase 1, and 2) "GEO" is located south of the southwest corner of NRLF Phase 2. Groundwater elevation data for wells NRLF and GEO and shallow groundwater elevation contour plans from the 2016 Tetra Tech report are presented in Appendix G (Tetra Tech, 2016).

Minimum and maximum groundwater elevations observed in each of the monitoring wells for the time period 1 November 2010 through 4 April 2016 are presented in the table below (Tetra Tech, 2016):

Well ID	Minimum		Maximum	
weinid	Date	EI., PD (ft)	Date	El., PD (ft)
GEO	10/7/13	4.66	4/2/11	8.23
NRLF	10/5/15	5.41	4/11/11	10.84

It is anticipated that groundwater levels at the Site fluctuate seasonally and that groundwater levels will rise in wetter seasons and following prolonged or particularly heavy rainfall.

A previous study conducted for the Berkeley Global Campus RFS site identified the limits of the 100-year water level inundation limits for the year 2100 including sea level rise. The NRLF Phase 4 Site is considerably north of the inundation limits (ESA PWA, 2013).

5. EVALUATIONS AND CONCLUSIONS

5.01 Geologic Hazard Considerations

5.01.1 Earthquake Groundshaking

The SFBR is seismically active and it is likely that the NRLF Phase 4 Site will experience earthquake ground shaking within the foreseeable life of the Project. For this reason, structures at the Site should be designed to resist strong ground shaking in accordance with the requirements of the California Building Code (CBC) and local design practice. The seismic design provisions of the 2016 CBC include a methodology by which sites are classified as A through F in order to quantify site-specific ground shaking effects. Based on the available data, we judge that a seismic Site Class D designation (stiff soil) is appropriate for the Phase 4 facility. Please refer to Section 6.01 for applicable CBC seismic design parameters.

5.01.2 Liquefaction

Liquefaction is a phenomenon during which loose, saturated cohesionless soils temporarily lose shear strength during ground shaking induced by severe earthquakes. Soils that are most likely to experience liquefaction are loose (adjusted blow counts less than 10), relatively clean, saturated sands and gravels. Similar soils that are medium dense can also experience liquefaction in some cases. The fines content and plasticity index (PI) of the soil control the soil's liquefaction susceptibility. Current research indicates that there exists a fines content threshold (FC_{thr}) above which the soil will behave like the fines and not the coarser soil. Typically, the FC_{thr} is between about 20 and 35 percent depending on factors such as the soil's full gradational characteristics, mineralogical composition, particle shapes, and depositional environment. Additionally, there appears to be consensus that soils with a PI of 12 or greater can be considered highly resistant to liquefaction. Lastly, liquefaction is only a concern when susceptible soils are submerged below groundwater at the time when an earthquake large enough to trigger liquefaction occurs.

As discussed in Section 3.05, the most recent Quaternary geologic and liquefaction hazard mapping of the Site (Witter et al., 2006), identified surficial geologic materials as Early to Late Pleistocene alluvial fan materials (Plate 6) with "Very Low" liquefaction potential (Plate 7b). This mapping was generally in keeping with our observations during the recent test boring program and our review of historic test borings drilled for earlier phases of the NRLF. As discussed in Section 4.03, the Site is underlain by an upper alluvial layer, the Yerba Buena Mud, and a lower alluvial sequence, each interpreted to be Pleistocene in age. Soils typically consisted of massive layers of stiff to very stiff sandy or silty clays and silts, with interbedded discontinuous lenses and layers of dense to very dense clayey sands or gravels.

Soils at the site are generally too high in clay content, have PIs in excess of 12, and/or are too stiff/dense to liquefy. While is possible that isolated, discontinuous sand or gravel layers below the NRLF 4 facility may experience liquefaction during an earthquake, we interpret that the overall risk of widespread liquefaction at the Site is very low.

5.01.3 Other Geologic Hazards Not Present

The following types of geologic hazards are either not present at the Site or are judged to have a less than significant potential to affect the Project.

5.01.3.1 Surface Fault Rupture

The Site is not within an A-P Fault Hazard Zone and no active faults are mapped in the direct vicinity of the Site. In our opinion, the potential for surface fault rupture to affect the Project is negligible.

5.01.3.2 Landsliding

The Site is nearly level with no slopes nearby; accordingly there is essentially no potential for landsliding to affect the Site.

5.01.3.3 Inundation

As discussed in Section 3.05, the Site is above the line of maximum predicted run-up shown on the tsunami hazard map for Contra Costa County (CGS, 2009). Further, as discussed in Section 4.04, the Site is above the 100-year water level inundation limits for the year 2100 including sea level rise (ESA PWA, 2013). As such, we judge there to be a low potential for significant flooding to affect the Site during the time period specified.

5.01.3.4 Lateral Spreading

Lateral spreading is a phenomenon whereby a surface layer of non-liquefied ground moves laterally on an underlying liquefied layer. We judge the Site to have a negligible potential for lateral spreading as: 1) the ground surface is relatively level with no "free face" nearby; and 2) the overall risk of liquefaction at the Site is very low.

5.02 Geotechnical Feasibility and Foundation Support

As currently planned, we understand that the structure will be supported on an 18-inch thick mat foundation overlain by a 6-inch thick topping slab. The mat will be underlain by a 2-inch thick protection slab. The top of the topping slab is proposed at EI. 24.46, and the bottom of the protection slab is proposed at EI. 22.29 (EHDD, 2018). Because existing grades within the NRLF Phase 4 footprint range from approximately EI. 19 to EI. 23, filling will be necessary to reach the protection slab subgrade elevation.

Based on the results of our investigation, we conclude that the proposed Project, including the foundation system and associated filling, are feasible, provided that the geotechnical recommendations in this report are appropriately incorporated in the design and construction of the Project. Our assessment of geotechnical considerations for the Project are discussed in the sections that follow.

5.03 Soft and Expansive Near-Surface Soils

The soft clay topsoil present in the upper approximately 3 to 7 ft at the Site is soft, expansive, and compressible, and is not suitable for structural support. Where feasible, this material will need to be removed within the entire zone of influence (ZOI; see Section 6.03.1) of the proposed mat slab, and backfilled with either Non-Expansive Fill or cellular concrete (Section 6.03.2). Alternatively, the adverse effects of this material could be mitigated through lime treatment, as was conducted for the NRLF Phase 3 project, although we understand this option is not preferred by the project team.

5.04 Soil Compressibility and Settlement

While the cohesive materials underlying the Site (upper alluvium, Yerba Buena Mud, and lower alluvium), are relatively stiff, they do have the potential to consolidate under proposed Project loads. As discussed in Section 1.01, the proposed Project will utilize motorized order-pickers that require finished floor slabs meeting "ultra-flat" criteria to operate correctly. It is our understanding that the ultra-flat criteria is tied to differential settlement across the wheel axles in both the longitudinal and transverse directions. As such, the Project is highly sensitive to settlement (particularly differential settlement), and even relatively small amounts of differential settlement have the potential to disrupt future system performance.

5.04.1 NRLF Phase 1 through 3 Settlement Performance

A3GEO reviewed the performance of the existing NRLF Phase 1 through 3 structures to provide a general idea of past building settlement performance. In 1988 (approximately six years after building completion), WCC performed a floor level survey of NRLF Phase 1 to observe settlement performance. The NRLF Phase 1 structure is founded on shallow footings connected with grade beams. The results of the level survey indicated that the Phase 1 structure performed generally better than was predicted in WCC's 1980 NRLF Phase 1 report. WCC's 1980 NRLF Phase 1 report predicted dishing settlement with a maximum ultimate settlement of 1-1/2 to 2 inches, with differential settlements between columns not to exceed ½ inch. The 1988 floor level survey indicated that maximum differential settlement was approximately ¾-inch, the average differential settlement between adjacent columns was approximately ¼-inch, and a dishing pattern of settlement had not occurred (WCC, 1988a; WCC, 1988b). A 2017 study performed by R+C for EHDD identified fairly large cracks (1/8-inch or greater) occurring over approximately 15% to 20% of the Phase 1 slab-on-grade (EHDD, 2017). Updated building settlement information was not available.

As discussed in Section 4.02.1, the NRLF Phase 2 facility was also constructed on shallow footings connected with grade beams. The NRLF Phase 2 structure loading and settlement behavior are presently unknown, however the aforementioned 2017 study by R+C observed no noticeable signs of structural distress in the NRLF Phase 2 slab, and the slabs were observed to be essentially crack-free (EHDD, 2017).

Like the proposed NRLF Phase 4 Project, the NRLF Phase 3 facility was designed and constructed as a mat slab, and based on our conversations with R+C, we understand the Phase 3 facility has comparable loading to the proposed Phase 4 facility. To understand settlement behavior, a floor-level survey of the Phase 3 facility was performed by the Project design team in December 2017 (Bellecci & Associates, 2017b). A3GEO plotted floor-level elevations across both longitudinal and transverse transects of the Phase 3 facility using the available data. Generally, a slight dishing pattern was observed, with a maximum differential settlement across the mat of approximately 1 inch. We were not able to calculate total settlement because post-construction floor level data were not available. Plots of floor level elevations across longitudinal and transverse transects in the Phase 3 facility are included in Appendix H.

5.04.2 NRLF Phase 4 Settlement Analysis

To understand future Project settlement performance, A3GEO undertook a three-dimensional settlement analysis. The objectives of the settlement analysis were to:

- Evaluate total settlement of the mat under various loading scenarios and configurations;
- Evaluate differential settlement of the mat in both the longitudinal and transverse directions, under various loading scenarios and configurations. Compare the results of the differential settlement analysis to the ultra-flat slab performance criteria to determine whether a mat slab is a feasible foundation system for the proposed structure given the performance requirements; and
- Optimize the amount of over-excavation and replacement below the mat, and the type of backfill material, considering future building settlement performance, constructability, cost, and other factors.

An in-depth description of the settlement analysis approach and model inputs, as well as tables and plots of analysis outputs, are included in Appendix H. Generally, our analysis utilized a parametric approach to evaluate structure performance for the scenarios shown on Figure 2. Three idealized excavation and backfill scenarios were analyzed:

• Scenario 1 modeled over-excavation and replacement of the top six (6) ft below the building footprint, and replacement with Non-Expansive Fill weighing 135 pounds per cubic foot (pcf), combined with a grade raise below the building footprint constructed of 135 pcf Non-Expansive Fill;

- Scenario 2 modeled over-excavation and replacement of the top three (3) ft below the building footprint, and replacement with 35 pcf cellular concrete, combined with a grade raise below the building footprint constructed with 35 pcf cellular concrete; and
- Scenario 3 modeled over-excavation and replacement of the top six (6) ft below the building footprint and replacement with 35 pcf cellular concrete, combined with a grade raise below the building footprint constructed with 35 pcf cellular concrete.

The three excavation and backfill scenarios (1, 2, and 3) described above were each analyzed for three different idealized book loading configurations, as illustrated on Figure 2. Specifically,

- "A" Scenarios modeled uniform book and shelf loading over the entire mat area;
- "X" Scenarios modeled uniform book and shelf loading over the southern portion of the stack area only; and
- "Y" Scenarios modeled uniform book and shelf loading over the west portion of the stack area only.

Plots of total settlement at transects across the mat slab were plotted and are included in Appendix H. Transect locations were selected to pass through locations of maximum settlement (i.e., the center of the mat for "A" and "X" scenarios, and the center of the loaded zone for "Y" scenarios), and maximum mat slope (typically either at the edge of the mat or at the transition between zones with different loading). Transect orientations selected for each scenario and configuration are shown on Figure 2. For "A" scenarios, transects were plotted in both the transverse and longitudinal direction. For "X" scenarios, only a longitudinal transect was plotted, to capture the transition between the south stack area (where book loading was applied), and the north portion of the structure, where no book loads were applied. Similarly, for "Y" scenarios, only a transverse section was plotted, to capture the transition between the west stack area, where book loads were applied, and the east stack area, where book loads were applied, and the east stack area, where book loads were applied.

In addition to plotting total settlement along the aforementioned transects, A3GEO plotted instantaneous slope (change in mat elevation over horizontal distance) along each transect. The purpose of the slope plots was to observe whether differential settlement at a location along each transect was greater than the ultra-flat criteria (shown as a pink dashed line on the plots).

Generally, a dishing pattern of settlement behavior was observed, with slopes (change in mat elevation over a horizontal distance) at a maximum along the edges of the mat. Total settlements of up to approximately 2 inches were observed for Scenario 1, up to approximately 1.4 inches were observed for Scenario 2, and up to approximately 1.1 inches were observed for Scenario 3. For each of the idealized scenarios (1 through 3), mat slopes in excess of the applicable transverse or longitudinal criterion were observed at the edge of the mat, with Scenario 1 generating the steepest slopes. Additionally, applicable transverse and longitudinal criteria were exceeded in the center of the mat for idealized "X" and "Y" configurations at the transitions between zones with and without applied book loading. Generally, Scenario 3 (6 ft of over-excavation and replacement with cellular concrete, followed by a grade raise constructed of cellular concrete) generated the smallest total and differential settlements, and the smallest zones within the mat where the slope exceeded the ultra-flat criteria.

As discussed in Section 5.03, over-excavation of the existing soft clay topsoil within the top approximately 3 to 7 ft below the structure footprint will already be required. Based on the results of our settlement analysis, we conclude that while backfilling this over-excavated area with either Non-Expansive Fill or cellular concrete will be feasible from a bearing capacity standpoint, backfilling with cellular concrete (as modeled in Scenarios 2 and 3) may partially mitigate the adverse effects of total and differential settlement on mat performance. Depending on the actual thickness of soft clay topsoil observed across the excavation, it is possible that excavation in excess of what is required to remove the soft clay topsoil may be advisable for settlement mitigation reasons.

5.05 Construction Adjacent to Existing Structures

Construction of the NRLF Phase 4 facility adjacent to the existing NRLF Phase 2 and Phase 3 facilities has the potential to cause additional settlement in these structures. Generally, we expect that the presence of lime treated soil below the Phase 3 facility may help mitigate some of the potential settlement due to construction of the Phase 4 facility. We expect that Phase 4 construction may result in approximately an additional ½ to 1 inch of settlement of the Phase 2 facility, and possibly less at Phase 3.

Both the Phase 2 and Phase 3 facilities will need to remain open and operational both during and after construction of the Phase 4 facility, and the Contractor will need to sequence work in such a way as to avoid damage. Over-excavation to remove soft clay topsoil and to place Non-Expansive Fill and/or cellular concrete within the ZOI of the Phase 4 slab will need to avoid undermining the existing foundations for the Phase 2 and 3 structures. Based on the 100% Schematic Design drawings for the Project, we understand that the Phase 4 facility will essentially abut the Phase 3 facility along the proposed Phase 4 facility's north edge (EHDD, 2018). As discussed in Section 4.02.2, construction for the Phase 3 facility involved lime treating soil to the approximate recommended (i.e. *not* as-built) elevations shown on the plan included in Appendix F. Based on this plan, lime treatment may have been performed to El. 16.75 or El. 17.5 in the area where Phase 4 will abut Phase 3. However, as-built construction records for the lime treatment are not available, and as such, the actual lateral and vertical extent of lime treatment within this zone is unknown. We recommend performing a test pit or series of test pits along this alignment prior to beginning construction to understand the extent of lime treatment and fine-tune the excavation and replacement plan within this area.

Based on the 100% Schematic Design drawings, we understand a 10-ft setback is planned between NRLF Phase 2 and the proposed Phase 4 structure (EHDD, 2018). As discussed in Section 4.02.1, over-excavation to prepare the subgrade for the Phase 2 facility may have involved at least 3 ½ ft of excavation below previously existing site grades, to an over-width of 10 ft beyond the edge of the Phase 2 structure (WCC, 1988a), but actual construction records are not available. Based on the historic survey plan, the previously existing site grade along the west edge of the Phase 2 facility appears to have been at approximately El. 20, and as such, we would expect that the bottom of the over-excavated and backfilled zone along this edge may be at approximately El. 17. If over-excavation and replacement was undertaken to an over-width of 10 ft as recommended in the report (WCC, 1988a), we would expect the edge of the zone of engineered fill placed for Phase 2 may coincide with the proposed east edge of the future Phase 4 facility. We recommend performing a series of test pits along this edge to understand ground conditions and develop an excavation and replacement plan for this area.

5.06 Construction Considerations

Typically, we expect that soil at the Site can be excavated with conventional earth-moving equipment, although special equipment may be needed to excavate through lime-treated soils adjacent to NRLF Phase 3, assuming they extend within the footprint of the proposed NRLF Phase 4 facility. Additionally, it is possible that other obstructions could be encountered that could require jack-hammering, hoe-ramming, and/or cutting tools to excavate. In general, the Contractor is responsible for independently assessing and implementing safe and appropriate means and methods to accomplish the work described in the Contract Documents and may utilize existing information coupled with any supplemental investigations deemed necessary at the time of construction.

The contractor is responsible for shoring, excavation safety, and the protection of adjacent offsite improvement (including the existing NRLF Phase 2 and Phase 3 structures) throughout all phases of construction. All excavations deeper than 4 feet that will be entered by workers will need to be shored or sloped for safety in accordance with the applicable California Occupational Safety and Health Administration (Cal-OSHA) standards and any site-specific health and safety protocols and procedures required by UCB. In general, if the contractor decides to utilize temporary support of excavation systems along the existing Phase 2 or Phase 3 facilities to retain soil and avoid undermining existing foundations, these systems will need to be designed to resist building surcharge loads. While the near-surface soils are generally cohesive in nature, the Contractor should anticipate

that excavations will not be able to be cut "neat" into the existing onsite soils and that, if used, cellular concrete may need to be formed.

To address potential impacts to the adjacent NRLF Phase 2 and 3 facilities, we recommend an instrumentation and monitoring program be implemented, consisting of the following components:

- <u>Preconstruction Conditions Surveys</u> We recommend preconstruction condition surveys be completed before the beginning of construction. Preconstruction condition surveys should include the exterior and interior of the NRLF Phase 2 and Phase 3 structures. Surveys should include still photographs and video accompanied by an audio narrative of site features.
- <u>Survey Reference Points</u> Survey reference points should be installed on the exposed faces of the NRLF Phase 2 and Phase 3 facilities.

Monitoring program threshold and limiting criteria should be incorporated into the Contract Documents.

The near-surface soils at the site include clayey materials that may be unable to support heavy construction equipment, particularly when wet. Excavation will be required within the building footprint and below exterior flatwork in order to place fill; the contractor should anticipate that it may be necessary to accomplish such excavations working outside of the excavation in order to not disturb soft subgrade materials. Supplemental excavations may be warranted to investigate the thickness of the soft clay topsoil, and to understand the subsurface conditions adjacent to the NRLF Phase 2 and Phase 3 facilities, prior to the start of construction. The means and methods associated with excavation, foundation construction, backfilling, subgrade preparation, and protection of adjacent structures are all responsibilities of the Contractor.

Water may tend to collect/pool within Site excavations and it is possible that excavations could encounter seepage zones or perched groundwater, depending upon the conditions present at the Site at the time that the work is performed. The Contractor is responsible for all aspects of temporary dewatering throughout the period of construction, which includes the design, permitting, installation and appropriate abandonment of Site dewatering systems as well as the appropriate storage, testing, and discharge of the water generated.

Although it is possible for excavation and/or construction to proceed during or immediately following the wet winter months, a number of geotechnical problems may occur which may increase costs and cause project delays. The water content of onsite soils may increase during the winter and rise significantly above optimum moisture content for compaction of subgrade or backfill materials. If this occurs, the Contractor may be unable to achieve the specified levels of compaction. Dewatering requirements will potentially increase due to rainfall, surface runoff, seepage, and rises in groundwater levels. The stability of temporary slopes will decrease, potentially increasing the lateral extent of excavation required. If utility or foundation excavations are open during winter rains, caving of the trench walls may occur. Subgrade preparation below the mat foundation or pavement sections may prove difficult or infeasible. In general, we note that it has been our experience that increased clean-up costs may be incurred, and greater safety hazards may exist, if the work proceeds during the wet winter months.

This geotechnical report does not address design or construction issues related to chemically-impacted soils and groundwater. Aside from the limited environmental soil analytical testing performed on behalf of UCB EHS and discussed in Section 2.03.3, environmental services were not included in A3GEO's scope of work.

6. <u>RECOMMENDATIONS</u>

6.01 California Building Code Seismic Parameters

The NRLF Phase 4 structure should be designed to resist strong ground shaking in accordance with the applicable building code(s) and local design practice. This section provides mapped seismic design parameters per the CBC (Risk Category I/II/III). In accordance with ASCE 7-10 Section 20, we evaluated seismic Site Class by calculating weighted average of blow counts for borings near the NRLF Phase 4 footprint. Accordingly, Site Class D (stiff soil) is appropriate for the Project. The appropriate design values are provided below, and corresponding USGS Design Maps Summary Reports and Design Maps Detailed Reports are attached in Appendix I.

Site Class

D = Stiff Soil

Latitude and Longitude

Latitude: 37.917381°N Longitude: 122.335967°W

Maximum Considered Earthquake Spectral Response Accelerations (for Site Class D)

(Mapped Acceleration × Site Coefficient) $S_{MS} = 2.012g$ (MCE spectral acceleration at short periods) $S_{M1} = 1.230g$ (MCE spectral acceleration at 1-second period)

Design Spectral Response Acceleration (for Site Class D)

(Maximum Considered Earthquake Spectral Acceleration $\times 2/3$) S_{DS} = 1.341g (design spectral acceleration at short periods) S_{D1} = 0.820g (design spectral acceleration at 1-second period)

6.02 Mat Foundation

As discussed in Section 5.02, the proposed NRLF Phase 4 structure can be founded on a mat foundation. We understand that the bottom of the proposed protection slab that will underlie the mat will be at EI. 22.29 (EHDD, 2018). Because existing grades within the NRLF Phase 4 footprint range from approximately EI. 19 to EI. 23, filling will be necessary to reach the protection slab subgrade elevation. As discussed in Section 5, the soft clay topsoil material will need to be completely removed within the ZOI (see Section 6.03.1) of the mat foundation. Following over-excavation and replacement of the soft clay topsoil with either Non-Expansive Fill or cellular concrete, grades can be raised within the mat footprint with either Non-Expansive Fill or cellular concrete. The mat my subsequently bear directly on either the Non-Expansive Fill or the cellular concrete placed of the grade raise.

The mat foundation can be evaluated using the bearing pressures in the following table (DL = Dead Loads; LL = Live Loads; Total = DL + LL + wind or seismic).

Load Case	Bearing Pressure (psf)	Minimum Factor of Safety
DL Allowable	3000	3.0
DL+LL Allowable	4500	2.0
Total Allowable	6000	1.5

Mat Allowable Bearing Pressures

Resistance to lateral loads can be provided by passive pressures acting on the vertical faces of below-grade structural elements and by friction along the bottom of the mat. Where below-grade structural elements are surrounded by soil, passive resistance can be evaluated using an equivalent fluid weight of 300 pcf. This value can be increased by one-third for dynamic loading. The top of the assumed passive zone should be assumed 0.5 ft below the bottom of the adjacent slab. A friction coefficient of 0.20 can be used to evaluate frictional resistance between the waterproofing layer and the underlying protection slab. The above passive and frictional resistance values include a factor of safety of at least 1.5 and can be fully mobilized with deformations of less than $\frac{1}{2}$ - and $\frac{1}{4}$ - inch, respectively.

6.03 Earthwork

6.03.1 Building Site Preparation and Over-Excavation

It is essential that all unsuitable soils be removed from within the ZOI and surrounding the planned mat foundation and this requirement should be carefully indicated on the structural plans. Unsuitable materials include soft clay topsoil, fill, organic materials, other buried topsoil, pavements, etc. Where Non-Expansive Fill is used, the ZOI is defined as the zone beneath the mat and beneath imaginary lines extending one ft laterally beyond the mat outer bottom edges and down and out on a one horizontal to one vertical (1H:1V) slope to the bearing stratum. (We note that this may not be possible to achieve adjacent to the NRLF Phase 2 and NRFL Phase 3 structures). Where cellular concrete is used, the ZOI is defined as the zone beneath the mat and beneath the zone extending 1 ft laterally beyond the mat edges, down to the bearing stratum.

Care should be exercised during excavation so as not to disturb the natural subgrade materials. We recommend that the excavation bottom be cut using a smooth (non-toothed) excavator bucket working from outside the excavation or by another method approved by A3GEO based on the conditions encountered. The exposed bottom of the over-excavation should be observed in the field by A3GEO to confirm unsuitable materials (including soft clay topsoil) have been sufficiently removed. It may be necessary to require additional over-excavation and replacement of weak, disturbed, or otherwise unacceptable materials prior to backfilling.

6.03.2 Backfilling

Geotechnical requirements for fill materials are presented below:

General Fill - General Fill material should have an organic content of less than 3 percent by volume and should not contain environmental contaminants or rocks or lumps larger than 6 inches in greatest dimension. From a geotechnical standpoint, onsite materials can be reused as General Fill if they meet or can be processed (e.g. by sorting and/or crushing) to meet the above requirements. General Fill can be used anywhere except where Non-Expansive Fill is required.

Non-Expansive Fill - Non-Expansive Fill should conform to the requirements for General Fill, have a Plasticity Index no greater than 12, and a Liquid Limit no greater than 40.

Imported Fill – Imported Fill should conform to the requirements for Non-Expansive Fill and should be evaluated by our firm and the project environmental consultant prior to its importation to the site.

Cellular Concrete – Cellular concrete should have a maximum unit weight of 35 pcf, and a minimum unconfined compressive strength of 65 pounds per square inch (psi).

Geotechnical requirements for fill placement and compaction are presented below (per ASTM D-1557 Test Methods):

- General Fill that is predominantly cohesive (>15 percent passing #200 sieve) should be moisture conditioned, as necessary, to between 3 and 5 percent over optimum moisture content and compacted to at least 90 percent relative compaction.
- General Fill that is predominantly granular (<15 percent passing #200 sieve) should be moisture conditioned, as necessary, to between 2 and 4 percent over optimum moisture content and compacted to at least 95 percent relative compaction.
- Non-Expansive Fill should be moisture conditioned, as necessary, to near optimum moisture content and compacted to at least 95 percent relative compaction.

All proposed fill materials should be approved by A3GEO and the project environmental consultant prior to use.

6.03.3 Reuse of Onsite Soils and Excavated Soil Management

We anticipate that excavated onsite soils will consist primarily of soft clay topsoil or other expansive clay. Thus, it is not expected that onsite soils will be reusable as Non-Expansive Fill. Onsite soils may be reusable as General Fill, provided it meets the requirements shown in Section 6.03.2. If not reused on Site, excavated materials should be stockpiled, transported, and disposed of in coordination with UCB requirements and at the direction of the project environmental consultant, as applicable.

6.04 Utilities

The long-term settlements discussed in Section 5.04.2 should be considered in the design of underground utilities that are sensitive to differential settlement and/or slope to drain.

Utility trenches should be backfilled with fill placed in lifts not exceeding 8 inches in uncompacted thickness. Trenches should be filled by placing a granular shading layer beneath and around the pipe, and then 6 to 12 inches of shading should be carefully placed and tamped above the pipe. The remaining portion of the trench should be backfilled with onsite or import soil. The backfill above shading should be placed and compacted by mechanical means to at least 90 percent relative compaction (per ASTM D-1557). If imported granular soil is used, sufficient water should be added during the trench backfilling operations to prevent the soil from "bulking" during compaction. All compaction operations should be performed by mechanical means only. Jetting should not be allowed. The preceding compaction recommendations are based on general geotechnical considerations. If UCB, local agency and/or utility company specifications require different or more stringent backfill requirements, those specifications should be followed.

A3GEO should observe utility trench backfilling and test compaction, as appropriate, to confirm and document that the work was performed in accordance with the specifications and the intent of our geotechnical recommendations.

6.05 Exterior Flatwork

6.05.1 Subgrade Preparation

We recommend that exterior flatwork be supported directly upon subgrade materials that are firm, non-yielding and predominantly non-expansive (per the requirements for Non-Expansive Fill presented in Section 6.03.2). In all cases, the upper 12 inches of soil subgrade should consist of either: 1) Non-Expansive Fill placed and compacted in accordance with the requirements of this report; or 2) onsite soil that is checked and confirmed to be non-expansive and suitable by A3GEO.

6.05.2 Exterior Slabs-on-Grade

Exterior concrete slabs-on-grade can be cast directly upon the 12-inch-thick compacted non-expansive soil layer. Subgrades beneath exterior slabs-on-grade should be proof-rolled under our observation and confirmed to be uniform and non-yielding prior to the placement of the slab reinforcement. Slab reinforcing should be provided in accordance with the anticipated use and loading of the slab. We recommend that exterior slabs-on-grade be at least 4 inches thick and reinforced with steel bar reinforcement. Exterior slabs should be structurally independent from buildings. Concrete slabs that may be subject to vehicle loadings should be designed in accordance with Section 6.05.4, Rigid Pavements.

6.05.3 Flexible Pavements

Flexible asphalt concrete (AC) pavements may be used for parking areas and driveways. We developed the following recommended pavement sections for various traffic indices using the Caltrans R-value design method for flexible pavements. The sections below are based on an assumed subgrade R-value of 30 for non-expansive soil. The R-value of the soil beneath the aggregate base should be confirmed during construction.

Traffic Index	Asphalt Concrete (inches)	Caltrans Class 2 Aggregate Base (inches)	Total Thickness (inches)
4	2	6	8
5	3	6	9
6	3	9	12
7	3	12	15

Flexible Pavement Thickness Design for Subgrade R-Value = 30

The assumed traffic indices of 4.0 and 5.0 are commonly used for automobile and light truck parking areas and access driveways, respectively. Traffic indices of 6.0 and 7.0 are commonly used for moderate truck access and parking areas. A traffic study has not been conducted by our firm for this project and our opinion regarding the applicability of the assumed traffic indices is experience-based and judgmental. The project civil engineer should choose the appropriate traffic indices for the pavement areas of the Site and then use the given section for that traffic index.

Aggregate base should be placed on a compacted non-expansive soil layer that is at least 12 inches thick. The upper 6 inches of subgrade beneath planned pavements should be compacted to at least 95 percent relative compaction per ASTM D-1557. Pavement subgrades should be proof-rolled and confirmed to be uniformly firm and non-yielding prior to the placement of aggregate base. Aggregate base for use in pavements should conform to Caltrans Standard Specifications for Class 2 Aggregate Base. The aggregate base used in pavement sections should be compacted to at least 95 percent relative compaction as determined by ASTM D-1557.

6.05.4 Rigid Pavements

Rigid Portland cement concrete (PCC) pavements may also be used in driveway/loading areas. This section provides recommendations for Caltrans jointed plain concrete pavement (JPCP), which is engineered with longitudinal and transverse joints to control where cracking occurs. JPCPs do not contain steel reinforcement, other than tie bars and dowel bars. The project civil engineer should design and detail the JPCP per Caltrans specifications.

We developed the following pavement thickness design using the Caltrans R-value design method for rigid pavements and an assumed traffic index. The section below is for subgrade soils with an R-value between 10 and 40.

Traffic Index	Portland Cement	Caltrans Class 2	Total
	Concrete	Aggregate Base	Thickness
	(inches)	(inches)	(inches)
< 9	9	12	21

Portland Cement Concrete Pavement Thickness Design

Aggregate base should be placed on a compacted non-expansive soil layer that is at least 12 inches thick. The upper 6 inches of subgrade beneath planned pavements should be compacted to at least 95 percent relative compaction per ASTM D-1557. Pavement subgrades should be proof rolled and confirmed to be uniformly firm and non-yielding prior to the placement of aggregate base. Aggregate base for use in pavements should conform to Caltrans Standard Specifications for Class 2 Aggregate Base. The aggregate base used in pavement sections should be compacted to at least 95 percent relative compaction as determined by ASTM D-1557.

7. FUTURE GEOTECHNICAL SERVICES

7.01 Supplemental Subsurface Investigations

Currently, limited information is available regarding the thickness of the soft clay topsoil layer across the building footprint. The thickness of this layer might be better defined prior to construction, which would help better define the depths of over-excavation required. Based on conversations with UCB EHS personnel in autumn of 2017, we understand EHS may be planning an environmental soil pre-characterization program prior to construction, likely to consist of shallow direct push borings or similar, within the NRLF 4 footprint. If this occurs, it may be beneficial for an A3GEO representative to be on site during the drilling program to observe soil conditions and make an estimate of the bottom of the soft clay topsoil layer at each borehole location. Alternatively, shallow borings or test pits could be undertaken by the contractor prior to construction.

Additionally, as discussed in Section 5.05, we recommend test pits be performed along the edges of the Phase 2 and Phase 3 structures to observe the extent of structural fill and lime treated soils, respectively. We recommend these test pits be conducted prior to construction and prior to the Contractor's preparation of an earthwork submittal.

7.02 Design-Phase Consultations and Plan Review

We recommend A3GEO be provided the opportunity to review the project plans and specifications as they are being developed to check conformance with the intent of our geotechnical recommendations and to provide timely input, in the event that revisions are needed. We should perform a general review of the geotechnical aspects of the final plans and specifications, the results of which we should document in a formal plan review letter.

7.03 Construction-Phase Geotechnical Services

It is essential that A3GEO provide geotechnical services during construction to check whether conditions are as anticipated, provide supplemental recommendations where necessary, and document that the geotechnical aspects of the work substantially conform to the approved Contract Documents and the intent of our geotechnical recommendations. Critical aspects of construction that A3GEO should observe include over-excavation, subgrade preparation, and backfilling. A3GEO should also review, comment upon and approve, where appropriate, contractor submittals (including material submittals and requests for information or clarification) that are geotechnical in nature.

8. LIMITATIONS

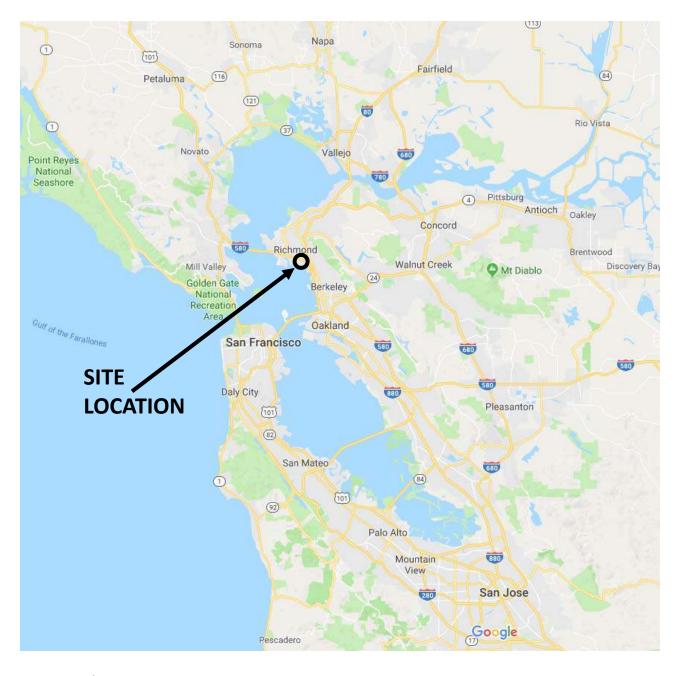
This report has been prepared for the exclusive use of UCB and its consultants for specific application to the design of the NRLF Phase 4 Project described herein. The opinions presented in this report were developed in accordance with generally-accepted geotechnical and engineering geologic principles and practices. No other warranty, expressed or implied, is made. In the event that any changes in the nature or design of the project are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and the conclusions of this report are modified or verified in writing.

The findings of this report are valid as of the present date. However, the passing of time will likely change the conditions of the existing property due to natural processes or the works of man. In addition, due to legislation or the broadening of knowledge, changes in applicable or appropriate standards will occur. Accordingly, this report should not be relied upon after a period of three years without being reviewed by this office.

REFERENCES

- 1. Aagard, B.T., et al., 2016, Earthquake Outlook for the San Francisco Bay Region, 2014 2043, ver. 1.1, August: U.S. Geological Survey Fact Sheet 2016-3020, 6 p., <u>http://dx.doi.org/10.3133/fs20163020</u>.
- 2. Bakun, W.H., 1999, Seismic Activity of the San Francisco Bay Region, Bulletin of the Seismological Society of America, June, v. 89, no.3, p. 764-784.
- 3. Bellecci & Associates, Inc., 2017a, Topographic Survey, University of California, Berkeley, Northern Regional Library Facility, City of Richmond, County of Contra Costa, State of California, December.
- 4. Bellecci & Associates, Inc., 2017b, Topographic Survey, University of California, Berkeley, Northern Regional Library Facility, Phase 3 Level 1 Floor Elevations, City of Richmond, County of Contra Costa, State of California, 20 December.
- Bevc, D., 1984, Borehole to Surface Electrical Monitoring of a Salt Water Injection Experiment, Master of Science Thesis, University of California at Berkeley, Attachment 2 to Tetra Tech EM Inc. "Technical Memorandum for Well Destructions, Richmond Field Station, Richmond, California," consulting report dated August 25, 2010.
- 6. California Building Standards Commission, 2016, California Building Code, Sacramento, California.
- 7. California Geological Survey (CGS), 2009, Tsunami Inundation Map for Emergency Planning, State of California County of Contra Costa, Richmond Quadrangle, San Quentin Quadrangle, 31 July.
- 8. California Geological Survey (CGS), 2003a, Earthquake Zones of Required Investigation, Richmond 7.5 Minute Quadrangle, 14 February.
- 9. California Geological Survey (CGS), 2003b, Seismic Hazard Zone Report for the Richmond 7.5-Minute Quadrangle, Alameda County, California, Seismic Hazard Zone Report 070.
- 10. Coduto, D.P., 1999, Geotechnical Engineering: Principles and Practices, 759p.
- 11. EHDD, 2018, Northern Regional Library Facility Phase 4, 100% Schematic Design, drawing package, 19 January.
- 12. EHDD, 2017, UC NRLF Phase IV Detailed Project Program, Revised 100% Submittal, 13 April.
- 13. ESA PWA, 2013, Draft University of California Richmond Field Station Coastal Flood Analysis Summary, originally dated May, revision dated June.
- 14. Esherick Homsey Dodge and Davis (EHDD), 2005, As-Built Drawings, University of California Northern Regional Library Facility Phase 3, 28 September (Structural) or 12 October (Civil).
- 15. Esherick Homsey Dodge and Davis (EHDD), 1981, As-Built Drawings, Northern Regional Library Compact Shelving Facility, University of California, Richmond Field Station, Richmond, California, 7 April.
- Graymer, R.W., 2000, Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, U.S. Geological Survey Miscellaneous Field Study MR-2342.
- 17. Jennings, C.W., and Bryant, W.M., 2010, Fault Activity Map of California, California Geological Survey, Geologic Data Map No. 6
- 18. Knudsen, K.L., et al., 2000, Description of Quaternary Deposits and Liquefaction Susceptibility, Nine-County San Francisco Bay Region, California, U.S. Geological Survey, Part 3 of Open-File Report 00-444.

- 19. National Oceanic and Atmospheric Administration (NOAA), 2018, VERTCON North American Vertical Datum Conversion, National Geodetic Survey, http://www.ngs.noaa.gov/TOOLS/Vertcon/vertcon.html
- Pouch, G.W., 1987, Hydrogeologic Site Assessment of the Engineering Geoscience Well Field at the Richmond Field Station, Contra Costa County, California, Attachment 3 to Tetra Tech EM Inc. "Technical Memorandum for Well Destructions, Richmond Field Station, Richmond, California," consulting report dated August 25, 2010.
- 21. Rana Creek Design, 2017, Map 2, Coastal Terrace Prairie Survey Results and Extents, UC Berkeley Richmond Field Station Northern Regional Library Facility Phase IV, 20 July.
- 22. Ripley Associates, 1989, As-Built Drawings, Northern Regional Library Facility Phase 2, Richmond, California, 2 March.
- 23. Rocscience, 2018, Settle 3D Developers Tip: When to Use Immediate Settlement in Settle 3D, http://www.roscience.com/documents/pdfs/uploads/7737.pdf.
- 24. Tetra Tech, Inc., 2017a, Final Soil Management Plan, Revision 1, Removal Action Workplan, Attachment C, Berkeley Global Campus at Richmond Bay, Richmond, California, Research, Education, and Support Area Within the Former Richmond Field Station, 12 April.
- 25. Tetra Tech, Inc., 2017b, Final 2016 Groundwater Sampling Results Technical Memorandum, Richmond Field Station Site, Berkeley Global Campus at Richmond Bay, University of California, Berkeley, 9 January.
- 26. Tuttle, M.P., and Sykes, L.R., 1992, Re-Evaluation of Several Large Historic Earthquakes in the Vicinity of the Loma Prieta and Peninsular Segments of the San Andreas Fault, California, Bulletin of the Seismological Society of America.
- 27. United States Geological Survey (USGS) and California Geological Survey (CGS), 2006, Quaternary Fault and Fold Database for the United States, accessed 25 January 2018, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/.
- University of California, Berkeley (UCB), 2018a, Richmond Field Station Map, UC Berkeley Richmond Field Station Environmental Website, <u>http://rfs-env.berkeley.edu/documents/RFSColorMapOCT4_000.pdf</u>, accessed 6 February 2018.
- 29. University of California, Berkeley (UCB), 2018b, Northern Regional Library Facility Website, http://www.lib.berkeley.edu/libraries/nrlf, accessed 6 February, 2018.
- 30. URS, 2004, Report of Geotechnical Engineering Services for Building Pad Construction, Northern Regional Library Facility Project, Phase 3, Richmond, California, 12 April.
- 31. URS, 2001, Draft Report, Geotechnical Engineering Study, University of California Northern Regional Library Facility Phase 3, Richmond, California, 2 April.
- 32. U.S. Coast and Geodetic Survey, 1903, San Francisco Entrance, California, 1:40,000 scale, September.
- 33. Wentworth, C.M., et al., 1997, Summary Distribution of Slides and Earth Flows in Contra Costa County, California, U.S. Geological Survey Open-File Report 97-745C, Sheet 3 of 11.
- 34. Witter, R.C., et al., 2006, Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California, U.S. Geological Survey Open-File Report, 2006-1037.
- 35. Woodward-Clyde Consultants (WCC), 1990, Final Report, Geotechnical Construction Observation and Testing Services, University of California Northern Regional Library Facility, Phase 2, Richmond Field Station, Richmond, California, 3 August.



- 36. Woodward-Clyde Consultants (WCC), 1988a, Geotechnical Engineering Study, University of California Northern Regional Library Facility, Phase 2, Richmond Field Station, Richmond, California, 3 June.
- 37. Woodward-Clyde Consultants (WCC), 1988b, Results of Level Survey, Northern Regional Library Facility, Richmond Field Station, Richmond, California, 31 May.
- 38. Woodward-Clyde Consultants (WCC), 1980a, Supplemental Geotechnical Exploration, Northern Regional Library Compact Shelving Facility, University of California Richmond Field Station, 16 December.
- 39. Woodward-Clyde Consultants (WCC), 1980b, Geotechnical Exploration, Northern Regional Library Compact Shelving Facility, University of California Richmond Field Station, Richmond, California, 23 April.
- Working Group on California Earthquake Probabilities (WGCEP), 2013, Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) – The Time-Independent Model, U.S. Geological Survey Open-File Report 2013-1165, 97 p., California Geological Survey Special Report 228, and Southern California Earthquake Center Publication 1792, http://pubs.usgs.gov/of/2013/1165/.
- 41. Working Group on California Earthquake Probabilities (WGCEP), 2008, The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2): for 2007-2036, U.S. Geological Survey Open File Report 2007-1437, California Geological Survey Special Report 203; and Southern California Earthquake Center Contribution #1138.

PLATES

Source: Google Maps®

NRLF PHASE 4 GEOTECHNICAL INVESTIGATION PLATE 1 SITE LOCATION

Source: Google Maps®

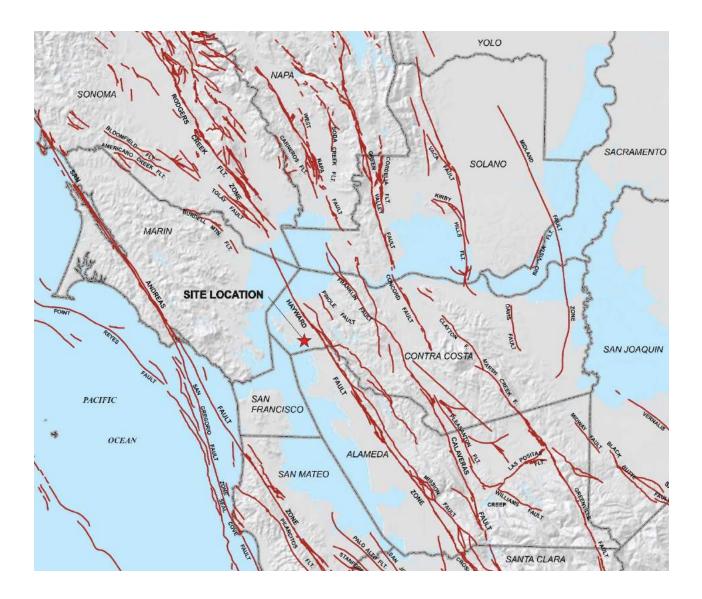


PLATE 2 VICINITY MAP

Source: USGS and California Geological Survey, 2006, Quaternary Fault and Fold Database for the United States, accessed 25 January, 2018, from USGS website: http://earthquake.usgs.gov/hazards/qfaults

NRLF PHASE 4

GEOTECHNICAL INVESTIGATION

PLATE 3 QUATERNARY FAULT MAP

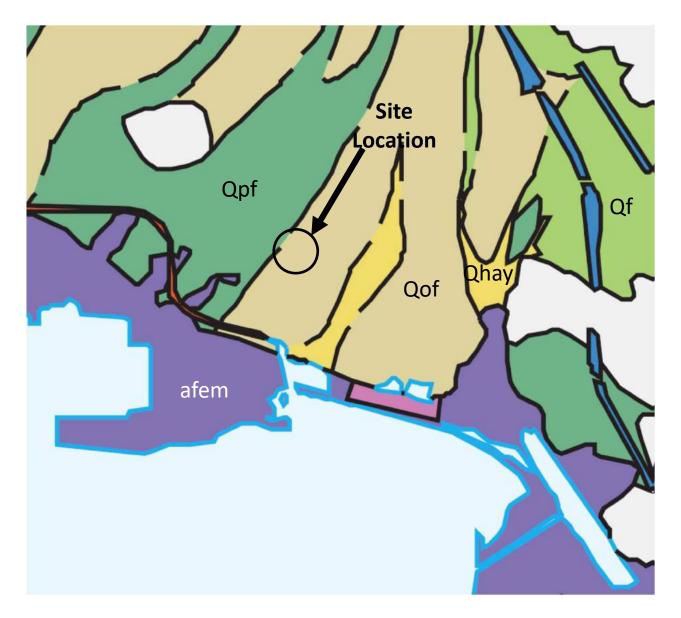
Source: U.S. Coast and Geodetic Survey, 1903, San Francisco Entrance, California, 1:40,000 scale, September.



NRLF PHASE 4 GEOTECHNICAL INVESTIGATION PLATE 4 HISTORICAL MAP

A3GEO

Source: Graymer, R.W., 2000, Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, USGS Miscellaneous Field Study MR-2342



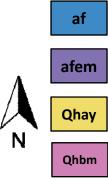

GEOTECHNICAL INVESTIGATION

PLATE 5 GEOLOGIC MAP

Source: Witter, R.C. et al., 2006, Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California, USGS Open-File Report 2006-1037

A3GEO

Artificial Fill (Historical)

Artificial Fill over Estuarine Mud (Historical)

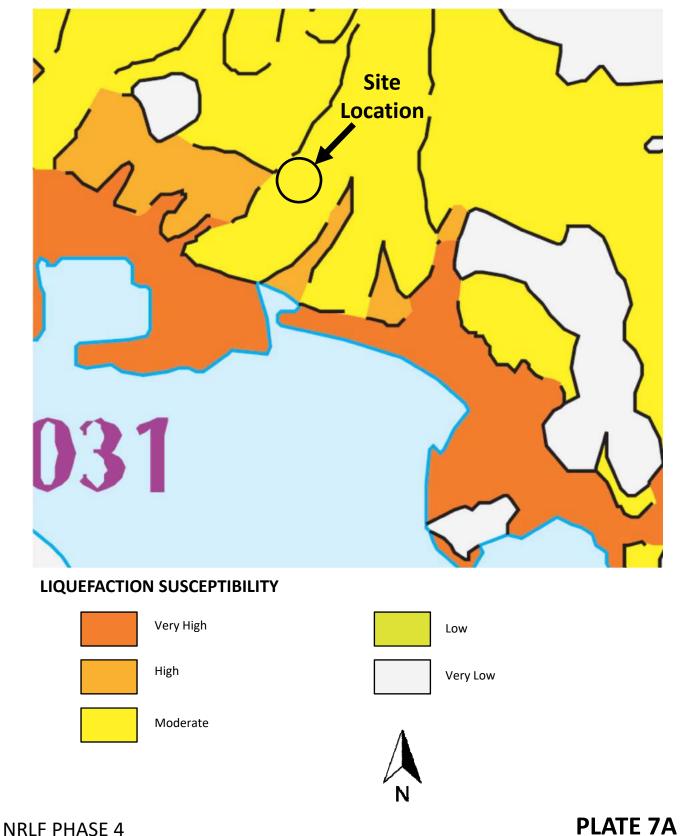
Alluvial Deposits, Undifferentiated (Holocene)

San Francisco Bay Mud (Holocene)

Alluvial Fan Deposits (Holocene to Latest Pleistocene)

Alluvial Fan Deposits (Latest Pleistocene)

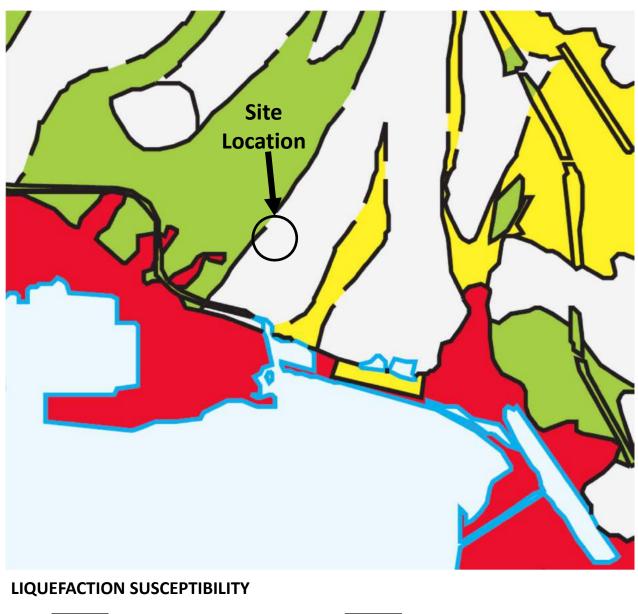
Qof

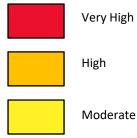

Alluvial Fan Deposits (Early to Late Pleistocene)

NRLF PHASE 4 GEOTECHNICAL INVESTIGATION

PLATE 6 QUATERNARY GEOLOGIC MAP

Source: Knudsen et al., 2000, Description of Quaternary Deposits and Liquefaction Susceptibility, Nine-County San Francisco Bay Region, California, USGS Part 3 of Open-File Report 00-444



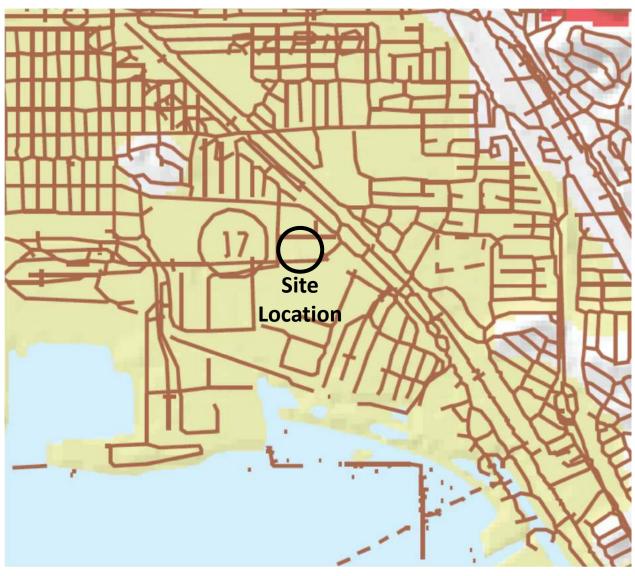

GEOTECHNICAL INVESTIGATION

LIQUEFACTION POTENTIAL MAP

A3GEO

Source: Witter, R.C. et al., 2006, Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California, USGS Open-File Report 2006-1037

Very Low


NRLF PHASE 4 GEOTECHNICAL INVESTIGATION

LIQUEFACTION POTENTIAL MAP

PLATE 7B

Source: Wentworth, C.M., et al., 1997, Summary Distribution of Slides and Earth Flows in Contra Costa County, California, USGS Open-File Report 97-745 C, Sheet 3 of 11.

MAP UNITS

Mostly Landslides

Many Landslides

Few Landslides

NRLF PHASE 4 GEOTECHNICAL INVESTIGATION PLATE 8 LANDSLIDE POTENTIAL MAP

TABLES

TABLE I - SUMMARY OF SUBSURFACE DATA

GEOTECHNICAL INVESTIGATION - NRLF PHASE 4 EXPANSION UNIVERSITY OF CALIFORNIA - BERKELEY RICHMOND, CALIFORNIA 1101-17A

Soft Clay Topsoil and/or Fill Alluvium & Yerba Buena Mud Total Ground Bottom of Boring Depth to Surface El. Boring El. El. of Top Thickness Depth to Top El. of Top Thickness Boring ID Consultant Purpose Date Depth Тор [ft] [ft] [ft] [ft] [ft] [ft] [ft] [ft] [ft] A3-17-1 A3GEO NRLF Phase 4 11/28/2017 20.5 114.6 -94.1 0.0 20.5 4.0 4.0 16.5 110.5 A3-17-2 11/29/2017 124.4 5.0 5.0 14.0 119.0 A3GEO NRLF Phase 4 19.0 -105.4 0.0 19.0 NRLF Phase 3 2/12/2001 #10 URS 23.5 31.5 -8.0 0.5 23.0 4.5 5.0 18.5 >26.5 #11 URS NRLF Phase 3 3/6/2001 22.0 51.5 -29.5 0.0 22.0 3.5 3.5 18.5 >48 NRLF Phase 3 3/5/2001 #12 URS 22.0 51.5 -29.5 0.0 22.0 3.0 3.0 19.0 >48.5 2/23/1988 WCC NRLF Phase 2 19.5 105.0 #8 19.5 110.5 -91.0 0.0 3.0 3.0 16.5 #9 NRLF Phase 2 2/23/1988 4.0 4.0 17.0 WCC 21.0 91.0 -70.0 0.0 21.0 87.0 2/23/1988 W-1 WCC NRLF Phase 2 23.0 26.0 -3.0 0.0 23.0 4.0 4.0 19.0 >22 А WCC NRLF Phase 1 11/10/1980 21.5 101.5 -80.0 0.0 21.5 6.0 6.0 15.5 84.5 В WCC NRLF Phase 1 11/13/1980 22.0 81.0 -59.0 0.0 22.0 6.0 6.0 16.0 73.5 NRLF Phase 1 11/12/1980 С WCC 21.5 82.5 -61.0 0.0 21.5 5.5 5.5 16.0 68.5 D WCC NRLF Phase 1 11/11/1980 21 85.5 -64.5 7.0 7.0 14.0 72.5 0.0 21.0 2/26/1980 WCC NRLF Phase 1 21.0 2.0 2.0 19.0 >59 #3 21.0 61.0 -40.0 0.0 2/23/1980 #4 WCC NRLF Phase 1 21.0 61.0 -40.0 0.0 21.0 4.0 4.0 17.0 >57 #5 WCC NRLF Phase 1 2/25/1980 22.0 22.0 3.8 3.8 18.2 >57.2 61.0 -39.0 0.0 #6 WCC NRLF Phase 1 2/25/1980 22.0 31.5 -9.5 0.0 22.0 3.0 3.0 19.0 >28.5 #7 WCC NRLF Phase 1 2/25/1980 23.0 31.5 -8.5 0.0 23.0 2.8 2.8 20.2 >28.7

NOTES:

1. Ground surface elevations for URS NRLF Phase 3 borings indicated "Not Available" on boring logs. Ground surface elevations estimated from drawing C1 "Demolition", from *Record Drawings, University of California Northern Regional Library Facility Phase 3,* prepared by EHDD and dated 12 October 2005. Drawing C1 contains existing topographic information from survey dated 14 February and 27 March 2001.

2. Ground surface elevations for WCC NRLF Phase 2 borings not indicated. Ground surface elevations estimated from drawing A1.0 "Site Survey - Not in Contract", from As Built Drawings, Northern Regional Library Facility Phase 2, Richmond, Calif.", dated 2 March 1989. Drawing A1.0 contains existing topographic information from survey dated June 1988.

3. Boring W-1 was advanced for the installation of a standpipe piezometer.

4. Boring #9 encountered refusal at 91 feet. It is not clear whether the borehole refused on bedrock.

5. Ground surface elevations for A3GEO borings based on drawing C1.00 "Site Plan", for University of California Northern Regional Library Facility Phase IV, prepared by EHDD, dated 18 January 2018.

В	edrock				
Depth to Top	El. of Top				
[ft]	[ft]				
114.5	-94.0				
124.0	-105.0				
>31.5	Below El8				
>51.5	Below El29.5				
>51.5	Below El29.5				
108.0	-88.5				
91.0	-70.0				
>26	Below El3				
90.5	-69.0				
79.5	-57.5				
74.0	-52.5				
79.5	-58.5				
>61	Below El40				
>61	Below El40				
>61	Below El39				
>31.5	Below El9.5				
>31.5	Below El8.5				

TABLE II - SUMMARY OF ANALYTICAL RESULTS FOR VOCs IN SOIL SAMPLESGEOTECHNICAL INVESTIGATION - NRLF PHASE 4 EXPANSIONUNIVERSITY OF CALIFORNIA - BERKELEYRICHMOND, CALIFORNIA

1101-17A

Location	Sample Date	Sample Designation	Sample Depth (feet bgs)	All VOCs µg/kg
A3-17-1	11/27/2017	A3-17-1-15	15	ND
A3-17-1	11/27/2017	A3-17-1-40	40	ND
A3-17-2	11/28/2017	A3-17-2-15	15	ND
A3-17-2	11/29/2017	A3-17-2-40	40	ND

NOTES:

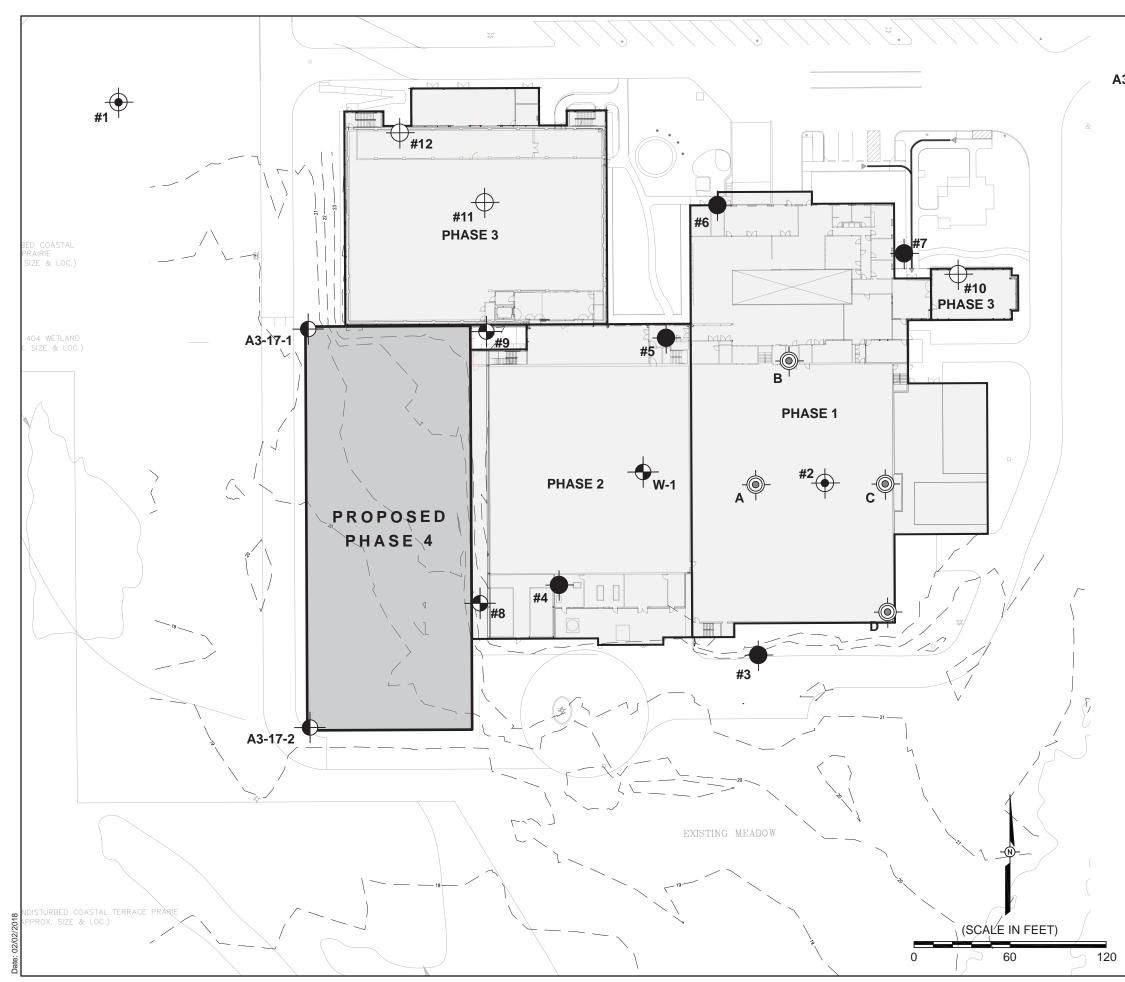
1. Compounds not detected are not presented.

2. Samples were collected by A3GEO, Inc., and analyzed by Enthalpy Analytical Laboratory of Berkeley, California by USEPA Method 8260B.

ABBREVIATIONS:

bgs = below ground surface

VOC = volatile organic compound


USEPA = United States Environmental Protection Agency

µg/kg = microgram per kilogram

ND = Not Detected; compound was not detected in the sample at a concentration at or above the reporting limit

FIGURES

LEGEND:

Designation and approximate location of geotechnical test boring advanced for design of NRLF Phase 4 by A3GEO on 27 to 29 November, 2017.

Designation and reported location of geotechnical boring advanced in February and March 2001 for NRLF Phase 3 by URS

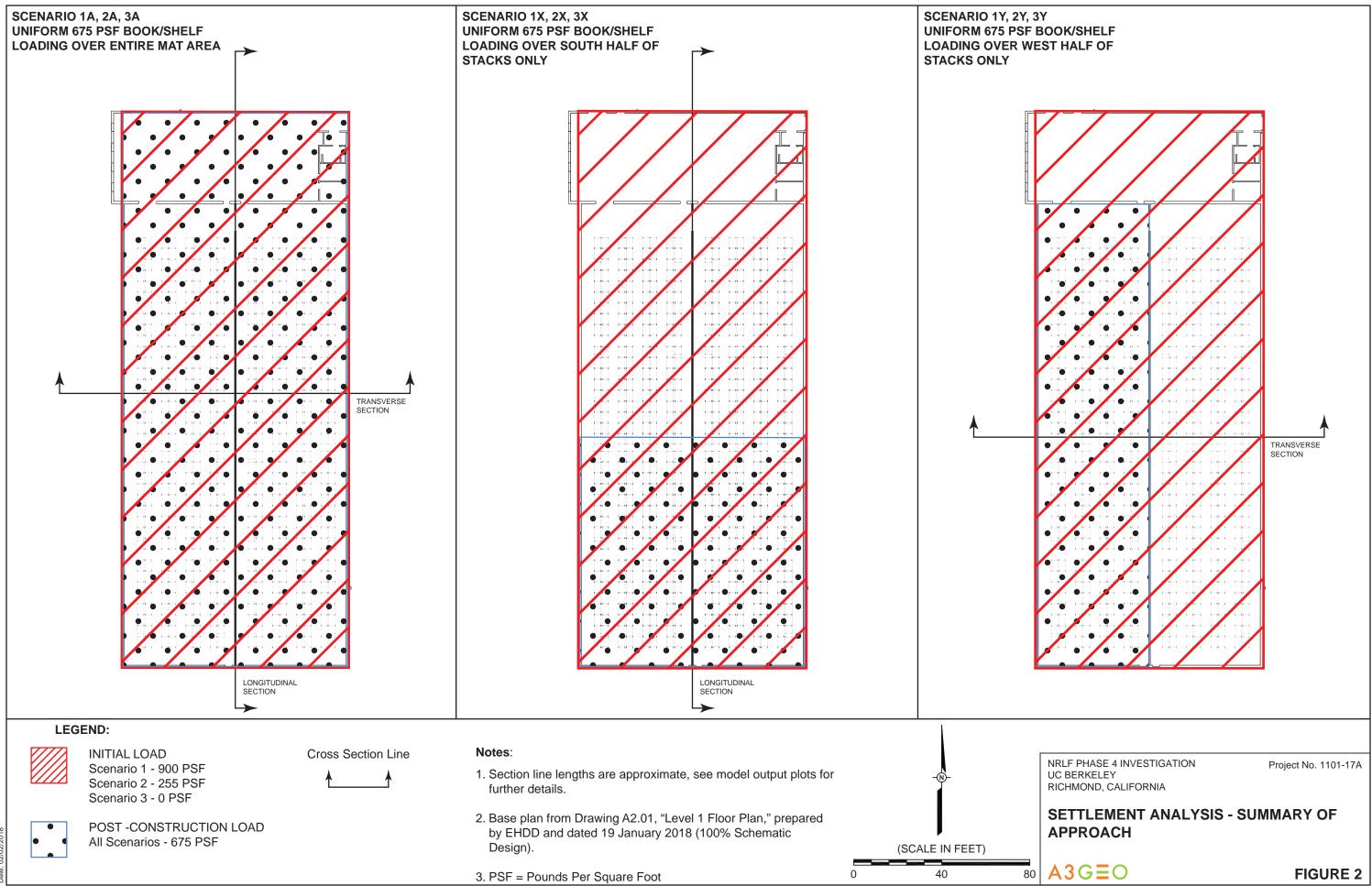
Designation and reported location of geotechnical boring advanced in February 1988 for NRLF Phase 2 by Woodward-Clyde Consultants

Designation and reported location of supplemental geotechnical boring advanced in November 1980 for NRLF Phase 1 by Woodward-Clyde Consultants

Designation and reported location of geotechnical boring advanced in February 1980 for NRLF Phase 1 by Woodward-Clyde Consultants

Designation and reported location of preliminary geotechnical boring advanced in 1979 for NRLF Phase 1 by Woodward-Clyde Consultants

Notes:


- 1. Base plan taken from drawing A1.01, titled "Site Plan, Code Analysis", prepared by EHDD of San Francisco, California, and dated 20 January 2017.
- 2. NRLF = Northern Regional Library Facility
- 3. Locations of NRLF Phase 3 borings taken from Figure 1 in URS, 2001, "Draft Report Geotechnical Engineering Study, University of California NRLF Phase 3", 2 April.
- Locations of NRLF Phase 2 borings taken from Figure 1 in Woodward-Clyde Consultants, 1988, "Geotechnical Engineering Study, University of California NRLF Phase 2", 3 June.
- Locations of NRLF Phase 1 borings taken from Figure 1s in Woodward-Clyde Consultants, 1980, "Supplemental Geotechnical Exploration, NRLF", 16 December.
- 6. Topographic information taken from drawing C1.00, "Site Plan", for University of California Northern Regional Library Facility Phase IV, prepared by EHDD, and dated 18 January 2018.

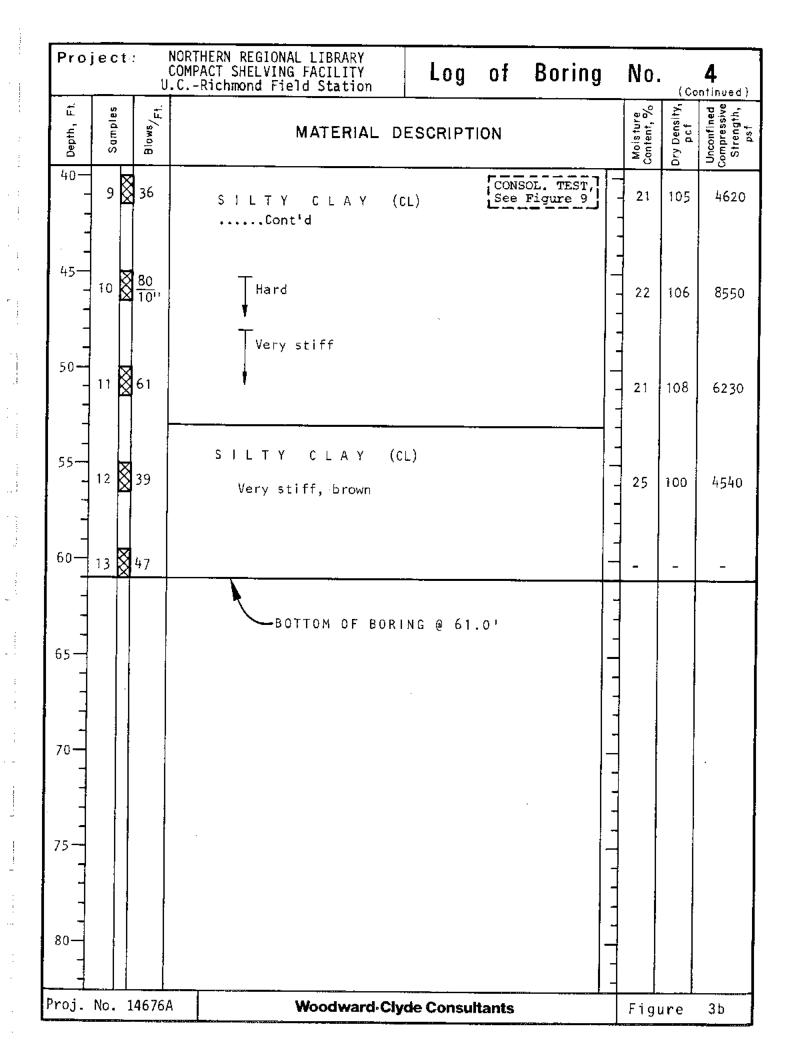
NRLF PHASE 4 INVESTIGATION UC BERKELEY RICHMOND, CALIFORNIA Project No. 1101-17A

EXPLORATION LOCATION PLAN

A3GEO

FIGURE 1

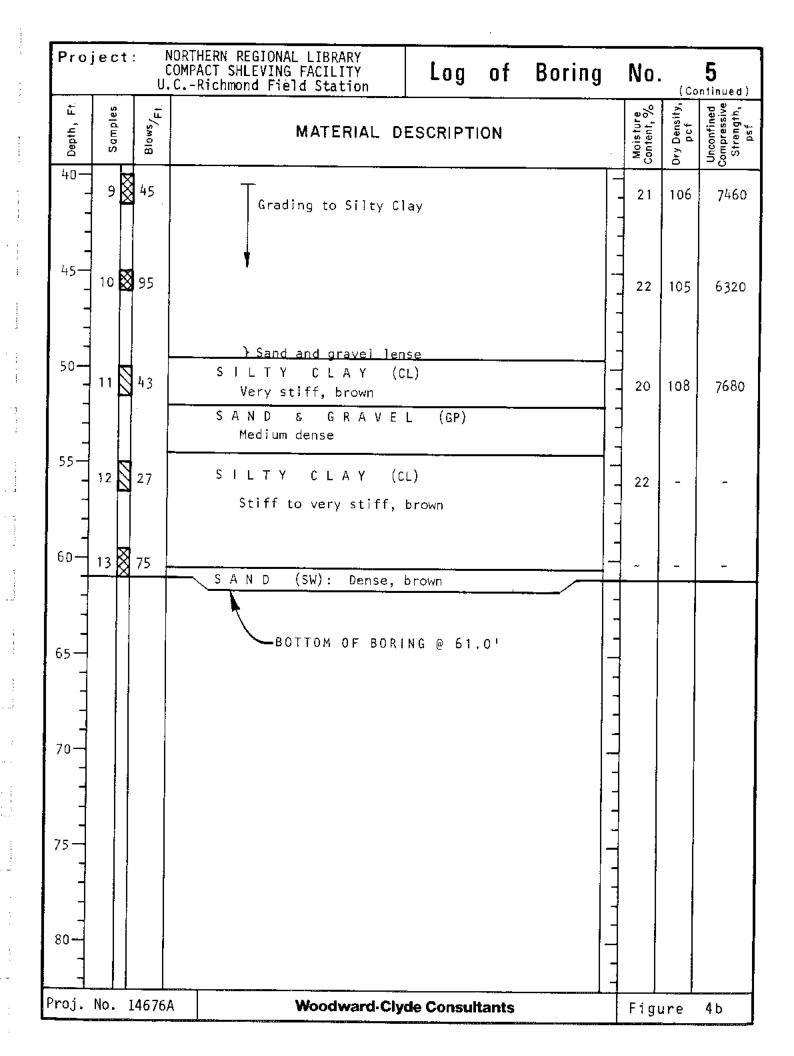
APPENDIX A

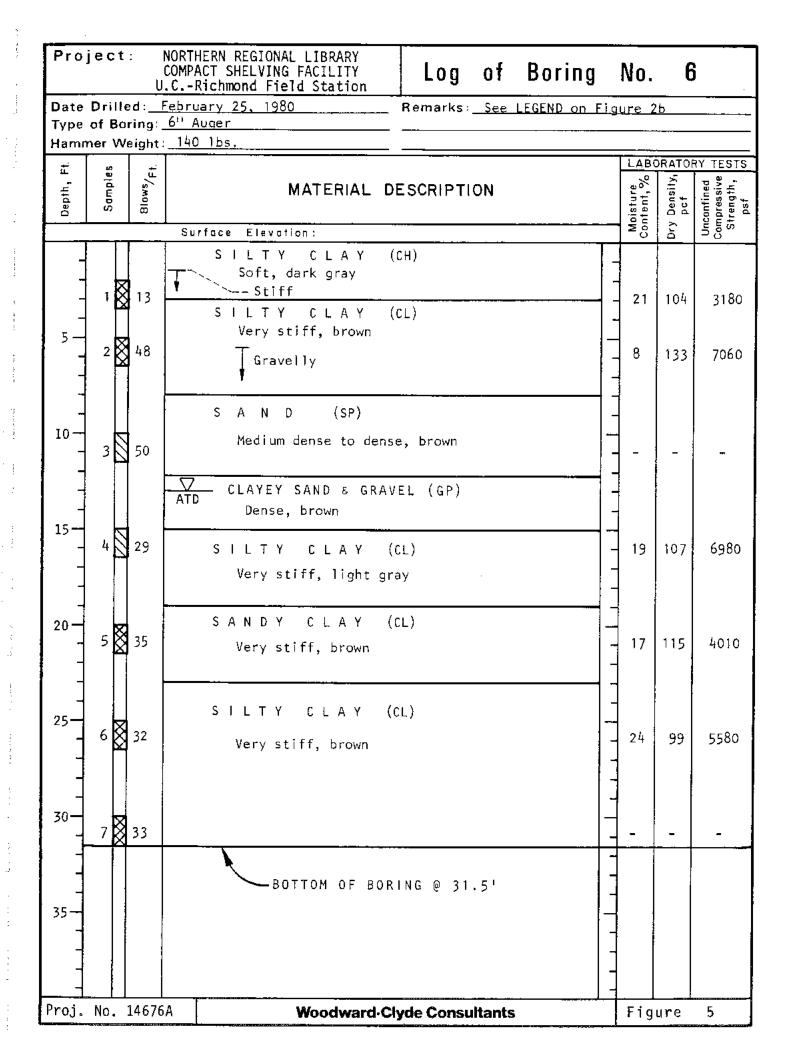

Historic Boring Logs

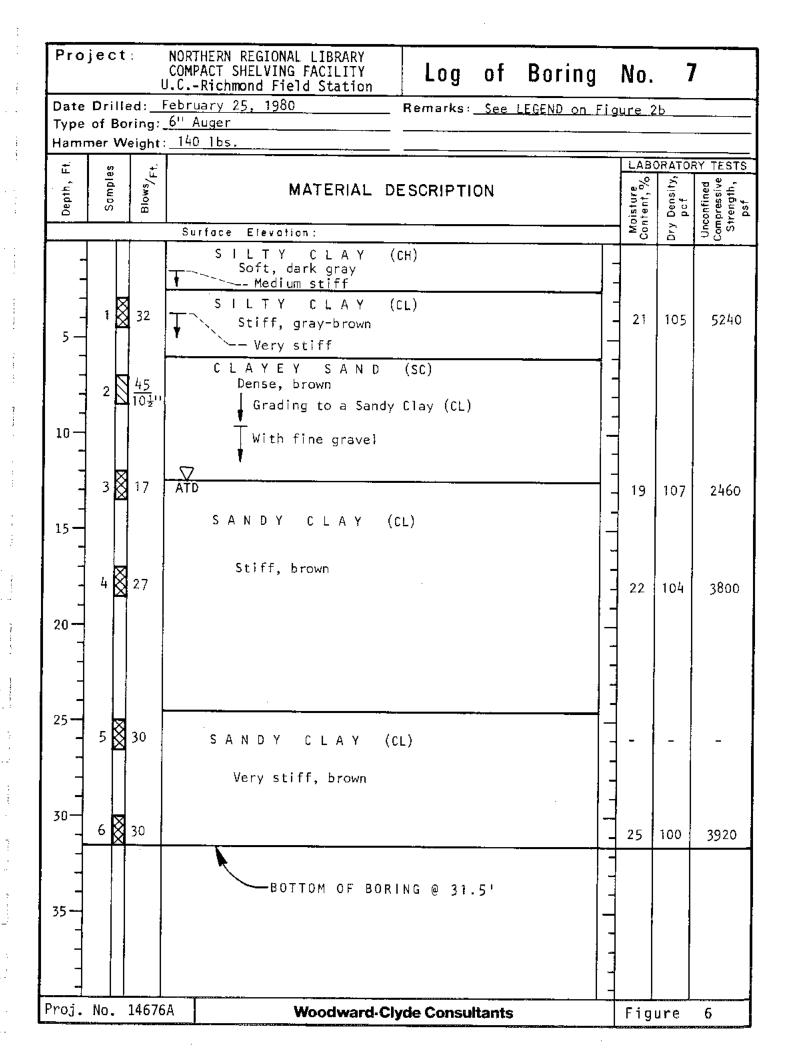
Proj	ject:	CC	DRTHERN REGIONAL LIBRARY DMPACT SHELVING FACILITY CRichmond Field Station	g	No.		3
			ebruary 26, 1980 Remarks: See LEGEND or	<u>Fi</u>	qure 2	!b	
		-	6" Auger 140 1bs.				
Ē							RY TEST
Depth,	Samples	Blows/Ft.	MATERIAL DESCRIPTION		Moisture Content, %	Dry Density, pcf	Unconfined Compressive Strength,
			SILTY CLAY (CL)			<u> </u>	-0
-	1	7	Soft, dark gray		24	104	1200
-			SILTY CLAY (CH)		-		
5	2	37	Stiff, light gray		17	113	6060
7			Very stiff, tan] ''	(11)	0000
-		F	CLAYEY SAND & GRAVEL (GP)		_		
_			Medium dense, brown		_		
10-	3	42	Heardm Gense, brown	_		-	-
_			T ATD	.	1		
]							
-	4		SANDY CLAY (CL)	-	-		
15-	4 🖾	23		-	21	103	3030
_			Stiff to very stiff, brown				
-				-	-		
0	5	17		-	22	102	1580
				-	· · · ·	FUZ	1500
-		[-	-		
1			Grading to Silty Clay	-			
5			•]		
_	6 🛛 2	26		-	22	103	5040
-				-			
Ţ					1		
0-			CLAYEY SILT (ML)	_			
	7 🕅 4	13	Medium dense, brown	-	23	103	1880
-			Grading to Sandy Silt				
		⊢	SAND & GRAVEL (GW)				
5	8 🛛 7	0	Dense, brown, to 1" max. size		-	-	-
-		\vdash	SANDY CLAY (CL)				
			Very stiff, blue-gray				
<u>оі.</u>	No. 14	676A	Woodward Clyde Consultants		Fig		2a

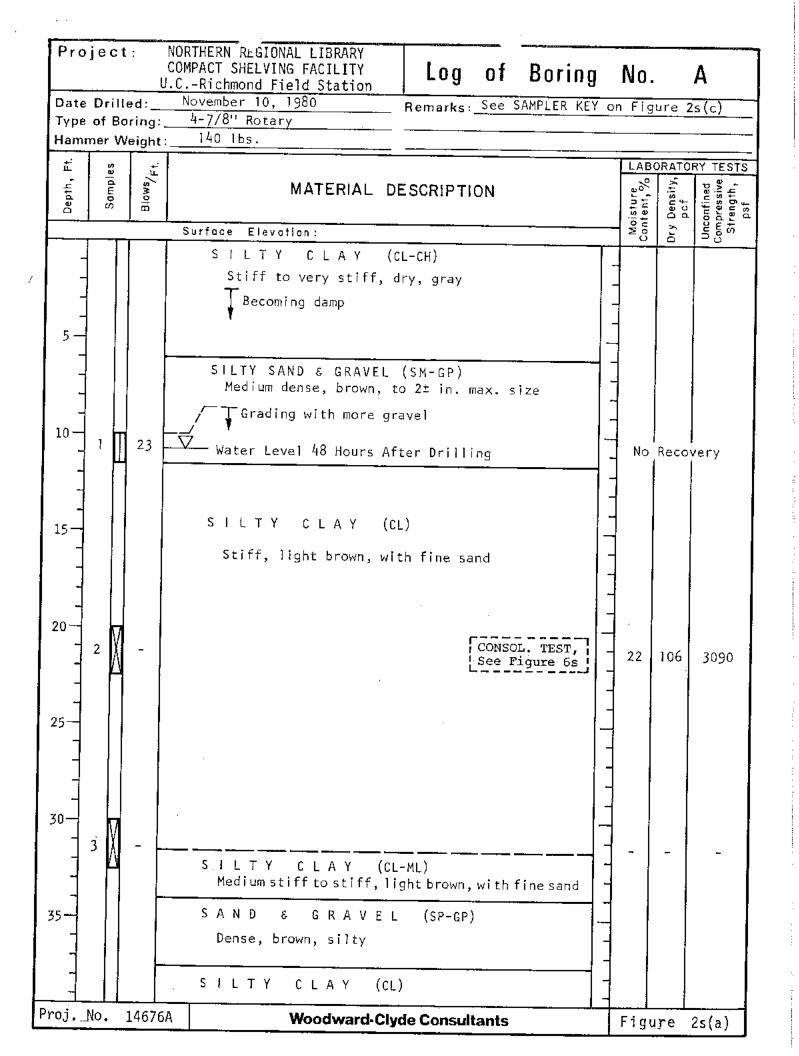
Depth, Ft Samples Blows _{/Ft}			No.	(C	3 ontinued
Depth, Sampl Blows	MATERIAL DESCRIPTION		Moisture Content, %	Dry Density, pcf	Unconfined Compressive Strength,
+0 - 9 37 - 9 37	SANDY CLAY (CL)Cont ¹ d } Silty Clay	-		_	-
- - 10 70	SILTY CLAY (CL) Hard, blue-gray	- 	18	111	8840
0	SANDY CLAY (CL)	-	- - - -	_	~
5 12 58	Very stiff, brown	-	16	115	4760
13 52			-	-	_
	BOTTOM OF BORING @ 61.0'				
	LEGEND FOR ALL BORINGS: 2" I.D. MODIFIED CALIFORNIA SAMPLER				
	2 ¹ 2" I.D. MODIFIED CALIFORNIA SAMPLER				
	ATD WATER LEVEL AT TIME OF DRILLING				
) j. No. 14676					

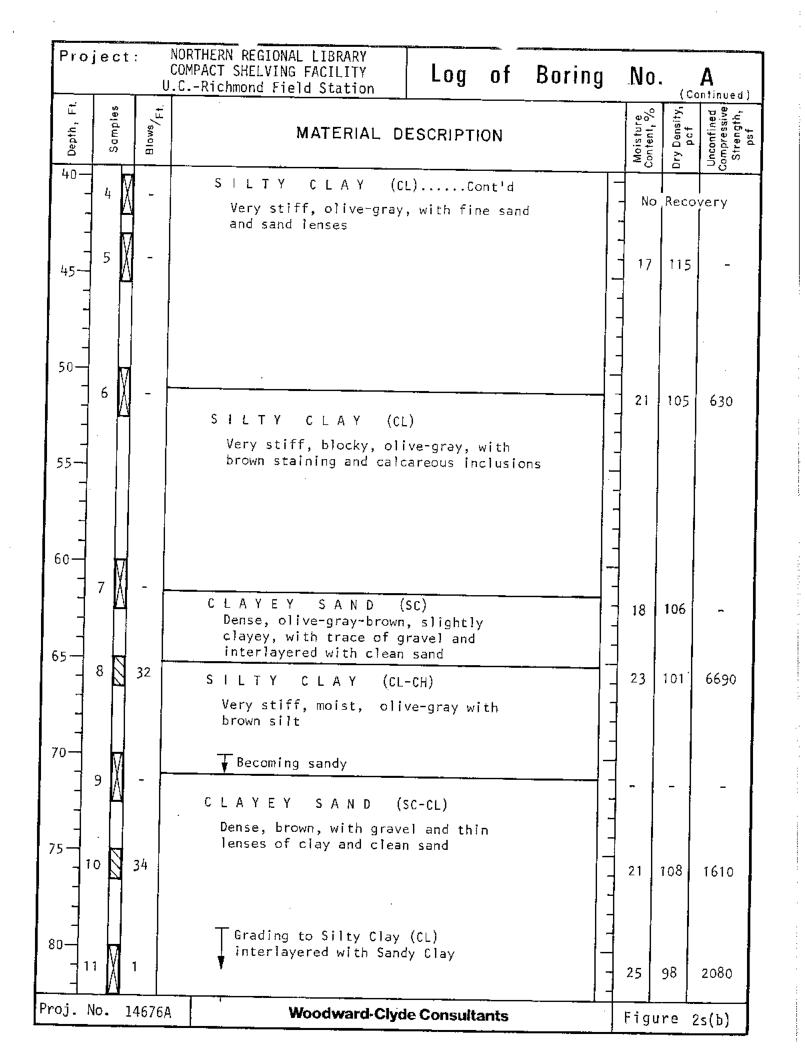
Project:	NORTHERN REGIONAL LIBRARY COMPACT SHELVING FACILITY .CRichmond Field Station		No.	4	•
Date Drilled: Type of Boring	February 23, 1980 Remarks: See LEGEND on I	= I q	ure 2	<u>b</u>	
Hammer Weigl	140 lbs.				
T					RY TES
Depth, Ft. Samples Blows,			Moisture Content, %	Dry Density, pcf	Unconfined Compressive
·····	Surface Elevation: SILTY CLAY (CH)	T	≥ິວ	5	<u></u> 53°
-	Soft, dark gray				
1 8 9	SILTY CLAY (CH)		31	88	9
- 1	Medium stiff, light gray	-	1		
5	SILTY CLAY (CH)	-	15	110	84:
	Hard, light gray, with lime				04.
4	SILTY CLAY (CL)				
		-			
10 3 29	Very stiff, brown See Figure 8		24	101	490
		-	-		
		-			
15-	AID Stiff				
- 4 27		-	25	102	33
		-			
20 - 5 - 8 10	SANDY CLAY (CL)]—	17	1.1.	20
5 19	Stiff to very stiff, brown		17	114	32
		- I			
	SILTY CLAY (CL)	-			
²⁵ - 6 22			28	95	35
	Stiff, brown	-			
-		-		ĺ	
30		_			
7 22		-	25	99	294
jΠ	SANDY CLAY (CL)	-	:		
	Stiff, brown	-			
35-0]—			
- 8 50	SAND & GRAVEL (GW)	-	-	-	-
	Dense, brown SILTY CLAY (CL)	$\frac{1}{2}$			
	Very stiff, blue-gray				
Proj. No. 146	V6A Woodward-Clyde Consultants		Fig	ure	3a

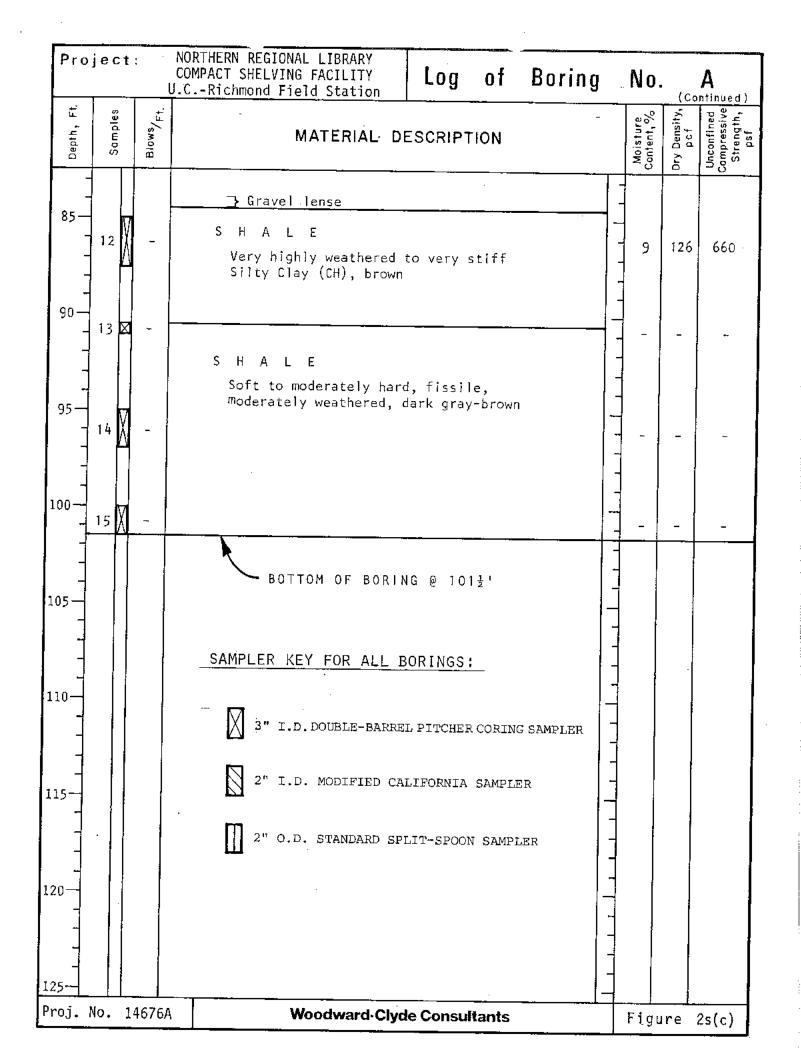


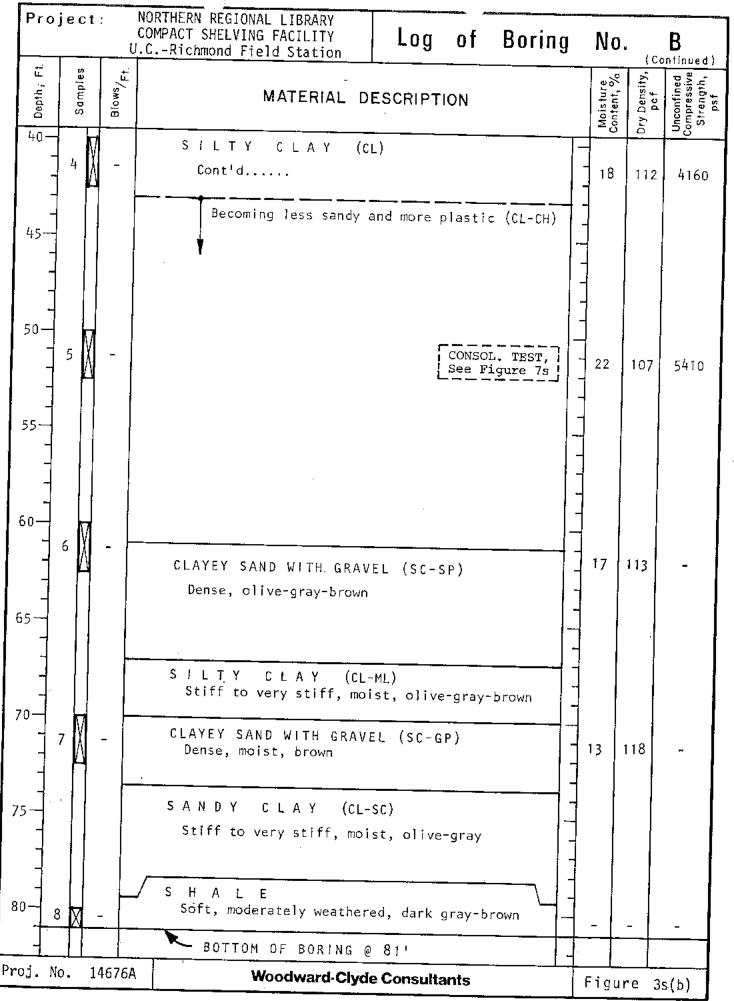

Proj	ject	(NORTHERN REGIONAL LIBRARY COMPACT SHELVING FACILITY .CRichmond Field Station		No.	!	5
			February 23 & 25, 1980 Remarks: See LEGEND on F	iq	ure 2	2b	
			6" Auger 140 lbs.				
ť		_				DRATO	RY TEST
Depth,	Samples	Blows/Ft.	MATERIAL DESCRIPTION		Maisture Content, %	y Density, pcf	Unconfined Compressive Strength,
	X		Surface Elevation:		″ ŭ	Dry	<u>⊃°°′</u>
-		8	SILTY CLAY (CL) Soft, dark gray	-	26	94	480
	2	16	SILTY CLAY (CL): Very stiff, gray-brown		26	95	2080
5			SANDY CLAY (CL)				
-		ĺ	Stiff, brown	_			
	3	53	S A N D (SW)	1 -	_	_	_
10-			Very dense, tan				_
-	×		SANDY CLAY (CL)				
	4	17	ATD Stiff, brown		27	97	2290
15-			SETT, BIOWI				
-		ł		_			
	5	23	CONSOL. TEST,		_	_	_
20-			See Figure 10		_	_	-
		ŀ	SAND S CRAVEL (CR) - Heat	-			
-		, F	SAND & GRAVEL (GP): Medium dense, brown				
25 -	6	42	SANDY CLAY (CL)	-	23	104	5220
			Very stiff, brown				
4				-			
-		ſ	SAND & GRAVEL (GP)				
30-	7 2	56	Dense, brown, to 2 ¹¹ max. size	\neg	_	_	_
	Π						
-				-			
35		-		4			
	8	72	SANDY CLAY (CL) Very stiff, brown		No	Recov	very
		ŀ	SANDY CLAY (CL)				
			Very stiff, blue-gray	_			
roj.	No. 1	4676/	Woodward-Clyde Consultants	Ī	Fig	ire	4a


.....


.


. _____





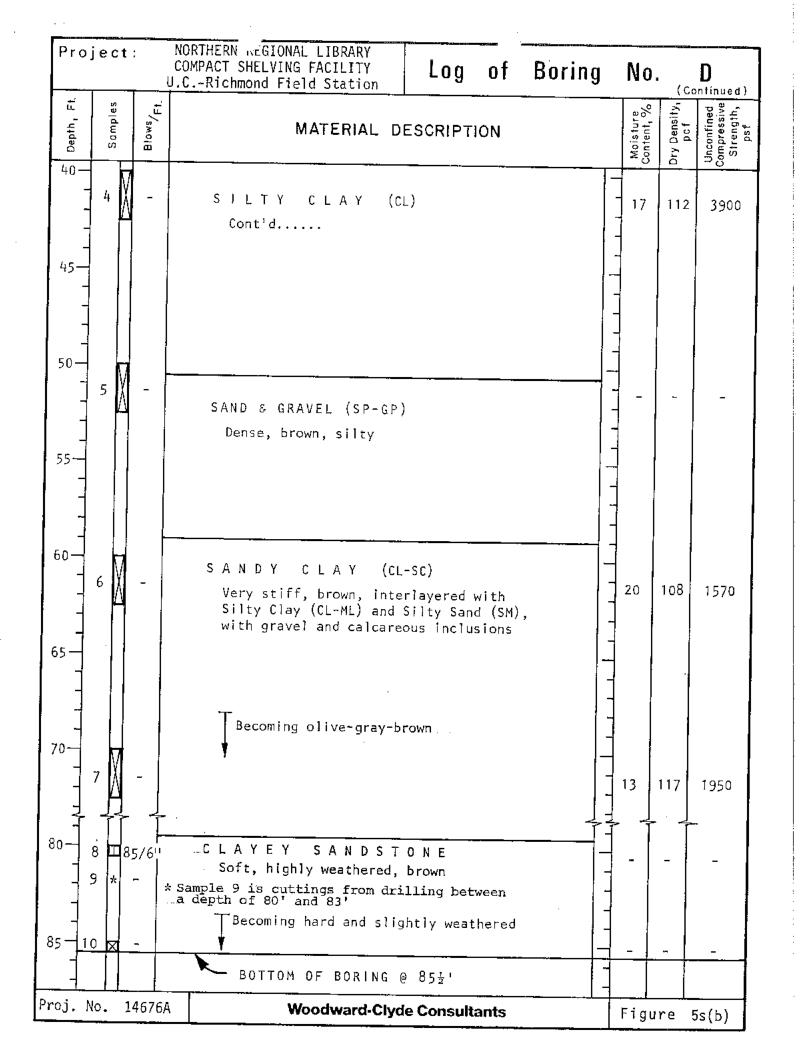
	ject:	CO U.U	PRTHERN REGIONAL LIBRARY MPACT SHELVING FACILITY Richmond Field Station	Log	of B	oring	No).	В
			November 13, 1980 4-7/8" Rotary	Remarks:_	See SAMP	LER KEY	on Fi	gure	2s(c)
			140 lbs.						
т.	<i>6</i> 0	÷					LA	BORAT	DRY TESTS
Depth,	Samples	Sword	MATERIAL D	ESCRIPTIC	N		Moisture Contect of		
		<u> </u>	Surface Elevation :				žž	Dry	St Came
- - - 5 -			SILTY CLAY (C Medium stiff, dry to c Becoming moist						
- - - 10 - - -	т 🕅 -	-	CLAYEY SAND & GRAVEL Medium dense to dense, clayey		ightly			_	_
15 - -			SANDY CLAY (CL): Medi CLAYEY SAND & GRAVEL (GP SANDY CLAY (CL	-GC): Dense					
- 20 - - - - -	2 / -		Stiff to very stiff, b			-		_	-
25			Grading with Gravel a Grading with less San Gravel (CL-ML)						
	з́∦ - А		_> Gravel lense }_Gravel lense			-	No	Recov	very
35			SILTY CLAY (CL Stiff, brown, with sand): Very st	iff, inclusio	ons -			
roj. N	No. 146	576A	Woodward-Ciye	de Consulta	ints		Fig	ure	3s(a)

.

	_				
Proje		NORTHERN KEGIONAL LIBRARY COMPACT SHELVING FACILITY U.CRichmond Field Station	.No.		C
Date Dr	illed:	November 12, 1980 Remarks: See SAMPLER KEY	on Fig	Ire	2s(c)
		4-7/8" Rotary :140 lbs.	· · ·		
	<u> </u>				
Depth F	admples Blows _{/Ft.}	MATERIAL DESCRIPTION	Moisture Content, %	Density, bcf	Compressive T A Strength, Strength, St
		Surface Elevation :	CoM	Dry	n n n n n n n n n n n n n n n n n n n
		Surface Elevation: S I L T Y C L A Y (CL-CH) Stiff, dry to damp, brown-gray Becoming moist S I L T Y S A N D (SM-ML) Medium dense, brown, with gravel Grading with more Gravel (GM) S A N D Y C L A Y (CL) Stiff, moist, brown SILTY SAND & GRAVEL (SM-GP) Medium dense, dark brown S I L T Y C L A Y (CL) Stiff to very stiff, moist to wet, brown, with trace of gravel S I L T Y C L A Y (CL-CL) Very stiff, moist to wet, brown S I L T Y C L A Y (CL-ML) Stiff to very stiff, moist to wet, brown S I L T Y C L A Y (CL-ML) Stiff to very stiff, moist to wet, brown		Dry	Un Com St
		SILTY CLAY (CL-ML) Stiff to very stiff, moist, gray-brown			
roj. No.	14676	A Woodward-Clyde Consultants	Figu	re	4s(a)

:

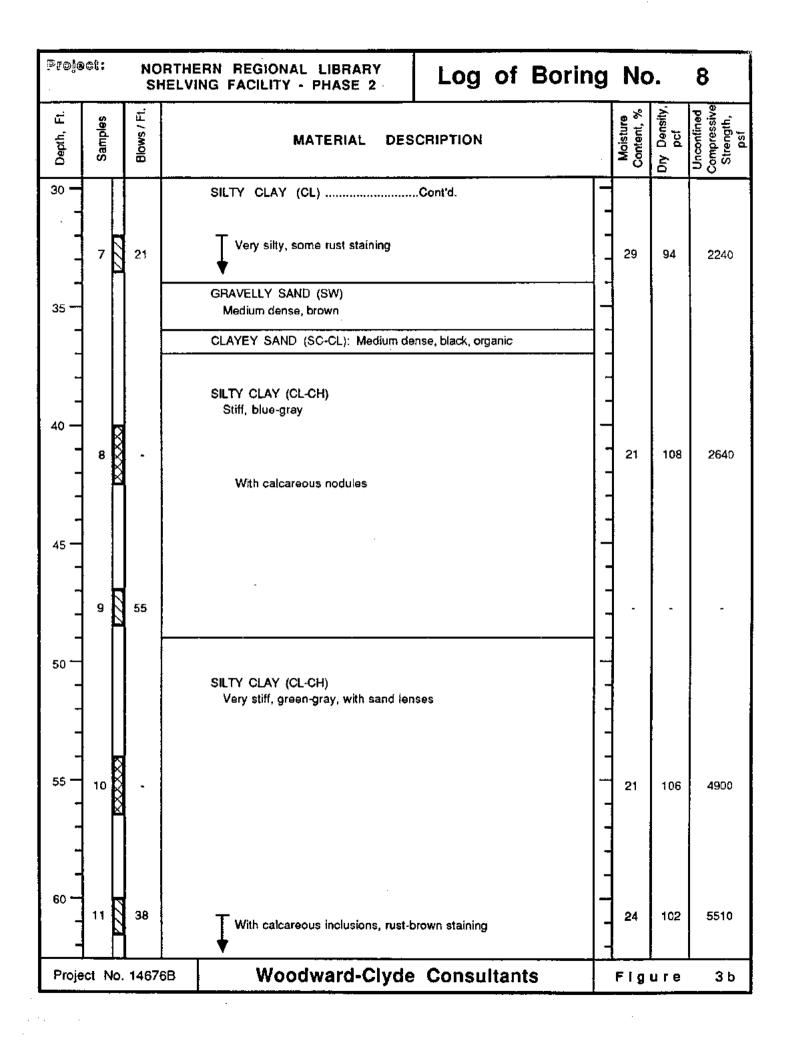
	jec		NORTHERN REGIONAL LIBRARY COMPACT SHELVING FACILITY U.CRichmond Field Station	g	No.	(Ce	C ontinued)
Depth, Ft.	Samples	Blows/Ft.	MATERIAL DESCRIPTION		Moisture Content, %	Dry Density, pcf	Unconfined Compressive Strength, psf
40			SILTY CLAY (CL-CH) Cont'd Very stiff to hard, moist, olive-gray, with calcareous inclusions				
45 - - -		-			22	107	9000
50 - - -	2	81	CLAYEY SAND (SC-SM) Very dense, olive-brown		-	-	-
55	3	-	SILTY CLAY (CL) Very stiff, moist, olive-gray, with gravel and sandy clay lenses		21	105	1880
60	4	-	Grading with more Sand and less Gravel (CL-ML) CLAYEY SAND (SC-SM)				
65	5	-	Dense, brown SANDY CLAY (CL-SC) Stiff, olive-brown, with cemented silty sand lenses SILTY CLAY (CL-CH)		22	105	6110
70	6	-	S A N D (SW-SM) Very dense, brown, silty		-	-	-
75	7	_	S H A L E Soft, highly weathered, dark gray to brown, with zones weathered to brown clay		10	29	1040
80	8	-	BOTTOM OF BORING @ 8212'		-	-	~
roj.	No.	14676	A Woodward-Clyde Consultants		Figu	re	4s(b)


.

Project	C0	RTHERN REGIONAL LIBRARY MPACT SHELVING FACILITY Richmond Field Station	Log	of	Boring	}	No		D
	ed:1	November 11, 1980	Remarks:	See S	AMPLER KE	<u>Y_</u> 0	n Fic	ure	2s(c)
Type of Bo Hammer W		4-7/8" Rotary	<u> </u>						
	· · · ·							ORATO	RY TESTS
Depth, Ft. Samptes	Blows/F1.	MATERIAL D	ESCRIPTI	ON			Maisture Content, %		
<u> </u>) F	Surface Elevation :			· · · · · ·		T ¥ 5	Dry	Com St St
	21	SILTY CLAY (CL-CH) Stiff to very stiff, Becoming damp S A N D (SP-SM) Medium dense, dark bro with gravel			У			_	-
	_	SANDY CLAY ((Very stiff, moist, lig thin sand lenses		with			13	122	1500
3	-	SILTY CLAY (C Stiff to very stiff, I with calcareous inclus	ight brown	,			27	96	3590
		SAND & GRAVEL (SP-GP Dense, brown, silty SILTY CLAY (CI Very stiff moist old	_)						
<u> </u>	Ì	Very stiff, moist, oiw sand lenses	e-ylay, Wi	ιη τ η	1 Å				
oj. No. 1	l4676A	Woodward-Ci	vde Consuli	tants		T	Fig	ure	5s(a)

·

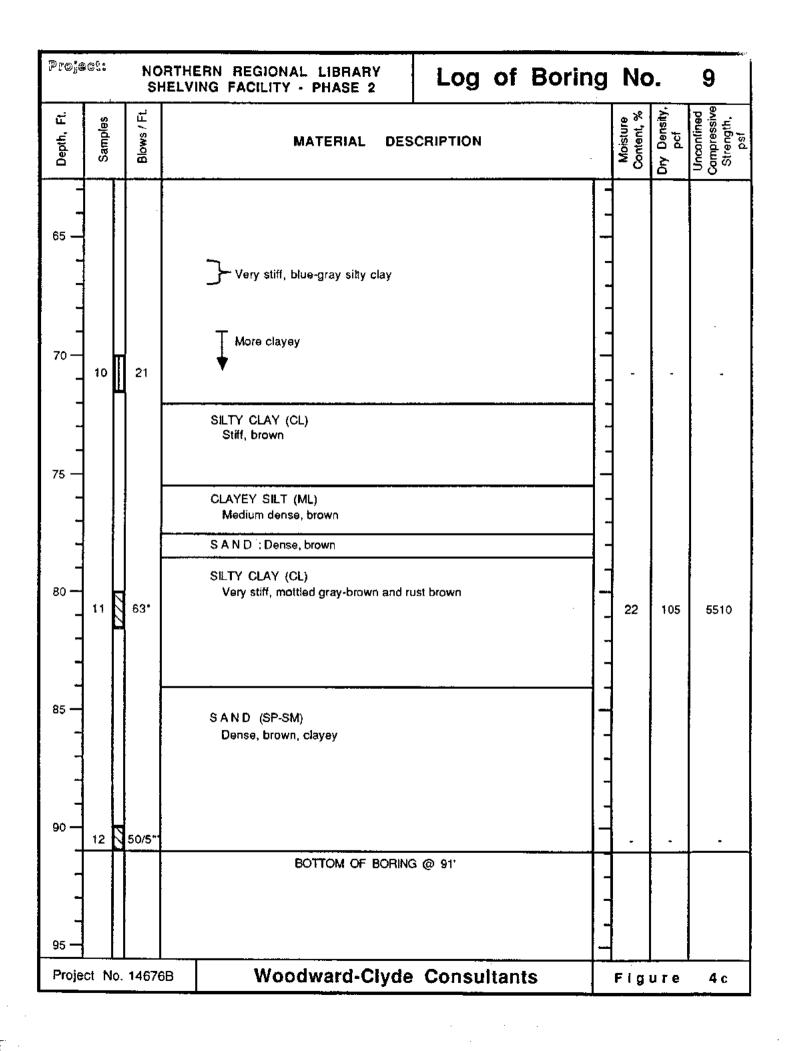
.


.

Proje	:00		RTHERN REGIONAL LIBRARY ELVING FACILITY - PHASE 2 BORING LE	GEI	١D	SH	EET
Date Type	Drilled of Bor	: ina:	Remarks:			_ .	
	ner We	-					
Depth, Ft.	Samples	Blows / Ft.	MATERIAL DESCRIPTION		Moisture Content, % B	Dry Density, U	Uncontined 2 Compressive 2 Strength, 6 psf 6
		·]	Surface Elevation:		- 0	۵	⊃రి‴
		29	2-1/2-INCH O.D. MODIFIED CALIFORNIA SAMPLER (SPLIT BARREL) 2-INCH O.D. STANDARD SPLIT-SPOON SAMPLER 3-INCH O.D. DOUBLE-BARREL PITCHER CORING SAMPLER BLOW COUNT WITH A 140-LB. HAMMER FALLING 30 INCHES BLOW COUNT WITH A 320-LB. DOWNHOLE "SLIP-JAR" HAMMER FALLING 18 INCHES THROUGH DRILLING FLUID				
– – Proje	ect No.	14670	B Woodward-Clyde Consultants	-	Fig	ure	2
i i					-		

Date	Drill	ed:	ELVING FACILITY - PHASE 2 February 22-23, 1988	Log of Bor				8
		oring:	4-7/8"Ø Rotary Wash					
Hamn	ner V	Veight:	140 lbs.	(See Legend Sheet for sam	oler typ	es and	l hamm	er weights
ť		ن <u>ب</u>						RY TESTS
Depth, I	Samples	Błows / Ft.	MATERIAL DE	SCRIPTION		Moisture Content, %		
		<u> </u>				<u> </u>	<u>[</u>	-0
-	1	6	SILTY CLAY (CL-CH) Soft to medium stiff, wet, dark gra matter and roots	y brown, with organic	-	26	96	1430
- 5			SILTY CLAY (CL-CH) Medium stiff to stiff, wet, gray-brow	wn, with some sand	-			
-	2	60	SANDY CLAY (CL-CH): Hard, gray	-brown, with sand, cemented		15	118	19,450
- - 10 - -	3	31	GRAVELLY CLAY (CL) Very stiff, damp, light brown, with	some sand	1 1 1 1	-	-	
- 15 - -	4	26	SILTY CLAY (CL) Very stiff, light brown, with some s	and		21	108	5770
20 	5	24	More silty and sandy SILTY SAND (SM) Medium dense, brown, with gravel			19	111	4410
- - 25 - -	6	-	SILTY CLAY (CL) Stiff, brown, with some sand			26	97	. 2160
 ² rojec	t No.	14676E	Woodward-Clyde	Consultante		Figu		3 a

· · · · · ·


Preject: NORTHERN SHELVING		REGIONA FACILITY	L LIBRARY - PHASE 2	LC	og of	Borin	<u> </u>			8		
Depth, Ft.	Samples	Blows / Ft.		P	MATERIAL DI	SCRIPT	00			Moisture Content, %	Dry Density, pcf	Unconfined Compressive Strength, psf
		23	S	ANDY CLAY Very stiff, blu SILTY CLAY (Very stiff to s	2L) ay, with calcareous ne-gray, with gravel CL) stiff, brown, with lea	nses of clay	rey silt					
	Project No. 14676B		W	oodward-C	yde C	onsult	ants		r :	igur	ę 30	

Projec	31:		RTHERN REGIONAL LIBRARY LOG OF BORI	ng	No		8
Depth, Ft.	Samples	Blows / Ft.	MATERIAL DESCRIPTION		Moisture Content, %	Dry Density. pcf	Unconfined Compressive Strength, psf
	14	97*	SILTY CLAY (CL)Cont'd. CLAYEY SAND (SC) Dense to very dense, brown SILTY CLAY (CL) Hard, light brown, with gravel		21	106	8170
- - 110 - -	15	100/6	SANDSTONE Highly weathered, friable, light brown to brown BOTTOM OF BORING @ 110'-6"			-	-
- 115 _ - - 120 _							
		0. 146	76B Woodward-Clyde Consultants	-	- - - - - -	ure	3 d

			RTHERN REGIONAL LIBRARY LOG C	of Borin	g	No).	9
Date Drilled: February 23, 1988 Remarks: Type of Boring: 4-7/8*Ø Rotary Wash								
		-	4-7/8"Ø Rotary Wash 320 lbs. (See Legend Shi	eet for sampler t	tvo	boe and	bamm	
Hammer Weight:					1926		RATO	RY TESTS
Depth, Ft.	Samples	Blows / Ft.	MATERIAL DESCRIPTION			Moisture Content, %	y Density, pcf	
			μŪ	⊃ບິ‴				
- - 5	1	33•	SILTY CLAY (CL-CH) Medium stiff, moist, dark brown, with some organic matter and roots SILTY CLAY (CH): Hard, damp to dry, gray-brown, with inclusions, trace of sand, slightly cemented	a calcareous		18	113	10820
- - - 10 -	2	28*	SILTY CLAY (CL) Very stiff, moist, light brown, with some gravel and clayey silt lenses			20	108	7350
- - 15	3	35*	SILTY CLAY (CL-CH) Stiff to very stiff, gray-brown with black staining			24	102	7170
	4	30.			1111	23	103	3880
25 -	.5	37*				22	105	7550
Project No. 14676B			BB Woodward-Clyde Consulta	ants	1	Flg	ure	4 a

P70)s01:		ERN REGIONAL LIBRARY Ing Facility - Phase 2	Log	of	Boring	, No	<u>э.</u>	9
Depth, Ft. Samples Riows / Et	DIOWS / FI.	MATERIAL DES	CRIPTION		-	Moisture Content, %	Dry Density. pcf	Unconfined Compressive Strength, psf
	-	SILTY CLAY (CL-CH) GRAVELLY CLAY (CL-GC) Stiff, brown, clayey, with some sand SILTY CLAY (CL) Stiff, blue-gray SILTY CLAY (CL) Very stiff, green-gray, with caliche SANDY CLAY (CL) Stiff, brown, silty SILTY CLAY (CL-CH) Stiff, brown SILTY CLAY (CL) Dense, brown, with gravel SILTY CLAY (CL) Stiff, light brown, sandy	Cont'd.			₩ •₩ • 24	102 112	4570 3420
- - 60 - 9 2 40/ -	/6*	CLAYEY SAND (SC-SW) Very dense, brown-gray, silty, with g	rável		-	12	124	-
Project No. 146	67 6 B	Woodward-Clyde	Consult	ant	s	Fig	ure	4 b

alle a state

Proje	ec:	N	DRTHERN REGIONAL LIB			_			<u> </u>
	-	S	HELVING FACILITY - PHA	SE 2	Log of Bo	pri l	ng N	o. N	/-1
Date D			February 23, 1988	F	iemarks:				
Hamm	of Borin	ig:	4-7/8" ø Rotary Wash 140 lbs.						
		_	140 IDS.	(See Legend Sheet for sam	pler	types ar	nd hamm	er weights)
	Samples	Ť.							RY TESTS
Depth	dura	Blows/Ft	MATERI	AL DESCRI	PTION	ľ			\mathbf{v}
	ű						ort, °	ansi t	fine gth,
			Surface Elevation:				Moisture Content, %	Dry Density pcf	Unconfined Compress. Strength, psf
T			CLAYEY GRAVEL (G			\square	<u>≥ 8</u>	<u> </u>	ည်ပိုလ
1 4			Medium dense, da	io) ritti MD. dark brown te	brown		=		
			with gravel up to 1	inch, with concre	te rubble				
			SILTY CLAY (CL)			-			
			Medium stiff, damp) to wet, dark brow	VD With roote	-			
1 1			SILTY CLAY (CL)			_	ĺ		
5-			Medium stiff to stiff	, moist, grav-bro	wo				1
1 -		-				7			
			SILTY CLAY (CL)			-			ļ
			Stiff to very stiff, m calcareous concret	oist, light gray-br	own, with	4		Í	
1 1				uons ano white si	reaks	1			
-			SILTY CLAY (CL)		·			ļ	
10-			Stiff to very stiff, me	oist, tan-brown, s	andy	1			
					· ·	-1	Í	1	
						4	1	1	
								ļ	
-								ļ	
						1			
15						1	l l	1	
			Z A11100		-1	-	1		ĺ
1		Ī	4 /1/88 2 6/8/88			1			
		-					Í		
						7			
_		i			· · · · · · · · · · · · · · · · · · ·	4			
						-		1	
20	11						1		
-		_ <u>}</u>	SANDY CLAY (CL)		' '	1			(
			Stiff to very stiff, moi	st tan-brown wit	h fina	•		ļ	
7			grained sand and occ	casional fine grav	el -	1			
-				5 - 1			1		
25 -						1			
					[·			
			BOTTOM OF BO	RING @ 26'		┣—			
1			Bottom of water I	evel observation					
4			well at 25'.						
4		1			1				ļ
					- 1		Í		
Project 1	NO. 14	676B	Woodward	-Ciyde Cons		_]
	_						Fig	ure 5	5

Project: UCB Richmond	d Field Station		r		
Project Location: Richme	ond, California		Key to	Log of Bo	ring
Project Number: 51-001	11028.00			Sheet 1 of 1	-
SAMPLES					
Elevation Type Sampling Resistance Recovery %	MATERIA Jiji Beo S	L DESCRI	PTION	Water Content, % Dry Unit Weight, pcf Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
COLUMN DESCRIPTIONS		L O J	1	9 10 11	12
		_			
(MSL) or site datum. 2 Depth: Depth in feet below 3 Sample Type: Type of soil s shown; sampler symbols are e 4 Sample Number: Sample ic 5 Sampling Resistance: Num sampler 12 inches beword for	the ground surface. sample collected at depth interval explained below. dentification number. ther of blows to advance driven t 6-inch interval, or distance noted, 30-inch drop; down-pressure for tube. iven sample length recovered; ad. lion of subsurface material re explained below.	9 Wate labor 10 Dry 1 labor 11 Uncc streng 12 Rema drilling labora LL Pl SA HD	Sieve analysis, per	ent of soil sample me ntage of dry weight o of soil sample meas s per cubic feet (pcf). <u>ength:</u> Unconfined ad in laboratory, expr comments and observ	Instency. vasured in f specimen. ured in compressive essed in psf. vations regarding . Other field and ons: in percent st), in percent eve 2 microns (GW)
	SILT (MH)		(EY SILT (ML)	SILTY GR	AVEL (GM)
TYPICAL SAMPLER GRAPHIC S	YMBOLS	OTHER C	RAPHIC SYMBOLS		
Standard Penetration Test (SPT) unlined split spoon	Shelby tube (3-inch OD, thin-wall, fixed head)	<u>↓</u> First	water encountered at time pling (ATD)	of drilling and	
Modified California (2-inch ID) with brass liners	Pitcher barrel with Shelby tube liner	▼ Static	water level measured after	er drilling and	
California (2.5-ínch ID) split barret	Bag (grab from hand auger)	🐔 Chan stratu	ge in material properties w m	vithin a líthologic	
		Infern litholo	ed or transitional contact b gies	elween	
GENERAL NOTES					
 Soil classifications are based on the fithologic changes may be gradual. 	Unified Soil Classification System. Der Field descriptions may have been modi	scriptions and si	falum lines are interpreting	e, actual	
2. Descriptions on these laws and	y and descriptions may have been modi by at the specific boring locations and at in of subsurface conditions at other location		sults of lab tests.	e, actual y are	
	UR	S	<u> </u>	Fig	ure A-1

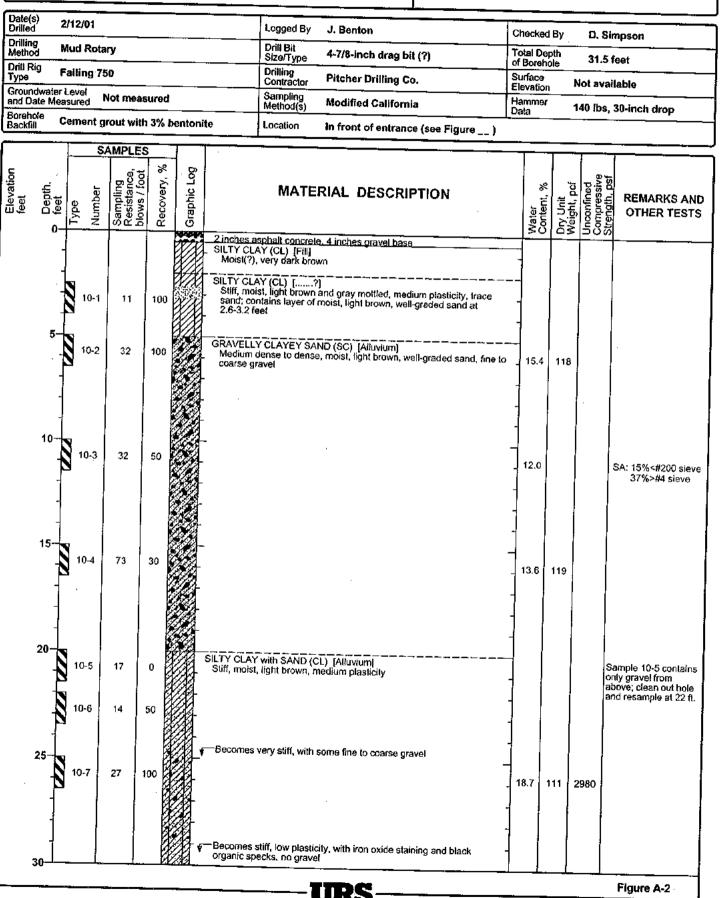
ł

l

WAT ALY WOLL WAY KEY PSF. FIR: UCBRICHM.GPJ. 3172001 Key

.

9 5


3/17/2001

File: UCBRICHM.GPJ;

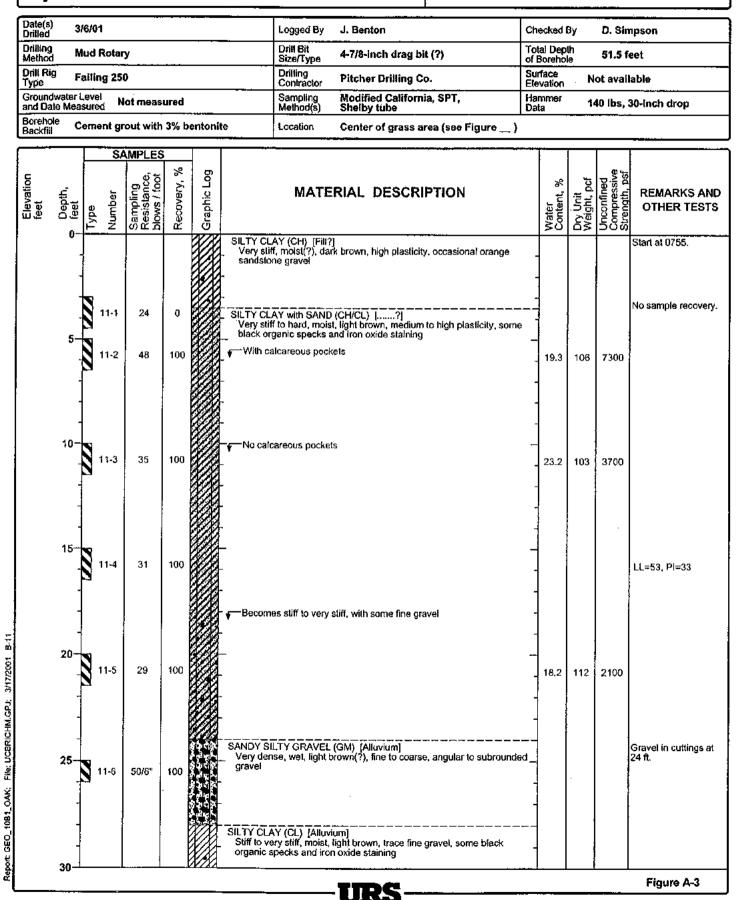
Report: GEO_ 10B1_OAK;

Log of Boring B-10

Sheet 1 of 2

Report: GEO_1081_0AK; File: UCBRICHM.GFU; 3/17/2001 8-10

Log of Boring B-10


Sheet 2 of 2

			SA	MPLES					<u> </u>		<u> </u>
Elevation feet	66 Depth.	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strendth, psf	REMARKS AND OTHER TESTS
,	-		10-8	15	NA						
	-						Bottom of boring at 31.5 feet				End drilling at 1040.
	-						• -				
	-						-				
	35-										
	4		i			-					
	7										
	-										
	_			ĺ							
	40-			ĺ		Ļ	_				
	ļ					ŀ	7				
	ļ				Ì		-	ļ			
						Ĺ	-				
							-				
	45-					ſ	. 1				
	~]					Ē	-			Ì	
						Ē	-			[-
]					ſ	_		Í		
]		1			F	-				1
	50-					-	-				
	- ²⁰					F	·				
	Ī					Ē	-				
	1					F	+				
	1		Í			F	-				
	1			İ		F	4			Í	
	55-					F	-		ļ		
	1					F	4			Í	
	1					ŀ	-				
	1					ŀ	-		Í		
	-		ļ			-	-				
	60-					-	_		1		
	-					ŀ					
	4					ŀ		ļ			
	-				·	Ļ					
	4		ł			Ļ]				
	65										
							· · · · · · · · · · · · · · · · · · ·			L_	

Ľ

Log of Boring B-11

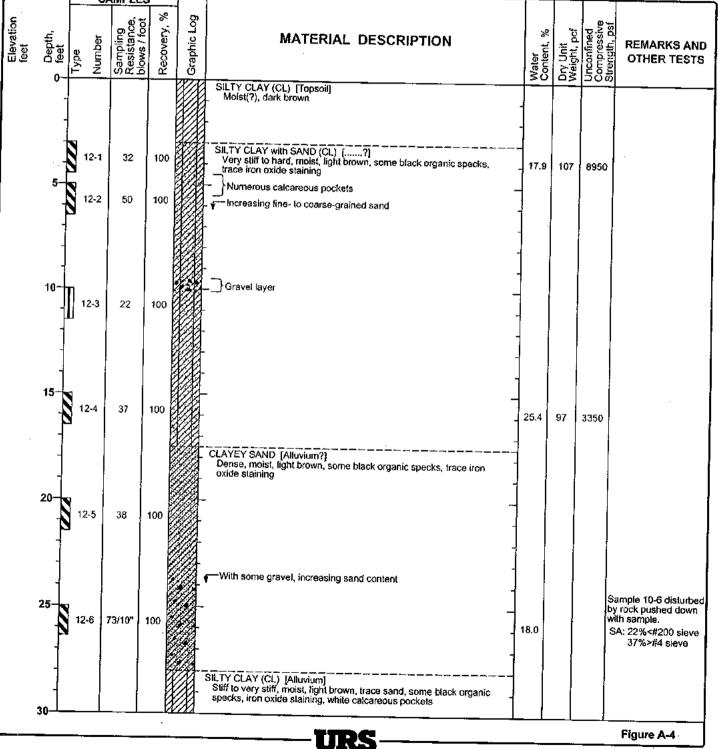
Sheet 1 of 2

١

File: UCBRICHM.GPJ; 3/17/2001 B-11

Report: GEO_10B1_OAK;

Log of Boring B-11


Sheet 2 of 2

			ŞA	MPLES					<u> </u>	1	
Elevation	05 Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, psf	REMARKS AND OTHER TESTS
	-		11-7	28	100		SILTY CLAY (CL), stiff to very stiff, moist, light brown, trace fine gravel, some black organic specks and iron oxide stalning [Alluvium] (continued)	27.3	98	1700	
	35	IJ	17-8	50/4.5"	100	87878787878	SANDY GRAVEL with SILT (GW-GM) [Alluvium?] Dense, wet, medium brown, fine to coarse angutar gravel		-		
	40		11-9	Push 100 - 400 psi	100		SILTY CLAY (CL) [Alluvium] Stiff to very stiff, moist, light brown, trace fine gravel, some black organic specks and iron oxide staining SILTY CLAY (CL) [Alluvium?] Very stiff, moist(?), dark gray				Shelby tube met refusal after 18-inch push.
	45	1	1-10	43	100		 Becomes hard, with some light orange iron oxide staining and white - calcareous patches, occasional fine gravel 				
	50-	1	1-11	69	100		Bottom of boring at 51.5 feet	22.9	101	2020	End drilling at 1000.
	- 55- -					- - - - - -	· · · · · · · · · · · · · · · · · · ·				
	- - -0ð						- 				
	65			E	-	 	URS				Figure A-3

Log of Boring B-12

Sheet 1 of 2

Date(s) 3/5/01 Drilled 3/5/01	Logged By	J. Benton	Checked By	D. Simpson
Drilling Method Mud Rotary	Drill Bit Size/Type	4-7/8-inch drag bit (?)	Total Depth of Borehole	51.5 feet
Drill Rig Failing 250 Type Failing 250	Drilling Contractor	Pitcher Drilling Co.	Surface Elevation	Not available
Groundwater Level Not measured	Sampling Method(s)	Modified California, SPT	Hammer	140 lbs, 30-inch drop
Borebole Cement grout with 3% bentonite	Location	Far corner of grass area (see Figu		

Report: GEO_10B1_OAK; File: UCBRICHIM.GPU; 3/17/2001 B-12

ł

į

Report: GEO_10B1_OAK; File: UCBRICHM.GPJ; 3/17/2001 B-12

Log of Boring B-12

Sheet 2 of 2

[SA	MPLES							
Elevation feet	− Depth, feet	Type	Number	Sampling Resistance, blows / foot	Recovery, %	Graphic Log		Water Content. %	Dry Unit Weight, pcf	Unconfined Compressive Strength por	REMARKS AND OTHER TESTS
x.	•		12-7	28	100		SILTY CLAY (CL), stiff to very stiff, moist, light brown, trace sand, some black organic specks, iron oxide staining, white calcareous pockets [Alluvium] (continued)	26.2		2150	
	35		12-8	50/6*	O		Gravelly layer				No sample recovery.
	40		12-9	31	100		 y—Becomes light olive brown	24.4	· 1 00	3070	
	45] 1:	2-10	42	100		SILTY SAND (SM) [Alluvium?] Dense, moist(?), light ofive brown(?), with clay, some grave!				
	50-		2-11	56	100		Botlom of boring at 51.5 feet	20.2	106	6700	nd drilling at 1306.
5	55-						·		1		
6											
65	5		1								
<u>.</u>	·	<u>.</u>					URS			<u> </u>	Figure A-4

APPENDIX B

A3GEO Boring Logs (This Study)

	UN	IFIED	SOIL	CLASSIFICATION CHART				
MAJO	R DIVISIONS			TYPICAL NAMES				
COARSE	COARSE		GW	Well graded gravels and gravel-sand mixtures, little				
GRAINED	GRAINED	CLEAN GRAVELS	_	or no fines				
SOILS:	50% or more of coarse fraction on No. 4 sieve	GRAVELS	GP	Poorly graded gravels and gravel-sand mixtures,				
more than 50%		GRAVELS	<u></u>	little or no fines				
retained on		WITH SAND	GM GC	Silty gravels and gravel-sand-silt mixtures Clayey gravels and gravel-sand-clay mixtures				
No. 200 sieve			SW	Well graded sands and gravely sand, little or no fines				
	more than 50%	CLEAN SANDS	SP	Poorly graded sands and gravely sand, little or no lines				
	passing on	SANDS	SM	Silty sands, sand-silt mixtures				
		WITH FINES	SC	Clayey sands, sand-clay mixtures				
FINE	SILTS AND CLA			Inorganic silts, very fine sands, rock flour, silty or				
GRAINED	Liquid Limit 50%	,	ML	clayey fine sands				
SOILS:	or less			Inorganic clays or low to medium plasticity, gravelly				
50% or more			CL	clays, sandy clays, silty clays, lean clays				
passing			OL	Organic silts and organic silty clays of low plasticity				
lo. 200 sieve	SILTS AND CLA		мн	Inorganic silts, micaceous or diatomaceous fine				
	Liquid Limit 50%	,		sands or silts, elastic clays				
	or greater		CH	Inorganic clays of high plasticity, fat clays				
			OH					
HIGHLY	DRGANIC SOILS		PT	Peat, muck, and other highly organic soils				
	BOUND	ARY C	LASS	SIFICATION AND GRAIN SIZES				
	SAN	C		GRAVEL CORPLES POLITOR				
SILT OR CLAY	FINE MEDIL		COAF					
J.S. Standard No. 200 Sieve Sizes 0.075 m		No. 1 2 mn	-	No. 4 3/4" 3" 12" 3/16"				
Sieve Sizes 0.075 m	III 0.425 IIIII	2 1111	1	3/10				
				SYMBOLS				
Modified California (MC) Sampler (3" O.D.) HQ ROCK CORE (RC)								
Standard Pe SPT (2" O.E	enetration Test:).)		Pitche	er Tube (ST) ✓ At time of drilling ✓ At end of drilling ✓ After drilling				
	ABBREVIATION	S		NOTES				
tem Meaning L Liquid Limit (%) (ASTM D 4318)			1. Stratification lines represent the approximate boundaries between material types and the transitions				
	70) (ASTIVI D 4310)							

Item	Meaning	1.	Stratification lines represent the approximate
LL	Liquid Limit (%) (ASTM D 4318)		boundaries between material types and the transitions
PI	Plasticity Index (%) (ASTM D 4318)		may be gradual.
-200	Passing No. 200 (%) (ASTM D 1140)	2.	Modified California (MC) blow counts were adjusted by
TXCU	Laboratory consolidated undrained triaxial test of		multiplying field blow counts by a factor of 0.63.
	undrained shear strength (psf) (ASTM D 4767)	3.	Recorded blow counts have not been adjusted for
TXUU	Laboratory unconsolidated, undrained triaxial test of		hammer energy.
	undrained shear strength (psf) (ASTM D 2850)		
	pounds per square foot / tons per square foot		
psi	pounds per square inch		
OD	Outside Diameter		
ID	Inside Diameter		

A3GEO

KEY TO EXPLORATORY BORING LOGS

A3GEO

BEDDING OF SEDIMENTARY R	OCK	
SPLITTING PROPERTY	THICKNESS	STRATIFICATION
Massive	Greater than 4.0 feet	Very Thick-Bedded
Blocky	2.0 to 4.0 feet	Thick-Bedded
Slabby	0.2 to 2.0 feet	Thin-Bedded
Flaggy	0.05 to 0.2 feet	Very Thin-Bedded
Shaly or Platy	0.01 to 0.05 feet	Laminated
Papery	Less than 0.01 feet	Thinly Laminated

FRACTURING	
INTENSITY	SIZE OF PIECES IN FEET
Very Little Fractured	Greater than 4.0 feet
Occasionally Fractured	1.0 to 4.0 feet
Moderately Fractured	0.5 to 1.0 feet
Closely Fractured	0.1 to 0.5 feet
Intensely Fractured	0.05 to 0.1 feet
Crushed	Less than 0.05 feet

HARDNESS						
Soft	Reserved for plastic material alone					
Low Hardness	Can be gouged deeply or carved easily by a knife blade					
Moderately Hard	Can be readily scratched by a knife blade; scratch leaves a heavy trace of dust and is readily visible after the powder has been blown away					
Hard	Can be scratched by a knife blade with difficulty; scratch produces little powder and is often faintly visible					
Very Hard	Cannot be scratched by a knife blade; leaves a metallic streak					

STRENGTH	
Plastic	Very low strength
Friable	Crumbles easily by rubbing with fingers
Weak	An unfractured specimen of such material will crumble under light hammer blows
Moderately Strong	Specimen will withstand a few heavy hammer blows before breaking
Strong	Specimen will withstand a few heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments
Very Strong	Specimen will resist heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments

WEATHERI	NG:
	 the physical and chemical disintegration and decomposition of rocks and minerals by natural processes such as oxidation, reduction, hydration, solution, carbonation, and freezing and thawing
Deep	Moderate to complete mineral decomposition; extensive disintegration; deep and thorough discoloration; many fractures, all extensively coated or filled with oxides, carbonates and/or clay or silt.
Moderate	Slight change or partial decomposition of minerals; little disintegration; cementation little to unaffected. Moderate to occasionally intense discoloration. Moderately coated fractures.
Little	No megascopic decomposition of minerals; little or no effect on normal cementation. Slight and intermittent, or localized discoloration. Few stains on fracture surfaces.
Fresh	Unaffected by weathering agents. No discoloration or disintegration. Fractures usually less numerous than joints.

S 11-30-17.GPJ	A	3	GEO A3GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710			E	BOF	RIN	G N	UMB	ER A3-17-1 PAGE 1 OF 4
GEOTECH BH COLUMN TERM LEFT ALIGNED (2) - 33GEO DATA TEMPLATE.GDT - 2/14/18 16:12 - A:A3GEO PROJECTS/1101 - UCB/1101-17A_NRLF PHASE 4 INVESTIGATIONNA_INVESTIGATIONNOVEMBER 2017/BORELOGS1101-17A BORELOGS 11-30-17.GPJ	PROJ DATE DRILI DRILI	IECT N STAR LING C LING N	TED 11/27/17 COMPLETED 11/28/17 GRO ONTRACTOR Pitcher Drilling Co. GRO GRO	DJECT LO DUND ELE DUND WA	EVA EVA TER	TION <u>Richr</u> TION <u>20.5</u> R LEVELS: F DRILLING	<u>mond</u> ft 15.0	Field 5	Station HOLE	SIZE _	6"
ER 201						LLING					
NVESTIGATION/NOVEMBI	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
DN/4		e A	CLAYEY GRAVEL WITH SAND (GC) - greyish-brown, rootlets present, moist								
INVESTIGATIO			FAT CLAY (CH) - dark-brown, with organic matter, moist								
IASE 4	5		LEAN CLAY WITH SAND (CL) - olive-brown, very stiff, moist								Oraciali 0.40/
1-17A_NRLF PH				H _	MC	25	4.0	-			Gravel: 0.1% Sand: 15.2% -200: 84.7% LL = 46 PI = 26
DJECTS/1101 - UCB/110	_ <u>10</u> 	-	SANDY SILT (ML) - olive-brown, moist		ST	-					Gravel: 0% Sand: 36.6% -200: 63.4% LL = 31 PI = 7
GEO PR			SANDY LEAN CLAY (CL) - yellowish-brown, stiff, some gravel, v	wet							
- A:\A3			-no more gravel		SPT	11					
.GDT - 2/14/18 16:12	 20										
A TEMPLATE			-similiar to above, medium stiff		MC	9	2.0	-			Gravel: 7.4% Sand: 26.3% -200: 66.3% LL = 36
EO DAT			CLAYEY GRAVEL (GC)								PI = 17
() - A3GI	_ 25		SANDY LEAN CLAY (CL) - light brown, stiff, decreasing sand wi depth					_			
ERM LEFT ALIGNED (2	 30		depui		MC	15	3.0	-			
CH BH COLUMN TE			SANDY CLAY (CL) - brown, very stiff, some fine gravel		MC	16	1.5	108	21		Gravel: 6.3% Sand: 43.7% -200: 50%
GEOTE	 35										

⁽Continued Next Page)

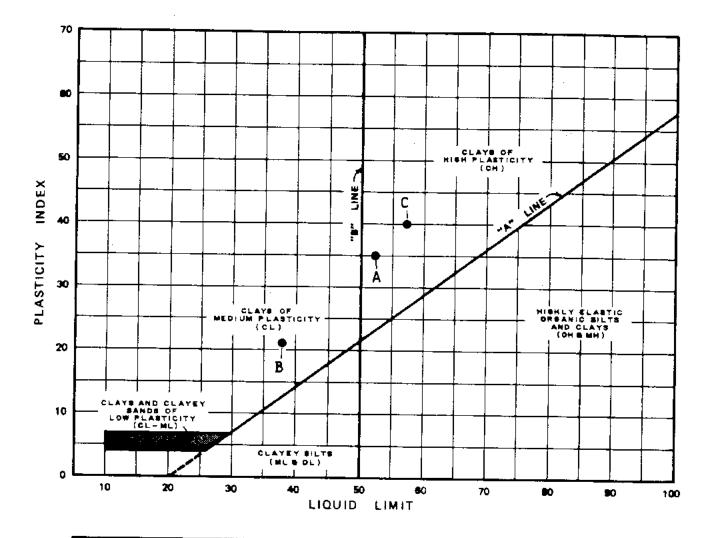
0GS 11-30-17.(1	3	3 (GEO A3GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710 Telephone: 510-705-1664	BORING NUMBER A3-17-1 PAGE 2 OF 4								
SELO													
⊡ CLI				Berkeley I									
				JMBER 1101-17A									
					GROUND ELEVATION 20.5 ft HOLE SIZE 6"							0	
שח ש שח ש				DNTRACTOR _ Pitcher Drilling Co. O ETHOD _ Rotary Wash Drilling O		ROUND WATER LEVELS: $\[\begin{subarray}{c} \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $							
				CHECKED BY _LB									
	_	-						1					
		GRAPHIC	LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
	_	••• •••		WELL-GRADED SAND WITH CLAY AND GRAVEL (SW-SC dark-brown, very dense, with gravel, moist(continued)	;) -	SPT	50/5.5"						
	1			Note: no recovery at 35-36.5 ft. Gravel caught in tip of spoon		SPT	50						
- 40)			-similiar to above except dense		SPT	38						
				-driller notes bottom of gravel at 43 ft									
1101-17	_			SANDY FAT CLAY WITH GRAVEL (CH) - brown, hard, mois	st	-							
45	5			-driller notes stiffer soils at 47.5 ft		мс	35	1.0					
	1 1			LEAN CLAY (CL) - dark-grey, stiff, some sand, trace gravel,	moist								
4 A3GEO P)												
16:12 - A:	_			-increasing sand & silt, and decreasing clay with depth		мс	47	>4.5	108	21		Gravel: 0.4% Sand: 12.2% -200: 87.3%	
- 2/14/18													
55	5		\square										
	_			SILT WITH SAND (ML) - grey, very stiff, trace gravel, moist		мс	26	3.0					
– 06 – 436E () - 436E)											Gravel: 2.1%	
	1			-similiar to above, light brown		МС	25	2.5				Sand: 13.5% -200: 84.4%	
	I I												
05 _ 65	5			CLAYEY SAND (SC) - greyish-brown, very dense, coarse, so gravel	ome	SPT	54						
GEOTECH BH COLUMN TERM LEFT ALIGNED (2) - A3GEO DATA TEMPLATE GDT - 2/14/18 16:12 - A:N3 0 10 10 10 10 10 10 10 10 10 10 10 10 10	-			-clay layer from 67 to 68 ft									
= - - - - - - - - - - - - - - - - - - -	-												

2 											
.0GS 11-30-17.G		3	G = O A3GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710 Telephone: 510-705-1664	BORING NUMBER A3-17-1 PAGE 3 OF 4							
	EN	т <u> </u> UC	Berkeley F	PROJECT NAME NRLF Phase 4 Investigation							
				PROJECT LOCATION _ Richmond Field Station							
DD			TED _11/27/17 COMPLETED _11/28/17 COMPLETED _11/28/17				ft		HOLE	SIZE _6	5"
			ONTRACTOR <u>Pitcher Drilling Co.</u> ETHOD Rotary Wash Drilling				15.0	ft / E1	0V E E	4	
			Z EA CHECKED BY LB								
ON ER 201											
		GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
DN4			CLAYEY SAND (SC) - greyish-brown, very dense, coarse, so gravel(continued)	ome	SPT	50/5.5"					
INVESTIGATIC			-very dense, slightly cemented, additional gravel -gravel recovered in spoon tip								
	5		CLAYEY SAND (SC) - reddish-brown, medium dense, pocket greyish-brown clay	ts of	SPT	32					
00000000000000000000000000000000000000											
PROJECTS/1101 -			SANDY LEAN CLAY (CL) - light-brown, stiff		мс	28	1.0 _2.0	106	21		
090E0 ₩30E0	5										
2 - A:V		\square	CLAYEY SAND WITH GRAVEL (SC) - reddish-brown mottled dense, slightly cemented, gravel is multi-colored	d, very	МС	32/4.0"	-				
GDT - 2/14/18 16:1 											
PLATE.			-similiar to above		SPT	59	-				
A TEMF											
DAT	ļ										
- 43GEO - 43GEO - 95	5										
2											
IGNEL	_										
ET AL	-										
EKW [6]											
			-harder drilling at 102 ft								
	5										

G –													
-0GS 11-30-17.0	A	3	G = O A3GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710 Telephone: 510-705-1664			E	30F	RING	g N	UMB	ER A3-17-1 PAGE 4 OF 4		
SOREI C		IT _UC	Berkeley PF	PROJECT NAME NRLF Phase 4 Investigation									
17A E				PROJECT LOCATION Richmond Field Station									
	DATE	STAR	TED <u>11/27/17</u> COMPLETED <u>11/28/17</u> GF										
	RILL	ING C	ONTRACTOR Pitcher Drilling Co. GF										
	RILL	ING M	ETHOD Rotary Wash Drilling	$\overline{\mathbf{Y}}$ at	TIME OF	DRILLING	15.0) ft / El	ev 5.5	ft			
	.OGG	ED B	CHECKED BY LB	AT	END OF	DRILLING							
N ER 20	OTE	s		AF	TER DRII	LLING							
/EST	н (((()) 105	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES		
N/4			CLAYEY SAND WITH GRAVEL (SC) - reddish-brown mottled, dense, slightly cemented, gravel is multi-colored(continued)	very									
	_		dense, signay cemented, graver is mail-colored(continued)										
ESTIC	_		-harder drilling at 107 ft										
4 N ≥	_												
ASE -	110												
	_		1 1 1 1 1 1 1 1 A A A A										
NRI	_		-harder drilling at 111 ft										
1-17	_												
B/110	_												
<u>-</u>		<u>· /. / /. /</u>	CLAYSTONE - dark-grey, soft, plastic [BEDROCK]		SPT	50/1.0"							
8/110	Bottor	n of bo	prehole at 114.6 feet.										
IECT3			casing to 4.0 ft. Advanced open-hole thereafter.										
PRO 2	2. Bor	ehole	tremie grouted to ground surface.										
- A:\A													
6:12													
4/18 1													
- 2/1													
GDT													
PLATE													
TEMF													
DATA													
3EO I													
- A3(
ED (2)													
LIGN													
EFTA													
RML													
IN TE													
OLUN													
BH C													
GEOTECH BH COLUMN TERM LEFT ALIGNED (2) - A3GEO DATA TEMPLATE.GDT - 2/14/18 16:12 - A:\A3G													
GEOT													

LOGS 11-30-17.GP.	43	3 (GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710 Telephone: 510-705-1664	BORING NUMBER A3-17-2 PAGE 1 OF 4									
	IENT	UC	Berkeley	PROJECT NAME _NRLF Phase 4 Investigation									
PR													
AD IS				_ GROUND ELEVATION _19 ft HOLE SIZE _6"									
			DNTRACTOR Pitcher Drilling Co.										
			ETHOD _Rotary Wash Drilling										
2017 NC						LLING							
	(ft) GRAPHIC	D D D D D D D D D D D D D D D D D D D	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES		
ASE 4 INVESTIGATION 4 II			SANDY FAT CLAY WITH GRAVEL (CH) - dark-brown, rootle present, moist	ets									
			LEAN CLAY (CL) -olive gray, very stiff, some sand, moist		мс	16	2.5	104	23		Gravel: 0.3% Sand: 13.9% -200: 85.8% LL = 46		
B\1101-17A			CLAYEY GRAVEL (GC) - dark-brown, moist								PI = 26		
			FAT CLAY WITH GRAVEL (CH) - light-brown, very stiff, moi	st	мс	19	3.5						
T - 2/14/18 16:12 - A:\A3GE(5		SANDY LEAN CLAY (CL) - light brown, moist		ST			96	28		Gravel: 0% Sand: 37.4% -200: 62.6% LL = 43 PI = 28		
			SANDY FAT CLAY (CH) - light-brown, medium stiff, moist		мс	8	1.0						
			POORLY-GRADED SAND (SP) - greyish-brown, moist										
(2) - 43GEC	5		FAT CLAY WITH SAND (CH) - light-brown, very stiff, moist -interbedded with clayey SAND (SC), light-brown, medium de	ense.							Gravel: 0%		
					ST			88	34		Sand: 24.3% -200: 75.7% LL = 51 PI = 35		
					мс	20	2.5						
	5		CLAYEY GRAVEL WITH SAND (GC) - dark brown, very der moist	ise,									

ELOGS 11-30-17.GP.	A	30	GEO A3GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710 Telephone: 510-705-1664	BORING NUMBER A3-17-2 PAGE 2 OF 4								
A BORE			Berkeley									
01-17/			JMBER 11/02/47									
GS/11			Introduction COMPLETED Introduction CONTRACTOR Pitcher Drilling Co.	GROUND ELEVATION _19 ft HOLE SIZE _6" GROUND WATER LEVELS:								
RELO			ETHOD _Rotary Wash Drilling									
17/BO			CHECKED BY _LB									
ER 20	NOTE	s		AT END OF DRILLING AFTER DRILLING								
3GE0 PROJECTS1101 - UCB1101-17a_NRLF PHASE 4 INVESTIGATION4_INVESTIGATIONNOVEMBER 2017/BORELOGS1101-17A BORELOGS 11-30-17.GP	(ft) (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
NV4			CLAYEY GRAVEL WITH SAND (GC) - dark brown, very der moist(continued)	ise,	SPT	67					Gravel: 41.2% Sand: 39.5%	
PHASE 4 INVESTIGATIC	 <u>40</u>						-				-200: 19.3%	
ARLF I					SPT	42	-					
17A_1												
1101-			FAT CLAY (CH) - olive-grey, hard, some sand, trace gravel,	moist								
- UCB	45											
PROJECTS/1101					ST			100	24		Gravel: 0.4% Sand: 11.4% -200: 88.1% LL = 58 PI = 35	
3GEO	 50											
GEOTECH BH COLUMN TERM LEFT ALIGNED (2) - A3GEO DATA TEMPLATE.GDT - 2/14/18 16:12 - A:\A			-similiar to above except very stiff		мс	31	3.5					
GDT	55											
ATA TEMPLATE					мс	23	1.0					
EO D												
) - A3C	60		-similiar to above except sandy, hard									
ED (2)			POORLY-GRADED SAND WITH CLAY (SP-SC) - greyish-b	rown.	мс	37	3.0					
ALIGN			very dense, moist	,								
LEFT,												
ERM	65											
LNWC												
OTECH BH COLL			SANDY LEAN CLAY (CL) - olive-grey, hard, fine sand becon coarser with depth, moist	ning								
Ū	70	$V///\Lambda$										


ELOGS 11-30-17.GP	A	3	G = O A3GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710 Telephone: 510-705-1664	BORING NUMBER A3-17-2 PAGE 3 OF 4								
A BOR			Berkeley									
01-17			UMBER 1101-17A									
GS\11			ONTRACTOR Pitcher Drilling Co.	GROUND ELEVATION _19 ft HOLE SIZE _6" CPOLIND WATER LEVELS:								
SELO			ETHOD Rotary Wash Drilling									
7/BOF			/ EA CHECKED BY LB									
R 201						LLING						
INVESTIGATION/NOVEMBE	02 DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
N\4_I	_		SANDY LEAN CLAY (CL) - olive-grey, hard, fine sand becor coarser with depth, moist(continued)	ming	мс	46	3.0	114	18			
GEOTECH BH COLUMN TERM LEFT ALIGNED (2) - 33GE0 DATA TEMPLATE.GDT - 2/14/18 16:12 - A:A3GE0 PROJECTS/1101 - UCB/1101-17A_NRLF PHASE 4 INVESTIGATIONA_INVESTIGATIONNOVEMBER 2017/BORELOGS/1101-17A BORELOGS 11-30-17,GPJ			SANDY LEAN CLAY (CL) - light-brown, very stiff, moist		мс	27	2.0	-				
- GDT -	 90		CLAYEY SAND (SC) - multi-colored, very dense, coarse, ma	oist	-							
IPLATE					SPT	52						
NED (2) - A3GEO DATA TEM.	 <u>95</u>				_ 							
ALIG			SANDY LEAN CLAY (CL) - light-brown, hard, sand fraction		-							
LEFT			predominantly fine, moist									
TERM	100											
NWC					мс	35	>4.0	101	24			
COL					<u> </u>							
H BH												
OTEC												
Ю	105	VIIIA										

ELOGS 11-30-17.GP	Ą	3	GEO A3GEO, Inc. 1331 Seventh Ave, Suite E Berkeley, CA, 94710 Telephone: 510-705-1664	BORING NUMBER A3-17-2 PAGE 4 OF 4								
				PROJECT NAME NRLF Phase 4 Investigation								
01-17A			UMBER 1101-17A									
D GSV11			ONTRACTOR Pitcher Drilling Co.	_ GROUND ELEVATION <u>19 ft</u> HOLE SIZE <u>6"</u> GROUND WATER LEVELS:								
D			ETHOD Rotary Wash Drilling									
			CHECKED BY LB									
N ABER 2	OTE	s		AI		LLING						
	(H) 05	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
			SANDY LEAN CLAY (CL) - light-brown, hard, sand fraction predominantly fine, moist(continued)									
F PHASE 4 INVESTIGATIC	- - 10		-similiar to above except reddish-brown & greyish-brown, ve	ry stiff	SPT	22						
3EO PROJECTS/1101 -	- - - 1 <u>15</u> - - - 20											
4/18 16:1	-											
	_			arov		50/5.0"						
EMPLATE.GC			SANDSTONE & SHALE - reddish-brown sandstone & dark- shale [BEDROCK] prehole at 124.4 feet. casing to 4.0 ft. Advanced open-hole thereafter.	grey	<u></u>	50/5.0	,					
GEOTECH BH COLUMN TERM LEFT ALIGNED (2) - A3GEO DATA TEMPLATE.GDT . T B . T B	. Bor	rehole	tremie grouted to ground surface.									

APPENDIX C

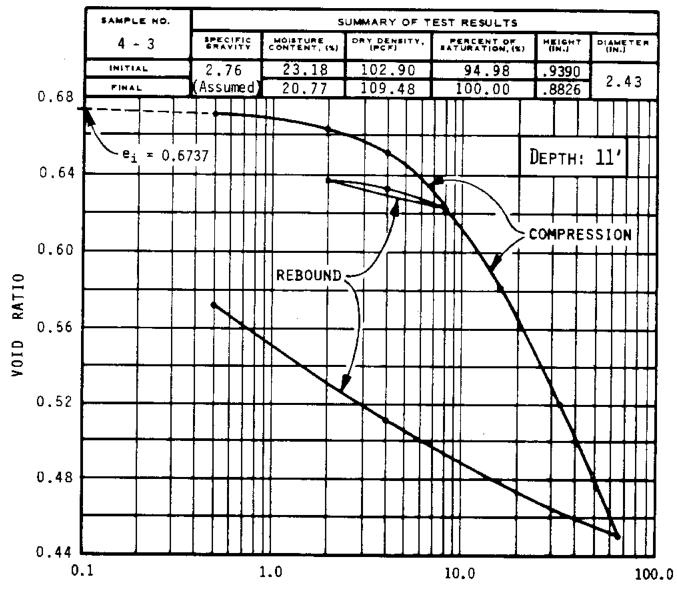
Historic Geotechnical Laboratory Testing Data

1

ł

.

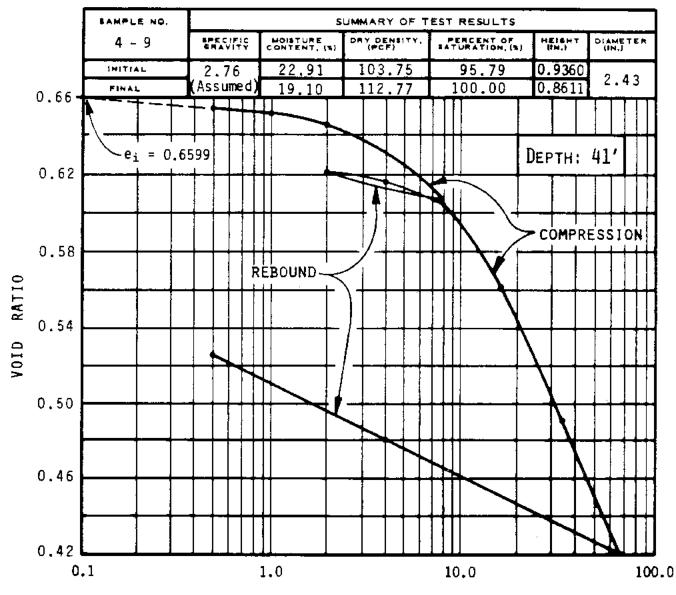
.....


ī

: 5

CLASSIFICATION TEST RESULTS													
AMPLE ID	ENTIFICAT	10 N	ATT	ERBERG LI	мітя	GRAIN SIZES - % DRY WEIGHT							
BCRINE NG,	SAMPLE No,	DEPTH, FT,	LIMIT	PLASTICITY INDEX	PLABTIC LIMIT	BAND	\$jLT	GLAY	COLLOIDA				
3	1	2.0'	52	35	16	 _	_	-					
5	1	1.0'	3 8	21	17	-	_	-	-				
6	1	2.5'	57	40	16	-	_	_	_				
		:											
	воятике но, 3 5	AMPLE IDENTIFICAT BORING NO. 3 1 5 1	AMPLE IDENTIFICATION BORING SAMPLE DEPTH, NO. RO. PT. 3 1 2.0' 5 1 1.0'	AMPLE IDENTIFICATION ATT BORING SAMPLE PEPTH, LIQUID NO. RO. PT. LINIT 3 1 2.0' 52 5 1 1.0' 38	AMPLE IDENTIFICATION ATTERBERG LI BORING SAMPLE DEPTH. LIGUID PLASTICITY NO. PT. LIGUID PLASTICITY INDEX 3 1 2.0' 52 35 5 1 1.0' 38 21	AMPLE IDENTIFICATION ATTERBERG LIMITS BORING SAMPLE DEPTH, LIMIT PLASTICITY LIMIT 3 1 2.0' 52 35 16 5 1 1.0' 38 21 17	AMPLE IDENTIFICATION ATTERBERG LIMITS GRAM BORING BAMPLE DEPTH. LIBIT PLASTICITY PLASTIC NO. NO. FT. LIBIT PLASTICITY PLASTIC JINEEX LIBIT DEEX 1 2.0' 52 35 16 5 1 1.0' 38 21 17	AMPLE IDENTIFICATION ATTERBERG LIMITS GRAIN SIZES BORING SAMPLE DEPTH, LIGHT PLASTICITY PLASTIC NO, PT, LIGHT PLASTICITY PLASTIC SAND SILT 3 1 2.0' 52 35 16 5 1 1.0' 38 21 17 -	AMPLE IDENTIFICATION ATTERBERG LIMITS GRAIN SIZES - * DRY BORING SAMPLE PEPTH, LIBUT PLASTICITY PLASTIC BORING RO, PT, LIBUT SIZES - * DRY 1 1.01 52 35 16 5 1 1.01 38 21 17				

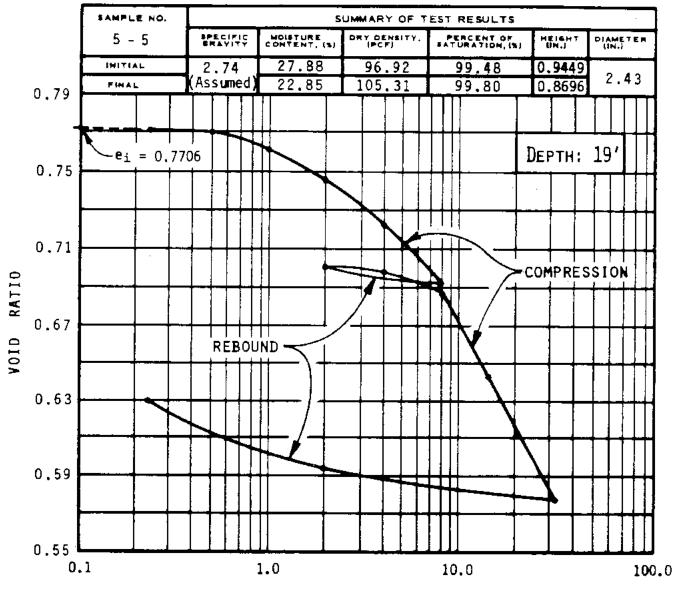
Project No. 14676A <u>PLASTICITY CLASSIFICATION</u>			
	Project No. 14676A	PLASTICITY CLASSIFICATION	
Woodward-Clyde Consultants U.C. ~ NORTHERN REGIONAL LIBRARY Figure 7	Woodward-Clyde Consultants	U.C. ~ NORTHERN REGIONAL LIBRARY	Figure 7



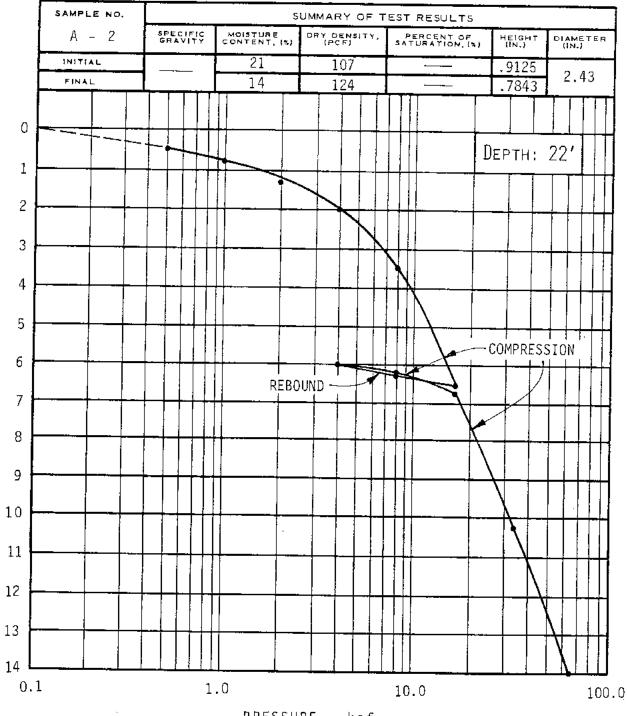
. 1

. 1

PRESSURE, ksf


Project No. 14676A	CONSOLIDATION TEST RESULTS	Ed avera d
Weedward-Clyde Consultants	U.C NORTHERN REGIONAL LIBRARY	Figure 8

PRESSURE, ksf

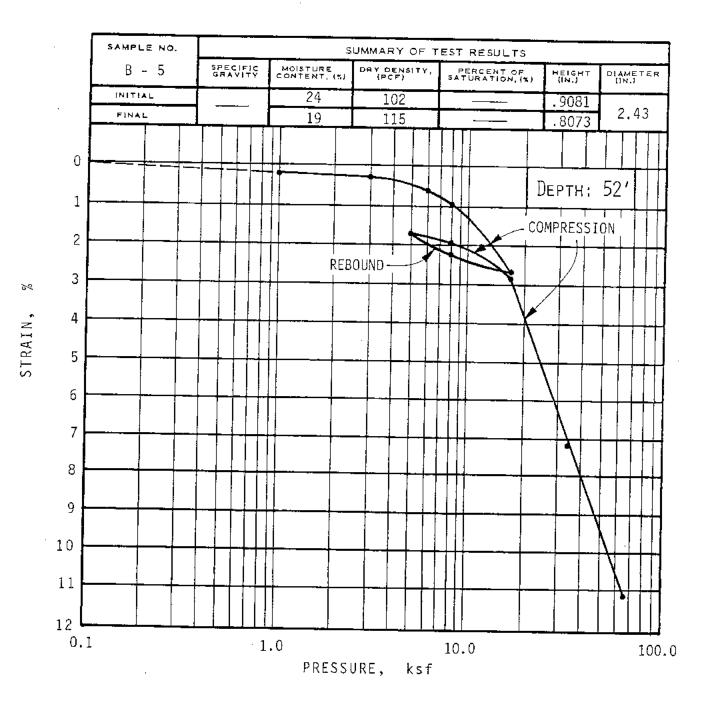

Project No. 14676A	CONSOLIDATION TEST RESULTS	Figure 9
Weedward-Clyde Consultants	U.C NORTHERN REGIONAL LIBRARY	rigure 5

.

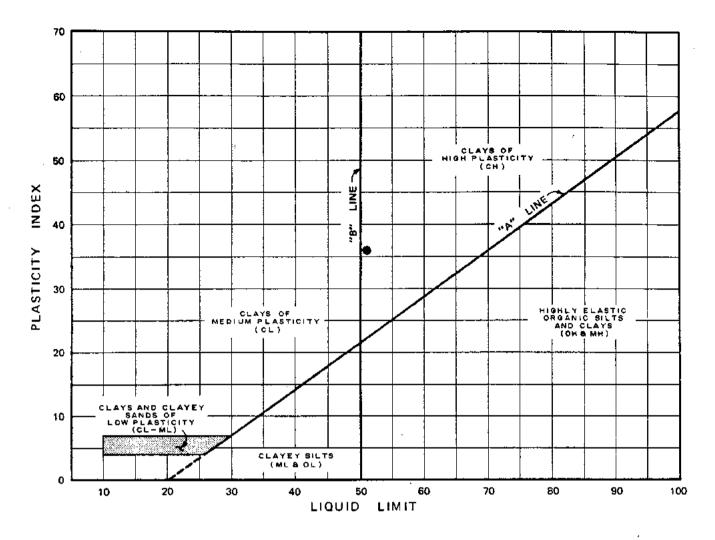
PRESSURE, ksf

Project No. 14676A	CONSOLIDATION TEST RESULTS	5 1 0
Woodward-Olyab Consultants	U.C NORTHERN REGIONAL LIBRARY	Figure 10

PRESSURE, ksf


Project	No.	14676A
Woodward-C	lyde (Consultants

20


STRAIN,

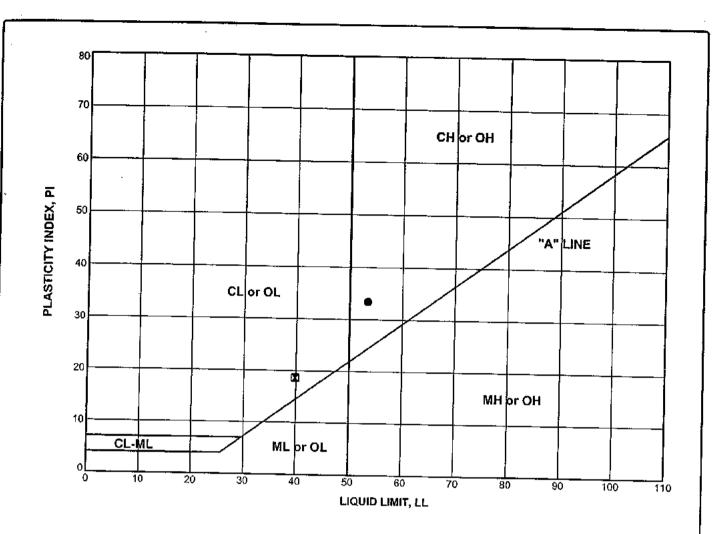
CONSOLIDATION TEST RESULTS U.C.-NORTHERN REGIONAL LIBRARY

Figure 6s

Project No. 14676A	CONSOLIDATION TEST RESULTS		
Woodward-Clyde Consultants	U.CNORTHERN REGIONAL LIBRARY	Figure 7s	

S	AMPLE 10	ENTIFICAT	ION	ATT	ERBERG LI	IMITS GRAIN SIZES - % DRY V				WEIGHT
LETTER DESIG N	BORING NO.	SAMPLE NO,	DEPTH, FT.	LIQUID Limit				ŞILT	CLAY	COLLOIDA
	9	1	4	51	36	15	-	-	-	-
										1
					1					

Project No. 14676B <u>PLASTICITY CLASSIFICATION</u> Woodward-Ciyde Consultants NORTHERN REGIONAL LIBRARY SHELVING FACILITY - PHASE II Figure 6


TABLE B-1 SUMMARY OF SOIL LABORATORY DATA

Boring Number	Sample		Sample Information		In 64	In Situ In Situ				Atterberg Limits			- I
	Number	Depth, feet	Elevation, feet MSL	USCS Group Symbol	In Situ Water Content, %	In Situ Dry Unit Weight, pcf	Gravel, %	Sand, %	<#200, %	LL	PL	PI	Unconfined Compressive Strength, psf
B-10	10-2-3	5.5-6	NA	sc	15.4	118				·	<u> </u>	·}	
B-10	10-3-3	10.5-11	NA	SC	12.0		37	48	15			╂──┈	<u> </u>
B-10	10-4-3	15.5-16	NA	sc	13.6	119		<u>-</u>			<u> </u>		╀──┉──
B-10	10-7-3	25.5-26	NA	CL	18.7	111					┢───		2980
B-11	11-2-3	5.5-6	NA	СН	19.3	106		—				<u> </u>	· · · · · · · · · · · · · · · · · · ·
B-11	11-3-3	10.5-11	NA	СН	23.2	103					<u> </u>	<u> </u>	7300
B-11	11-4-3	15.5-16	NA	СН				· · · ·		53	20	33	3700
B-11	11-5-3	20.5-21	NA	СН	18.2	112					- 20	33	<u> </u>
B-11	11-7-3	30.5-31	NA	CL	27.3	98						ļ	2100
B-11	11-11-3	50.5-51	NA	CL	22.9	101					· ·		1700
B-12	12-1-3	3.5-4	NA	CL	17.9	107	— <u> </u>						2020
B-12	12-4-3	15,5-16	NA	CL	25,4	97							8950
B-12	12-6-3	25.5-26	NA	sc	18.0		37	41	22				3350
B-12	12-7-3	30.5-31	NA	CL	26.2	99				40	21		
B-12	12-9-3	40,5-41	NA	CL	24.4	100	·			40		19	2150
B-12	12-11-3	50.5-51	NA	SM	20.2	106						_	3070

NOTE: The laboratory tests were performed in general accordance with the following standards:

Water Content - ASTM Test Method D2216 Dry Unit Weight - ASTM Test Method D2937 Grain Size Analysis by Mechanical Sieving - ASTM Test Method D422 Atlerberg Limits - ASTM Test Method D4318 Unconfined Compressive Strength Test - ASTM Test Method D2166

UCB Richmond Field Station Richmond, California

Boring Sample Depth Test Water Number LL PL Ы Number (feet) Content (%) Classification Symbol B-11 11-4-3 15.5-16 • 53 20 33 Silty Clay with Sand (CH) B-12 12-7-3 30.5-31 I 26 40 21 19 Silty Clay (CL)

TIRS

UCB Richmond Field Station Richmond, California 51-00111028.00

8-12 12

3/17/2001

File: UCBRICHM.GPJ:

ATTERBERG_PLOT_12 PTS;

Report

PLASTICITY CHART

Figure B-1

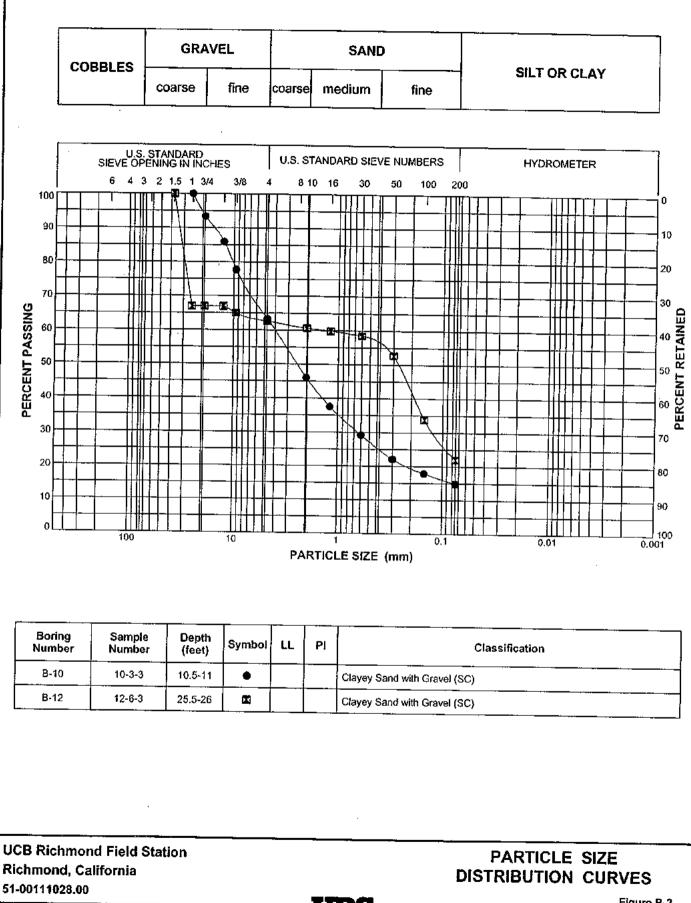


Figure B-2

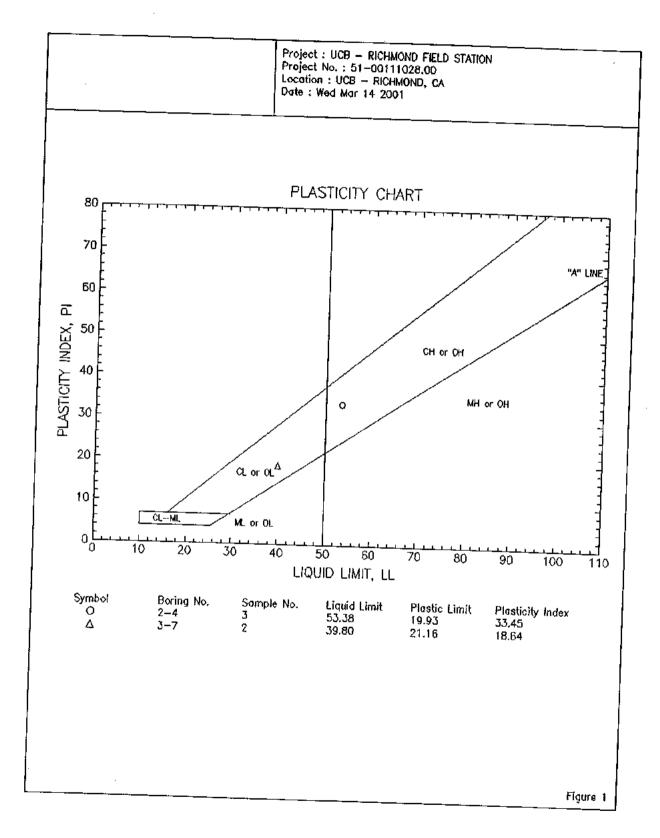
ASTM D2166 Unconfined Compressive Strength

. 11

Project Name: UCB - Richmond Field Station

Project Number: 51-00111028.00

Location: Richmond, CA


Page 1 of 1

Sample Description	Olive brown sandy silty clay with gravel	Reddish brown gravelly sifty sand/gravelly sand	Lt. grayish brown sandy silty clay with gravel	Lt. grayish brown sandy sifty clay	Lt. grayish brown sandy sitty clay	Brown sandy sitty clay with gravel	Lt. grayish brown fine sandy silty clay	Gray fine sandy silty clay w/fractures	Grayish brown sandy silty clay with calc. nod.	Lt. brown sitty clay with fine sand	Lt. Grayish brown sandy silty clay	Gray brown fine sandy sifty clay	Grayish brown fine sandy silty clay w/calc. nod.
Strain at Failure	AN	NA	9.8%	10.0%	10.0%	10.0%	10.0%	8.9%	10.0%	10.0%	10.0%	10.0%	10.0%
Unconfined Compressive Strength, psf	NA	NA	2981	7296	3699	2099	1699	2023	8948	3349	2149	3074	6697
Dry Density pcf	117.51	119.44	111.16	105.83	102.54	112.35	97.63	101.21	106.80	96.67	99. 04	100.12	105.64
Wet Density pcf	135.57	135.62	131.94	126.22	126.28	132.80	124.30	124.34	125.88	121.25	124.98	124.52	126,95
Moisture Content %	15.37	13.55	18.69	19.26	23.16	18.20	27.31	22.86	17.87	25.42	26,19	24.37	20.17
Boring/ Sample Number	1-2-3	1-4-3	1-7-3	2-2-3	2-3-3	2-5-3	2-7-3	2-11-3	3-1-3	3-4-3	3-7-3	3-9-3	3-11-3

URS

URS

U

· · · · · · · · · · ·

I

ATTERBERG LIMITS

PROJECT UCB - RICHMOND FIELD STATION	PROJECT N 51-00111		TESTED BY C. Wason	B0 2-	Ring Number 4
location UCB - Richmond, Ca			CHECKED BY S. Capps	MPLE NUMBER	
SAMPLE DESCRIPTION Dive Brown fine sa—silty Clay			DATE Tue Mar 13 2001		ENAME 4-3
	Liquid Limit	DETERMINATIO	NS		
CONTAINER NUMBER	8	49	14	42	<u> </u>
WT. WET SOIL + TARE	23.94	23.49	22.89	21,72	
WT. DRY SOL + TARE	19.62	19.1	18.65	17.85	
WT. WATER	4.32	4.39	4.24	3.87	
TARE WT.	11.12	\$0.76	10.83	10.83	
WT. DRY SOIL	8.5	8.34	7.82	7.02	
WATER CONTENT, W _N (%)	50.82	52.64	54.22	55.13	
NUMBER OF BLOWS, N	34	29	23	19	
ONE-POINT LIQUED LIMIT, IL	52.75	53.59	53.68	53.33	
Container Number		DETERMINATIO	NS	T	
WT. WET SOL + TARE	6				
WT. DRY SOIL + TARE	26.25	·			
WT. WATER	24.51			<u> </u>	
TARE WT.	15.78		<u> </u>	·	
WT. DRY SOLL	8.73				
WATER CONTENT (%)	19.93				·
				[
		· _ ·	SUMNAR	t Ty of resul	
58.0 FLOW CURVE			AL WATER CONTENT		····
			LIMIT, LL	<u>, ()</u>	53.4
57.0			C LIMIT, PL		19.9
		PLAST	CITY INDEX, PI		33,4
56.0			ITY INDEX, LI*	,	
[№] 55.0 - 0		* LI = (W - PL)/PI PLAS	TICITY CHAR	
		- 63	· · · · · · · · · · · · · · · · · · · 	<u> </u>	╶╴╴╴╴╱╴╴╴
MATER CONTENT		- 70			
					ו••
₩ 53.0					
≤ \0					H ¥ 0H
52.0				1	¥H ¥7 08 -
\downarrow \downarrow				°	-
51.0		⊂ ∞		Y	-
_ °\		10	ava	1	-
50.0	<u> </u>	1 - 0	a-le Mara	1	1
10 25		0 <u></u> 100 0 10		50 60 70 JID LIMIT, LL	80 90 100 11
NUMBER OF BLOWS					

Tue Mar 13 11:02:49 2001

l

ļ

GEDTECHNICAL LABORATORY TEST DATA

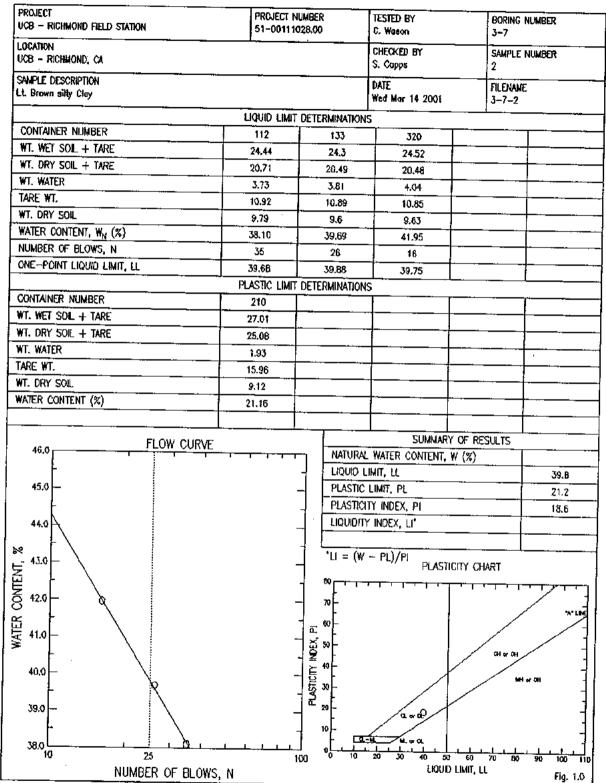
 Project : UCB - RICHMOND FIELD STATION
 Filename : 2-4-3

 Project No. : 51-00111028.00
 Depth : 15-16.5 feet
 Elevation : NA

 Boring No. : 2-4
 Test Date : 3/12/2001
 Tested by : C. Wason

 Sample No. : 3
 Test Method : ASTN D4318
 Checked by : S. Capps

 Location : UCB - RICHMOND, CA
 Soil Description : Olive Brown fine sa-silty Clay
 Plastic Limit


Moisture Content ID	Nass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content
	(gm)	(gm)	(gm)	(%)

1) 6	15.78	26.25	24.51	19.93

Plastic Limit = 19.93

	Līquid Limit									
Moisture Content ID		Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Number of Drops	Moisture Content				
		(gm)	(ga)	(gm)		(%)				
		******	*************							
1)	8	11.12	23.94	19.62	34	50.82				
•	49	10.76	23.49	19.10	29	52.64				
	14	10.83	22.89	18.65	23	54.22				
-	42	10.83	21.72	17.85	19	55.13				

Liquid Limit = 53.38 Plastic Index = 33.45 Page : 1

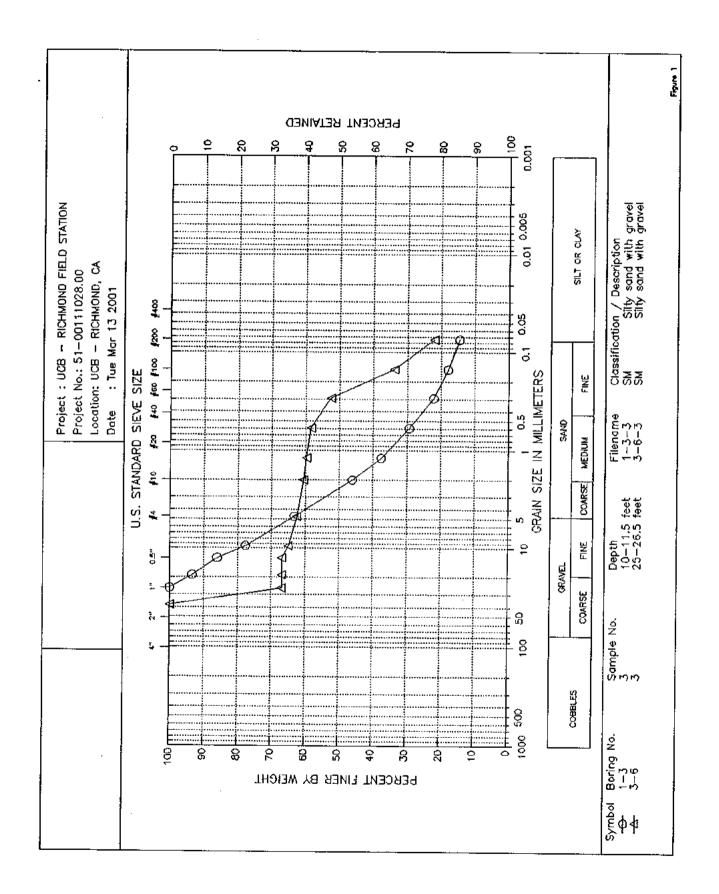
ATTERBERG LIMITS

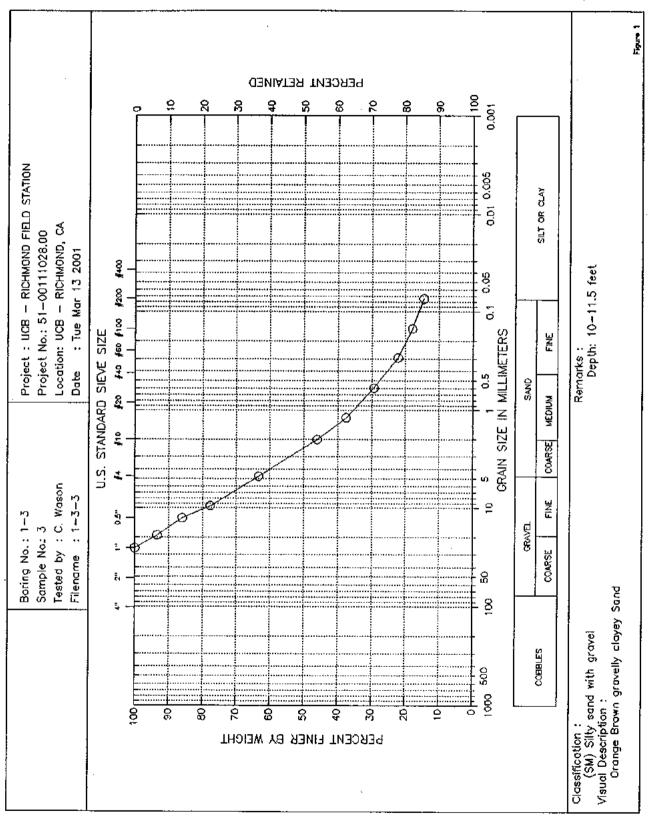
URS

.

Page: 1

GEOTECHNICAL LABORATORY TEST DATA


Project : UCB - RICHMOND FIELD STATIONFilename : 3-7-2Project No. : 51-00111028.00Depth : 35-36.5 feetElevation : NABoring No. : 3-7Test Date : 3/13/2001Tested by : C. WasonSample No. : 2Test Method : ASTM D4318Checked by : S. CappsLocation : UCB - RICHMOND, CASoil Description : Lt. Brown silty ClayRemarks :


Moisture Content 10	Mass of Container	Plastic Limit Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content
	(gm)	(gm)	(gm)	(%)
•••••••••••			************	**********
1) 210	15.96	27.01	25.08	21.16

Plastic Limit = 21.16

		Li	iquid Limit				
Moisture Content ID		Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Number of Drops	Moisture Content	
		(gm)	(gm)	(gii)		(%)	
1)	112	10.92	24.44	20.71	35	38.10	
2)	133	10.89	24.30	20.49	26	39.69	
3)	320	10.85	24.52	20.48	16	41.95	

Liquid Limit = 39.80 Plastic Index = 18.64

Tue Mar 13 11:09:10 2001

IURS

GEOTECHNICAL LABORATORY TEST DATA

Project : UCB - RICHMOND FIELD STATIONFilename : 1-3-3Project No. : 51-00111028.00Depth : 10-11.5 feetElevation : NABoring No. : 1-3Test Date : 3/12/2001Tested by : C. WasonSample No. : 3Test Method : ASTM D422Checked by : S. CappsLocation : UCB - RICHMOND, CASoil Description : Orange Brown gravelty clayey SandRemarks : Depth: 10-11.5 feet

		COAL	RSE SIEVE SET		
Sieve	Sieve O	penings 👘 👘	Weight	Cumulative	Percent
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)
1 4	1.012	25.70	0.00	0.00	100
0.75"	0.748	19.00	36.82	36,82	93
0.5"	0.500	12.70	41.48	78.30	86
0.375"	0.374	9.51	46.10	124.40	78
#4	0.187	4.75	80.70	205.10	63
#10	0.079	2.00	96.40	301.50	46
#16	0.047	1.19	47.80	349.30	38
#30	0.023	0.60	46.30	395.60	29
#50	0.012	0.30	40,00	435.60	22
#100	0.006	0.15	23.50	459,10	18
#200	0.003	0.07	18.50	477.60	15

Total Dry Weight of Sample = 559.3

 D85
 :
 12.2619
 mm

 D60
 :
 4.0191
 mm

 D50
 :
 2.4332
 mm

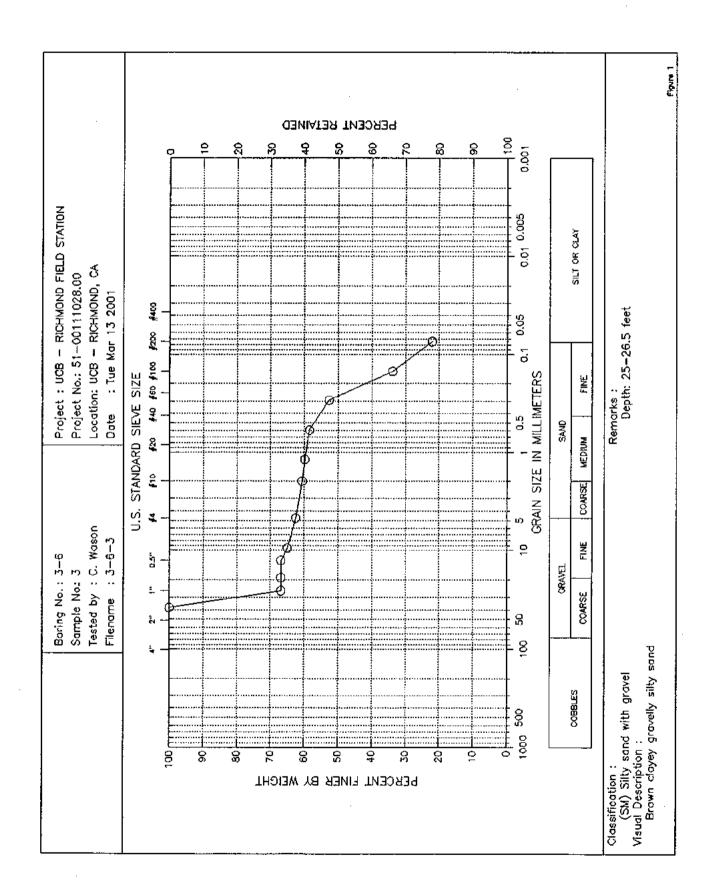
 D30
 :
 0.6326
 mm

 D15
 :
 0.0804
 mm

 D10
 :
 0.0279
 mm

Soil Classification ASTM Group Symbol : SM ASTM Group Name : Silty sand with gravel AASHTO Group Symbol : A-1-a(0) AASHTO Group Name : Stone Fragments, Gravel and Sand Page : 1

Tue Mar 13 11:09:10 2001


Page: 2

GEOTECHNICAL LABORATORY TEST DATA

Project : UCB - RICHMOND FIELD STATIONFilename : 1-3-3Project No. : 51-00111028.00Depth : 10-11.5 feetElevation : NABoring No. : 1-3Test Date : 3/12/2001Tested by : C. WasonSample No. : 3Test Method : ASIN D422Checked by : S. CappsLocation : UCB - RICHMOND, CASoil Description : Orange Brown gravelly clayey SandRemarks : Depth: 10-11.5 feet

	Ni	atural Moisture Cont	ent	
Moisture Content 10	Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content
	(gm)	(gm)	(gm)	(%)
1) 1-3-3	223.10	849.50	782.40	12.00

Average Moisture Content = 12.00

Tue Mar 13 11:15:04 2001

GEOTECHNICAL LABORATORY TEST DATA

Project : UCB - RICHMOND FIELD STATIONFilename : 3-6-3Project No. : 51-00111028.00Depth : 25-26.5 feetElevation : NABoring No. : 3-6Test Date : 3/12/2001Tested by : C. WasonSample No. : 3Test Method : ASTM D422Checked by : S. CappsLocation : UCB - RICHMOND, CASoil Description : Brown clayey gravelly silty sandRemarks : Depth: 25-26.5 feet

		COAL	RSE SIEVE SET		
Sieve	Sieve O	penings	Weight	Cumulative	Percent
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)
1.5"	1.500	38.10	0.00	0,00	100
1"	1.012	25.70	96.58	96,58	67
0,75"	0.748	19.00	0.00	96.58	67
0.5"	0.500	12.70	0.00	96,58	67
0,375"	0.374	9.51	5.64	102.22	65
#4	0.187	4.75	7.10	109.32	63
#10	0.079	2.00	5.77	115.09	61
#16	0.047	1.19	2.33	117.42	60
#30	0.023	0.60	3.98	121.40	58
#50	0.012	0,30	17.10	138.50	53
#100	0.006	0.15	54.89	193.39	34
#200	0.003	0.07	34.31	227.70	22
Tatal D		-f cl 202	7		

Total Dry Weight of Sample = 292.3

D85 : 31.8639 mm D60 : 1,3303 mm D50 : 0.2682 mm D30 : 0.1185 mm D15 : N/A

D10 : N/A

Soil Classification ASTM Group Symbol : SM ASTM Group Name : Silty sand with gravel AASHTO Group Symbol : A-1-b(0) AASHTO Group Name : Stone Fragments, Gravel and Sand

Page : 2

GEOTECHNICAL LABORATORY TEST DATA

Project : UCB - RICHMOND FIELD STATION Filename : 3-6-3 Project No. : 51-00111028.00 Depth : 25-26.5 feet Boring No. : 3-6 Test Date : 3/12/2001 Sample No. : 3 Test Method : ASTM D422 Location : UCB - RICHMOND, CA Soil Description : Brown clayey gravelly silty sand Remarks : Depth: 25-26.5 feet

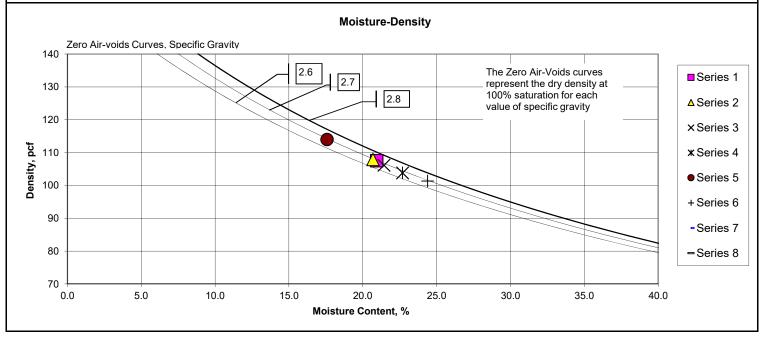
Elevation : NA Tested by : C. Wason Checked by : S. Capps

	N	atural Moisture Conto	ent		
Moisture Content ID	Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Noisture Content	
	(ga)	(9m)	(gm)	(%)	
1) 3-6-3	221.10	566.00	513.40	18.00	

Average Moisture Content = 18.00

APPENDIX D

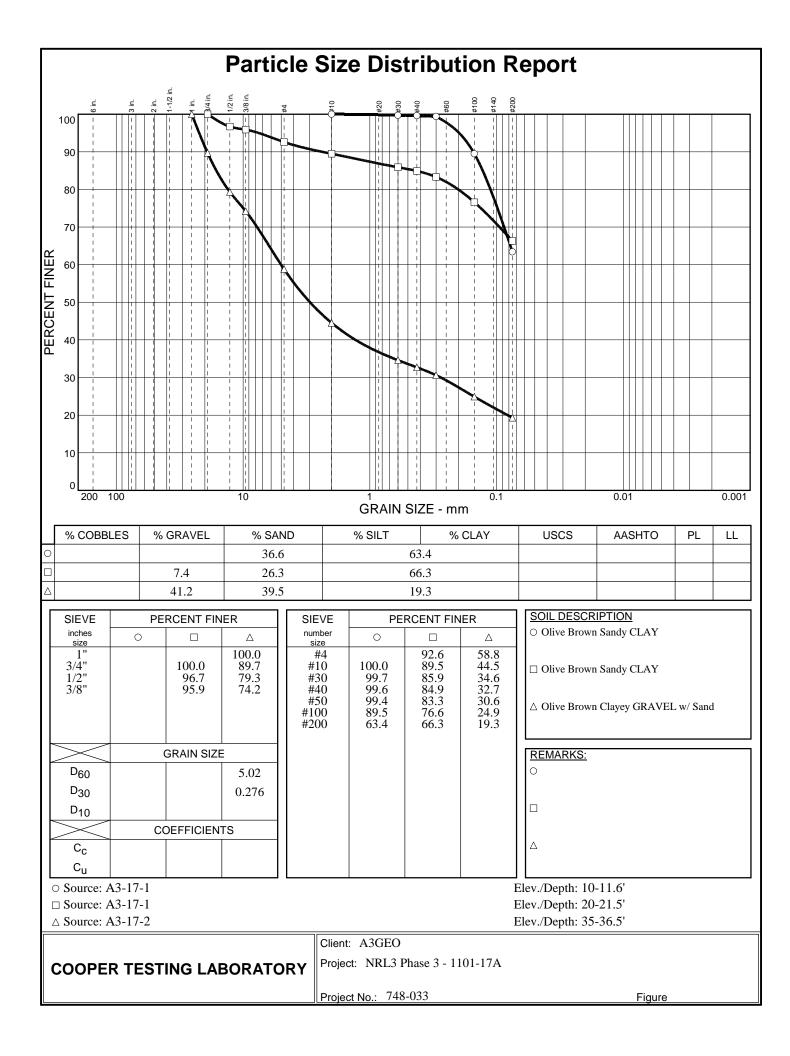
A3GEO Geotechnical Laboratory Testing Data Sheets (This Study)

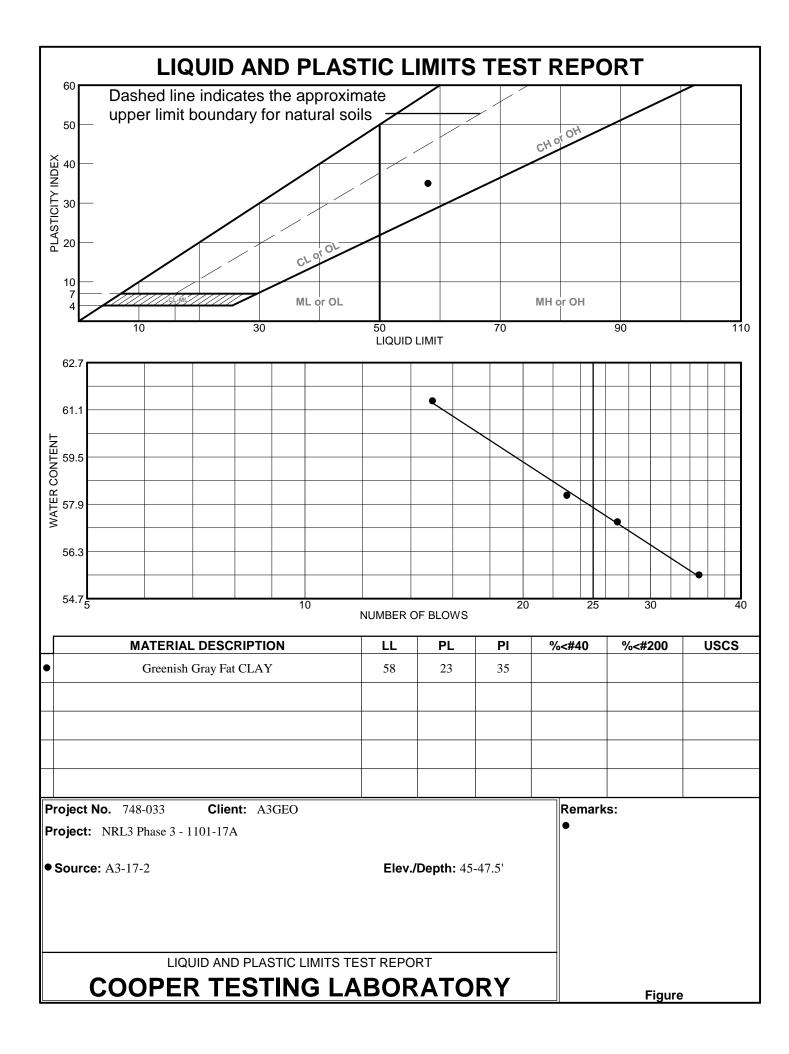


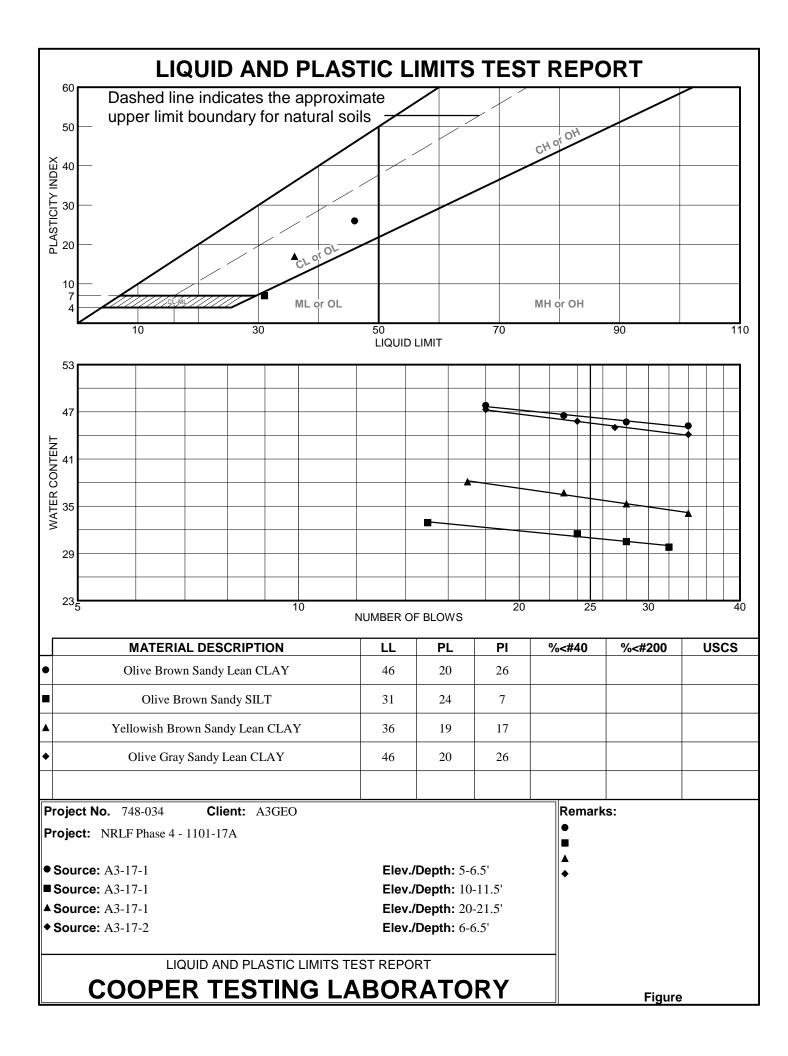
Moisture-Density-Porosity Report Cooper Testing Labs, Inc. (ASTM D7263b)

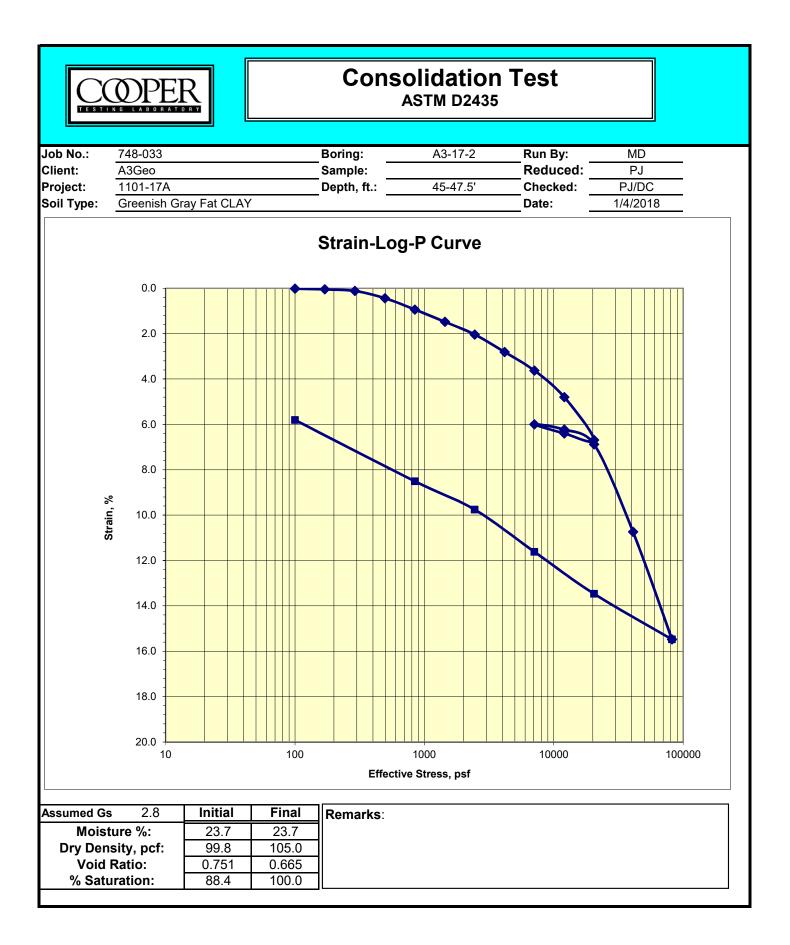
				J , .	1 -			
CTL Job No:	748-033			Project No.	1101-17A	By:	: <u>RU</u>	_
Client:	A3GEO			Date:	12/21/17			
Project Name:	NRLF Phas	e 4		Remarks:				
Boring:	A3-17-1	A3-17-1	A3-17-1	A3-17-2	A3-17-2	A3-17-2		
Sample:								
Depth, ft:	31-31.5	51-51.5	81-81.5	6-6.5	71-71.5	100.5-101		
Visual	Olive	Bluish	Reddish	Yellowish	Olive Gray	Yellowish		
Description:	Brown	Gray	Brown	Brown	Sandy	Brown		
	Sandy	CLAY	Clayey	CLAY	CLAY	CLAY w/		
	CLAY		SAND			Sand		
Actual G _s								
Assumed G _s	2.70	2.70	2.70	2.70	2.70	2.70		
Moisture, %	20.9	20.7	21.4	22.7	17.6	24.4		
Wet Unit wt, pcf	130.0	130.2	128.9	127.3	134.0	126.0		
Dry Unit wt, pcf	107.5	107.9	106.2	103.8	114.0	101.3		
Dry Bulk Dens.pb, (g/cc)	1.72	1.73	1.70	1.66	1.83	1.62		
Saturation, %	99.4	99.2	98.3	98.0	98.9	99.1		
Total Porosity, %	36.3	36.0	37.1	38.5	32.4	39.9		
Volumetric Water Cont, Ow, %	00.0	35.7	36.4	37.7	32.1	39.6		
Volumetric Air Cont., Əa,%	0.2	0.3	0.6	0.8	0.3	0.4		
Void Ratio	0.57	0.56	0.59	0.63	0.48	0.66		
Series	1	2	3	4	5	6	7	8
Note: All reported parame	aters are from the	as received same	le condition unles	se otherwise noter	I fan assumed s	necific gravity (G	s) was used then	the saturation

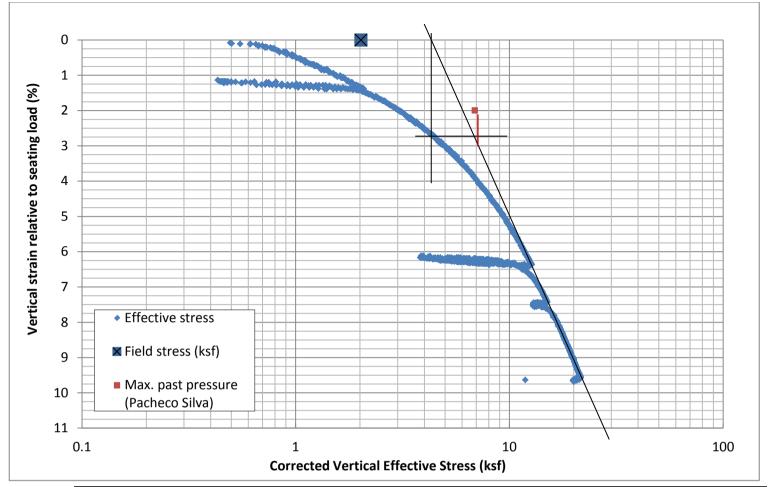
Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate.

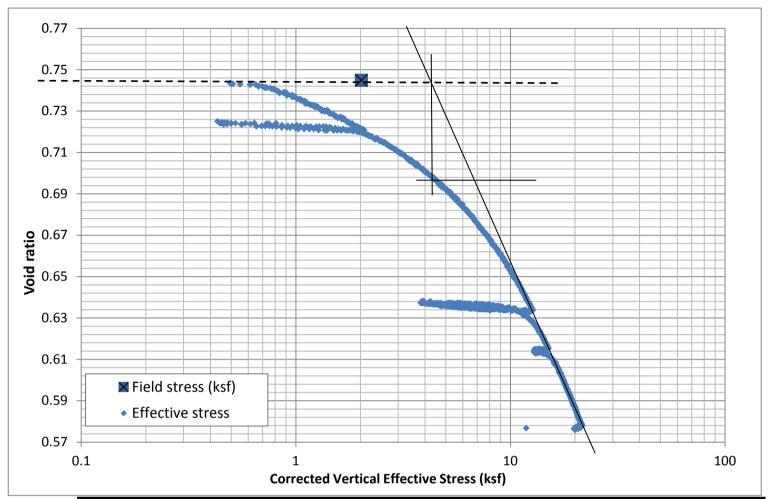



((C		-	-	\mathbf{D}]			ŀ	R		
Т	Е	S	т		Ν	G	L	А	в	0	R	А	т	0	R	Y	


#200 Sieve Wash Analysis ASTM D 1140


Job No.: Client:	748-033 A3GEO			Project No.: Date:	<u>1101-17A</u> 1/9/2018		_ Run By: _ Checked By:	MD DC
		4						
Boring:	A3-17-1	A3-17-1	A3-17-1	A3-17-1	A3-17-2	A3-17-2		
Sample:								
Depth, ft.:	5-6.5	31-31.5	51-51.5	61-61.5	6-6.5	45-47.5		
Soil Type:	Olive Brown	Olive Brown	Bluish Gray	Olive Gray	Yellowish	Greenish		
	CLAY w/	Sandy CLAY	CLAY	CLAY w/	Brown	Gray Fat		
	Sand	-		Sand	CLAY	CLAY		
/t of Dish & Dry Soil, gm	571.4	607.1	591.4	454.9	666.0	394.7		
leight of Dish, gm	178.1	174.9	173.4	171.6	324.1	274.1		
/eight of Dry Soil, gm	393.4	432.2	418.0	283.3	341.9	120.6		
t. Ret. on #4 Sieve, gm	0.3	27.3	1.9	5.9	1.0	0.6		
/t. Ret. on #200 Sieve, gm	60.3	216.1	52.9	44.1	48.7	14.3		
Gravel	0.1	6.3	0.4	2.1	0.3	0.5		
5 Sand	15.2	43.7	12.2	13.5	13.9	11.4		
Silt & Clay	84.7	50.0	87.3	84.4	85.8	88.1		


The gravel is always included in the percent retained on the #200 sieve but may not be weighed separately to determine the percentage, especially if there is only a trace amount, (5% or less).

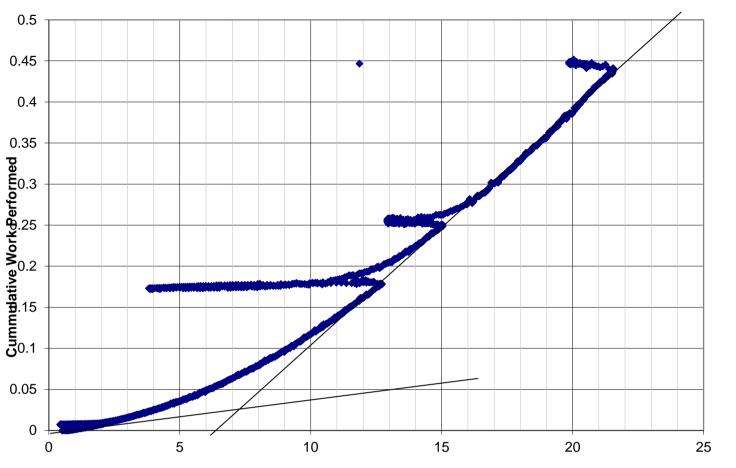

Specimen	Depth	W.C.	Att	tterberg Limits		Fines content		
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	16.3	27.9					stiff sandy clay	

Initial Specimen Properties							
Height (mm)	25.35						
Diameter (mm)	72.95						
Volume (cm3)	105.95						
Moist mass (g)	208.1						
Moist density, p (g/cm3)	1.964						
Total unit weight (pcf)	122.6						
Gs (assumed)	2.68						
Void Ratio e	0.745						
Saturation	100.3						

Stresses(ksf)Estimated vertical field effective2.0Maximum past (Pacheco Silva)6.9Maximum past (Work method)7.3

Disturbance	
Δe/eo (%)	3.4
Sample quality (Lunne, 1997)	Good

Project: NRLF 4	Test: CRS1 at 16 ft	
Location: Richmond, California		
Project Number:		
Axial strain v. log (vertical effective stress)	Figure: 1.1	


Specimen	Depth	W.C.	Atterberg Limits		Fines content			
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	16.3	27.9					stiff sandy clay	

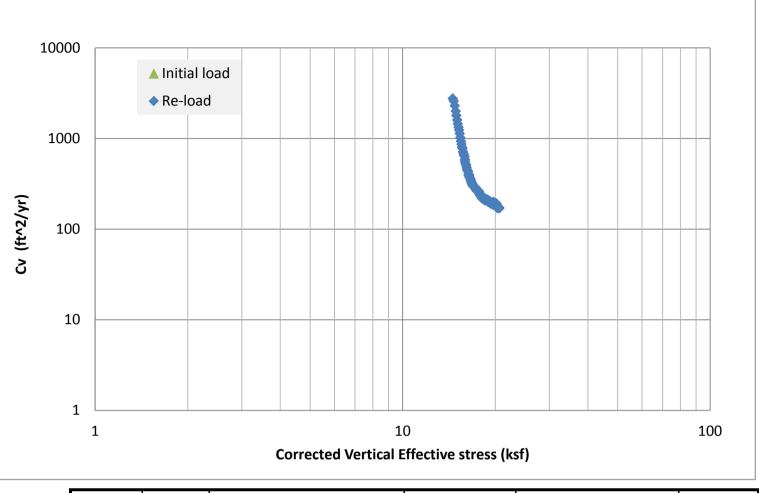
Initial Specimen Properties					
Height (mm)	25.35				
Diameter (mm)	72.95				
Volume (cm3)	105.95				
Moist mass (g)	208.1				
Moist density, p (g/cm3)	1.964				
Total unit weight (pcf)	122.6				
Gs (assumed)	2.68				
Void Ratio e	0.745				
Saturation	100.3				

Stresses	(ksf)
Estimated vertical field effective	2.0
Maximum past (Pacheco Silva)	6.9
Maximum past (Work method)	7.3

Disturbance	
Δe / eo (%)	3.4
Sample quality (Lunne, 1997)	Good

Project: NRLF 4	Test: CRS1 at 16 ft
Location: Richmond, California	
Project Number:	
Void ratio v. log (vertical effective stress)	Figure: 1.2

Corrected Vertical Effective Stress (ksf)

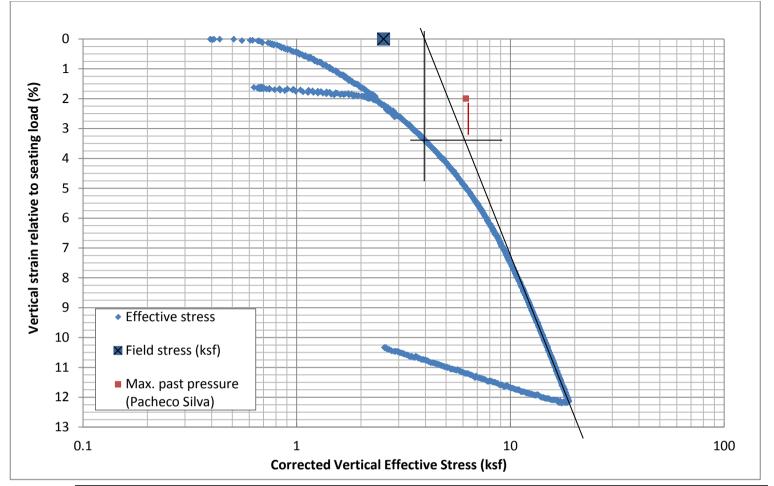

Specimen	Depth	W.C.	Atterberg Limits		Fines content			
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	16.3	27.9					stiff sandy clay	

Initial Specimen Properties					
Height (mm)	25.35				
Diameter (mm)	72.95				
Volume (cm3)	105.95				
Moist mass (g)	208.1				
Moist density, ρ (g/cm3)	1.964				
Total unit weight (pcf)	122.6				
Gs (assumed)	2.68				
Void Ratio e	0.745				
Saturation	100.3				

Stresses(ksf)Estimated vertical field effective2.0Maximum past (Pacheco Silva)6.9Maximum past (Work method)7.3

Disturbance	
Δe/eo (%)	3.4
Sample quality (Lunne, 1997)	Good

Project: NRLF 4	Test: CRS1 at 16 ft
Location: Richmond, California	
Project Number:	
Cumulative work v. vertical effective stress	Figure: 1.3
(Becker Method)	

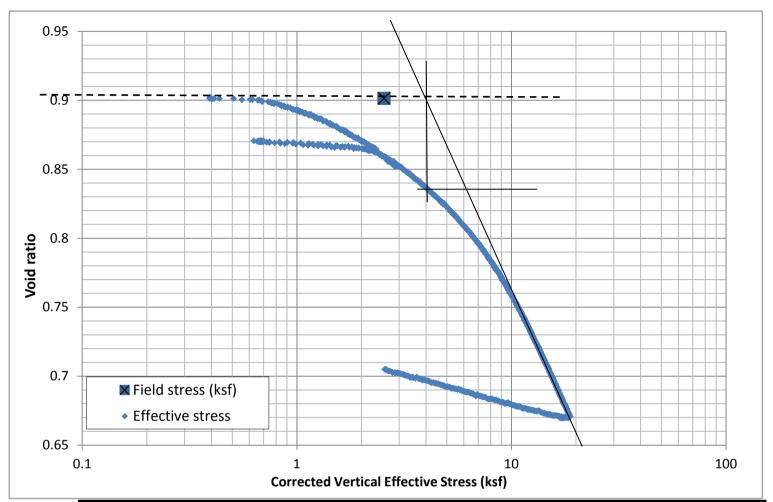

Specimen	Depth	W.C.	Atterberg Limits			Fines content		
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	16.3	27.9					stiff sandy clay	

Initial Specimen Properties					
Height (mm)	25.35				
Diameter (mm)	72.95				
Volume (cm3)	105.95				
Moist mass (g)	208.1				
Moist density, ρ (g/cm3)	1.964				
Total unit weight (pcf)	122.6				
Gs (assumed)	2.68				
Void Ratio e	0.745				
Saturation	100.3				

Stresses	(ksf)
Estimated vertical field effective	2.0
Maximum past (Pacheco Silva)	6.9
Maximum past (Work method)	7.3

Disturbance	
Δe/eo (%)	3.4
Sample quality (Lunne, 1997)	Good

Project: NRLF 4	Test: CRS1 at 16 ft
Location: Richmond, California	
Project Number:	
Coeff.of Consol v. log(effective stress)	Figure: 1.4

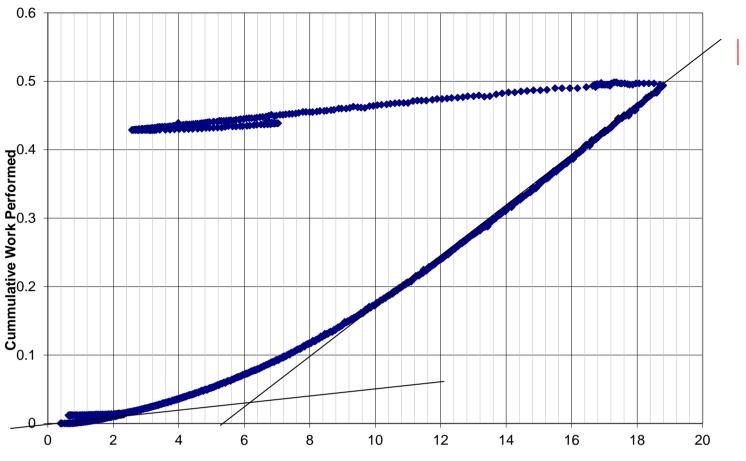

Specimen	Depth	W.C.	Atterberg Limits		Fines content			
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	26.7	33.9					stiff sandy clay	

Initial Specimen Properties					
Height (mm)	25.35				
Diameter (mm)	72.95				
Volume (cm3)	105.95				
Moist mass (g)	200				
Moist density, p (g/cm3)	1.888				
Total unit weight (pcf)	117.8				
Gs (assumed)	2.68				
Void Ratio e	0.901				
Saturation	100.9				

Stresses(ksf)Estimated vertical field effective2.6Maximum past (Pacheco Silva)6.2Maximum past (Work method)6.2

Disturbance	
Δe/eo (%)	4.7
Sample quality (Lunne, 1997)	Good to Fair

Project: NRLF 4	Test: CRS2 at 26 ft		
Location: Richmond, California			
Project Number:			
Axial strain v. log (vertical effective stress)	Figure: 2.1		


Specimen	Depth	W.C.	Atterberg Limits		Fines content			
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	26.7	33.9					stiff sandy clay	

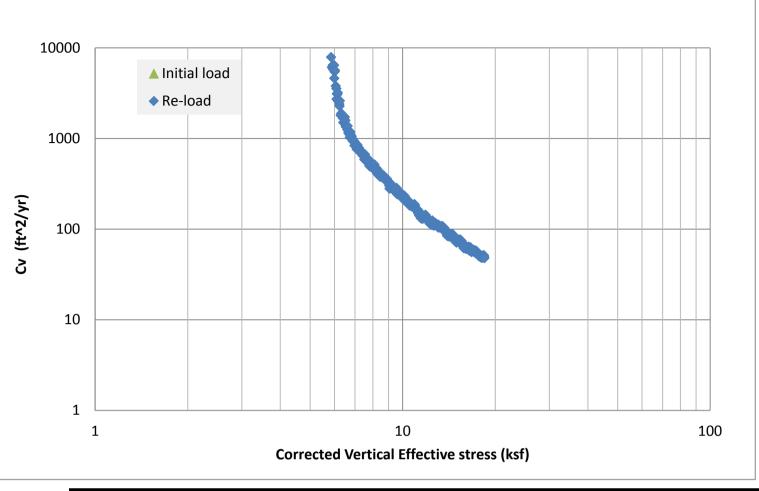
Initial Specimen Properties					
Height (mm)	25.35				
Diameter (mm)	72.95				
Volume (cm3)	105.95				
Moist mass (g)	200				
Moist density, p (g/cm3)	1.888				
Total unit weight (pcf)	117.8				
Gs (assumed)	2.68				
Void Ratio e	0.901				
Saturation	100.9				

Stresses(ksf)Estimated vertical field effective2.6Maximum past (Pacheco Silva)6.2Maximum past (Work method)6.2

Disturbance	
Δe / eo (%)	4.7
Sample quality (Lunne, 1997)	Good to Fair

Project: NRLF 4	Test: CRS2 at 26 ft
Location: Richmond, California	
Project Number:	
Void ratio v. log (vertical effective stress)	Figure: 2.2

Corrected Vertical Effective Stress (ksf)

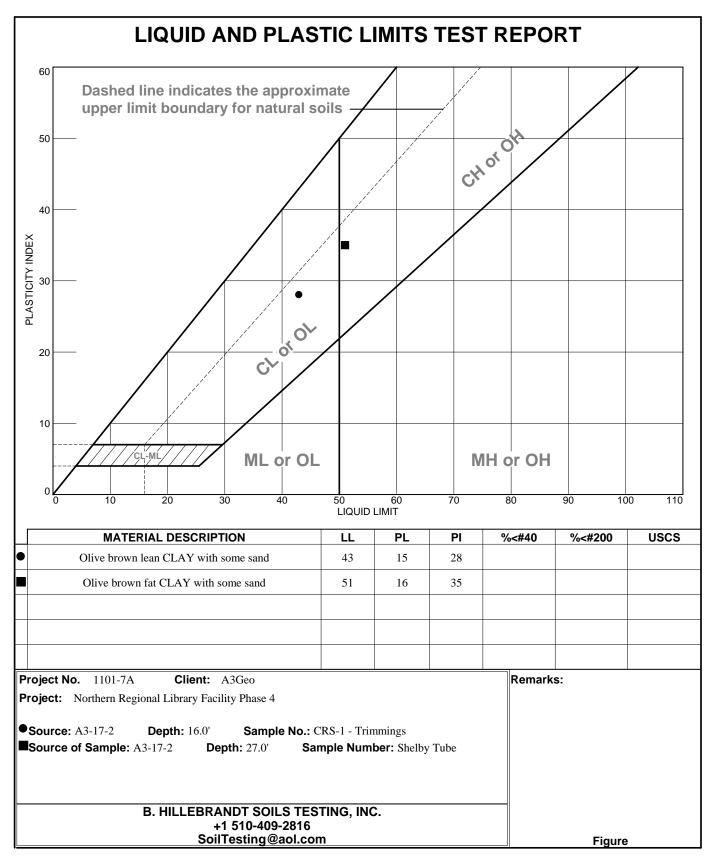

Specimen	Depth	W.C.	Atterberg Limits		Fines content			
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	26.7	33.9					stiff sandy clay	

Initial Specimen Properties					
Height (mm)	25.35				
Diameter (mm)	72.95				
Volume (cm3)	105.95				
Moist mass (g)	200				
Moist density, ρ (g/cm3)	1.888				
Total unit weight (pcf)	117.8				
Gs (assumed)	2.68				
Void Ratio e	0.901				
Saturation	100.9				

Stresses	(ksf)
Estimated vertical field effective	2.6
Maximum past (Pacheco Silva)	6.2
Maximum past (Work method)	6.2

Disturbance	
Δe/eo (%)	4.7
Sample quality (Lunne, 1997)	Good to Fair

Project: NRLF 4	Test: CRS2 at 26 ft			
Location: Richmond, California				
Project Number:				
Cumulative work v. vertical effective stress (Becker Method)	Figure: 2.3			


Specimen	Depth	W.C.	Atterberg Limits		Fines content			
	(ft)	(%)	LL	PL	PI	(%)	Description	USCS
	26.7	33.9					stiff sandy clay	

Initial Specimen Properties					
Height (mm)	25.35				
Diameter (mm)	72.95				
Volume (cm3)	105.95				
Moist mass (g)	200				
Moist density, ρ (g/cm3)	1.888				
Total unit weight (pcf)	117.8				
Gs (assumed)	2.68				
Void Ratio e	0.901				
Saturation	100.9				

Stresses	(ksf)
Estimated vertical field effective	2.6
Maximum past (Pacheco Silva)	6.2
Maximum past (Work method)	6.2

Disturbance	
Δe / eo (%)	4.7
Sample quality (Lunne, 1997)	Good to Fair

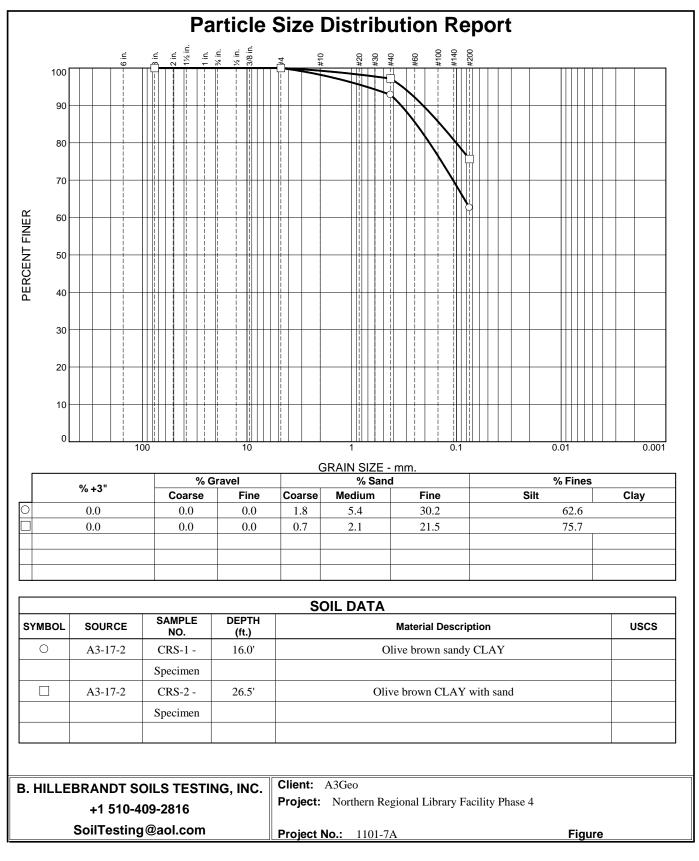
Project: NRLF 4	Test: CRS2 at 26 ft
Location: Richmond, California	
Project Number:	
Coeff.of Consol v. log(effective stress)	Figure: 2.4

Tested By: BH

LIQUID AND PLASTIC LIMIT TEST DATA

roject Numb ocation: A3- epth: 16.0'	er: 1101-7A 17-2 ription: Olive I	.ibrary Facility Pha brown lean CLAY	Samp with some sand	e Number: CRS-	1 - Trimmings	
			Liquid Limit Da	ata		
Run No.	1	2	3	4	5	6
Vet+Tare	24.16	29.03	25.22			
Dry+Tare	20.37	23.78	20.96			
Tare # Blows	11.05	11.27	11.30			
# Blows Moisture	<u>33</u> 40.7	28 42.0	20 44.1			
42.6 42.2 41.8 41.4 41 40.6 40.2 5		20 20 20 20 20 20 20 20 20 20 20 20 20 2	Plastic Limit Da	ata		
		1	1			
Run No.	1 17 70	2	3	4		
Vet+Tare Dry+Tare	<u>17.72</u> 16.88	17.31 16.47				
T	11.27	11.07				
Tare	· · · · · /	11.07				

B. Hillebrandt Soils Testing, Inc.


12/28/2017

LIQUID AND PLASTIC LIMIT TEST DATA

12/28/2017

			Liquid Limit Da	ta		
Run No.	1	2	3	4	5	6
Vet+Tare Dry+Tare	28.47 22.82	27.74 22.21	26.73 21.38			
Tare	11.30	11.21	11.26			
# Blows	32	26	18			
Moisture	49.0	50.3	52.9			
53.5			· · · · · · · · · · · · · · · · · · ·			- 1
53					Liquid Li	
		3			Plastic Li	
52.5					Plasticity Ind	lex=
52						
51.5						
51						
		N				
50.5			2			
50						
49.5						
49						
48.5						
5 6	7 8 9 10	Blows 20 2	5 30 40			
			Plastic Limit Da			
Run No.	1	2	3	4		
et+Tare	<u>17.91</u> 16.95	17.25 16.44				
	10.95	11.33				
ry+Tare Tare	11.23					

_____ B. Hillebrandt Soils Testing, Inc. _____

Tested By: BH

GRAIN SIZE DISTRIBUTION TEST DATA

Client: A3Geo Project: Northern Regional Library Facility Phase 4 Project Number: 1101-7A Location: A3-17-2 Depth: 16.0' Material Description: Olive brown sandy CLAY Tested by: BH

Sample Number: CRS-1 - Specimen

			Sieve	e Test Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer		
195.90	34.30	0.00	3"	0.00	100.0		
			#4	0.00	100.0		
			#40	11.56	92.8		
			#200	60.41	62.6		
			Fractiona	al Components	s		

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	1.8	5.4	30.2	37.4			62.6

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D95
								0.1811	0.2420	0.3380	0.7245

Fineness Modulus 0.46 12/28/2017

GRAIN SIZE DISTRIBUTION TEST DATA

Client: A3Geo Project: Northern Regional Library Facility Phase 4 Project Number: 1101-7A Location: A3-17-2 Depth: 26.5' Material Description: Olive brown CLAY with sand Tested by: BH

Sample Number: CRS-2 - Specimen

			Sieve	e Test Data					
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer				
181.90	33.50	0.00	3"	0.00	100.0				
			#4	0.00	100.0				
			#40	4.19	97.2				
			#200	36.12	75.7				
	Fractional Components								

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.7	2.1	21.5	24.3			75.7

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
								0.1006	0.1427	0.2088	0.3292

Fineness Modulus 0.24

B. Hillebrandt Soils Testing, Inc.

12/28/2017

APPENDIX E

Environmental Analytical Data Reports (This Study)

Enthalpy Analytical

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 294805 ANALYTICAL REPORT

A3GEO Inc. Project : 1101-17A Location : NRLF Phase 4 Level : II

Sample ID	<u>Lab ID</u>
A3-17-1-15	294805-001
A3-17-1-40	294805-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Will fice

Signature:

Will Rice Project Manager will.rice@enthalpy.com (510) 204-2221 Ext 13102

CA ELAP# 2896, NELAP# 4044-001

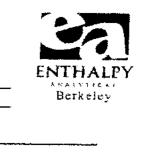
Date: <u>12/14/2017</u>

CASE NARRATIVE

Laboratory number:294805Client:A3GEO Inc.Project:1101-17ALocation:NRLF Phase 4Request Date:11/27/17Samples Received:11/27/17

This data package contains sample and QC results for two soil samples, requested for the above referenced project on 11/27/17. The samples were received cold and intact.

Volatile Organics by GC/MS (EPA 8260B):


No analytical problems were encountered.

7.0

	Page 1 of 1 Chain of Custody # ANALYTICAL REQUEST	مرین می الح میرین می الح الح الح الح الح الح الح الح الح الح	5 4 0788	19 ha 20			RECEIVED BY: DATE/1-27 TIME: 1705 DATE: 11.27 TIME: 17:20 DATE: TIME: 17:20
CHAIN OF CUSTODY	C&T LOGIN # 294 905	0) 486-0900 0) 486-0900 0) 486-0532 Pipler Circ Anco	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LING MATRIX Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Matrix Collected Collected Matrix Collected Col	1 1		Eric Arico Date: 11-27TIME: 5:05 Date: 12-7TIME: 1720 Date: TIME: 1720
	Formerly Curris & Tompkins Labs	2323 Fifth Street Berkeley, CA 94710 Project No: 1/0/- 17A Project Name: NR1 5 Dh 11	Project P. O. No: Richmond, CA EDD Format: Report Level II III N Turnoround Time: Rush M standard	Lab Sample ID. SAMP No. Date Collected	A3-17-1-15 A1 11 27/17 10 A3-17-1-40 11 27/17 B		Notes: SAMPLE RECEIPT RECEIPT Intact Cold On tce

14 A

COOLER RECEIPT CHECKLIST

Login # 294805 Date Received 1/27/17 Number of coc	lers ENTHAI
Client A3620 Project NRLF Phase 4	
Date Opened <u>11/27/17</u> By (print) <u>44</u> (sign)	and a
Date Logged in By (print) (sign) Date Labelled By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
2A. Were custody seals present? □ YES (circle) on cooler How many Name	Diste -
2B. Were custody seals intact upon arrival?	VEC NO DO
J. Wele custody babers dry and infact when received?	VES NO
4. were custody papers filled out properly (ink, signed, etc)?	YES NO
5. Is the project identifiable from custody papers? (If so fill out top or 6. Indicate the packing in cooler: (if other, describe)	f form)YES NO
☐ Bubble Wrap ☐ Foam blocks ⊠ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation: * Notify PM if temperature exce	□ None □ Paper towels eds 6°C
Type of ice used: 🔿 Wet 📋 Blue/Gel 🗌 None T	
Temperature blank(s) included? Thermometer#	_ 🕅 IR Gun#_ 🖟
Samples received on ice directly from the field. Cooling proceeding	1
8. Were Method 5035 sampling containers present?	VE NO
9. Did all bottles arrive unbroken/unopened?	YES NO
10. Are there any missing / extra samples?	VES KIN
11. Are samples in the appropriate containers for indicated tests?	VES NO
12. Are sample labels present, in good condition and complete?13. Do the sample labels agree with custody papers?	
14. Was sufficient amount of sample sent for tests requested?	YES NO YES NO
 14. Was sufficient amount of sample sent for tests requested?	VES NO KON
16. Did you check preservatives for all bottles for each sample?	YES NO 1974
17. Did you document your preservative check? (pH strin lot#	IVES NO KIL
18. Did you change the hold time in LIMS for unpreserved VOAs?	YES NO KA
19. Did you change the hold time in LIMS for preserved terracores?	YFR NO N/A
20. Are bubbles > 6mm absent in VOA samples?	YES NO 🖾
21. was the chemicontacted concerning this sample delivery?	YES NO
If TLS, who was called? By	Date:
COMMENTS	·····

4 of 13

Detections Summary for 294805

Results for any subcontracted analyses are not included in this summary.

Client : A3GEO Inc. Project : 1101-17A Location : NRLF Phase 4		
Client Sample ID : A3-17-1-15	Laboratory Sample ID :	294805-001
No Detections		
Client Sample ID : A3-17-1-40	Laboratory Sample ID :	294805-002
No Detections		

Purgeable Organics by GC/MS					
Lab #:	294805	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 5035		
Project#:	1101-17A	Analysis:	EPA 8260B		
Field ID:	A3-17-1-15	Diln Fac:	0.7042		
Lab ID:	294805-001	Batch#:	254213		
Matrix:	Soil	Sampled:	11/27/17		
Units:	ug/Kg	Received:	11/27/17		
Basis:	as received	Analyzed:	11/30/17		

Analyte	Result	RL	
Freon 12	ND	7.0	
Chloromethane	ND	7.0	
Vinyl Chloride	ND	7.0	
Bromomethane	ND	7.0	
Chloroethane	ND	7.0	
Trichlorofluoromethane	ND	3.5	
Acetone	ND	14	
Freon 113	ND	3.5	
1,1-Dichloroethene	ND	3.5	
Methylene Chloride	ND	14	
Carbon Disulfide	ND	3.5	
MTBE	ND	3.5	
trans-1,2-Dichloroethene	ND	3.5	
Vinyl Acetate	ND	35	
1,1-Dichloroethane	ND	3.5	
2-Butanone	ND	7.0	
cis-1,2-Dichloroethene	ND	3.5	
2,2-Dichloropropane	ND	3.5	
Chloroform	ND	3.5	
Bromochloromethane	ND	3.5	
1,1,1-Trichloroethane	ND	3.5	
1,1-Dichloropropene	ND	3.5	
Carbon Tetrachloride	ND	3.5	
1,2-Dichloroethane	ND	3.5	
Benzene	ND	3.5	
Trichloroethene	ND	3.5	
1,2-Dichloropropane	ND	3.5	
Bromodichloromethane	ND	3.5	
Dibromomethane	ND	3.5	
4-Methyl-2-Pentanone	ND	7.0	
cis-1,3-Dichloropropene	ND	3.5	
Toluene	ND	3.5	
trans-1,3-Dichloropropene	ND	3.5	
1,1,2-Trichloroethane	ND	3.5	
2-Hexanone	ND	7.0	
1,3-Dichloropropane	ND	3.5	
Tetrachloroethene	ND	3.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	294805	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	A3-17-1-15	Diln Fac:	0.7042	
Lab ID:	294805-001	Batch#:	254213	
Matrix:	Soil	Sampled:	11/27/17	
Units:	ug/Kg	Received:	11/27/17	
Basis:	as received	Analyzed:	11/30/17	

Analyte	Result	RL	
Dibromochloromethane	ND	3.5	
1,2-Dibromoethane	ND	3.5	
Chlorobenzene	ND	3.5	
1,1,1,2-Tetrachloroethane	ND	3.5	
Ethylbenzene	ND	3.5	
m,p-Xylenes	ND	3.5	
o-Xylene	ND	3.5	
Styrene	ND	3.5	
Bromoform	ND	3.5	
Isopropylbenzene	ND	3.5	
1,1,2,2-Tetrachloroethane	ND	3.5	
1,2,3-Trichloropropane	ND	3.5	
Propylbenzene	ND	3.5	
Bromobenzene	ND	3.5	
1,3,5-Trimethylbenzene	ND	3.5	
2-Chlorotoluene	ND	3.5	
4-Chlorotoluene	ND	3.5	
tert-Butylbenzene	ND	3.5	
1,2,4-Trimethylbenzene	ND	3.5	
sec-Butylbenzene	ND	3.5	
para-Isopropyl Toluene	ND	3.5	
1,3-Dichlorobenzene	ND	3.5	
1,4-Dichlorobenzene	ND	3.5	
n-Butylbenzene	ND	3.5	
1,2-Dichlorobenzene	ND	3.5	
1,2-Dibromo-3-Chloropropane	ND	3.5	
1,2,4-Trichlorobenzene	ND	3.5	
Hexachlorobutadiene	ND	3.5	
Naphthalene	ND	3.5	
1,2,3-Trichlorobenzene	ND	3.5	

Surrogate %F	REC	Limits
Dibromofluoromethane 100	0	76-132
1,2-Dichloroethane-d4 94		74-149
Toluene-d8 100	0	80-120
Bromofluorobenzene 107	7	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	294805	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	A3-17-1-40	Diln Fac:	0.7257	
Lab ID:	294805-002	Batch#:	254213	
Matrix:	Soil	Sampled:	11/27/17	
Units:	ug/Kg	Received:	11/27/17	
Basis:	as received	Analyzed:	11/30/17	

Analyte	Result	RL	
Freon 12	ND	7.3	
Chloromethane	ND	7.3	
Vinyl Chloride	ND	7.3	
Bromomethane	ND	7.3	
Chloroethane	ND	7.3	
Trichlorofluoromethane	ND	3.6	
Acetone	ND	15	
Freon 113	ND	3.6	
1,1-Dichloroethene	ND	3.6	
Methylene Chloride	ND	15	
Carbon Disulfide	ND	3.6	
MTBE	ND	3.6	
trans-1,2-Dichloroethene	ND	3.6	
Vinyl Acetate	ND	36	
1,1-Dichloroethane	ND	3.6	
2-Butanone	ND	7.3	
cis-1,2-Dichloroethene	ND	3.6	
2,2-Dichloropropane	ND	3.6	
Chloroform	ND	3.6	
Bromochloromethane	ND	3.6	
1,1,1-Trichloroethane	ND	3.6	
1,1-Dichloropropene	ND	3.6	
Carbon Tetrachloride	ND	3.6	
1,2-Dichloroethane	ND	3.6	
Benzene	ND	3.6	
Trichloroethene	ND	3.6	
1,2-Dichloropropane	ND	3.6	
Bromodichloromethane	ND	3.6	
Dibromomethane	ND	3.6	
4-Methyl-2-Pentanone	ND	7.3	
cis-1,3-Dichloropropene	ND	3.6	
Toluene	ND	3.6	
trans-1,3-Dichloropropene	ND	3.6	
1,1,2-Trichloroethane	ND	3.6	
2-Hexanone	ND	7.3	
1,3-Dichloropropane	ND	3.6	
Tetrachloroethene	ND	3.6	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Orga	anics by GC/MS	
Lab #:	294805	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 5035
Project#:	1101-17A	Analysis:	EPA 8260B
Field ID:	A3-17-1-40	Diln Fac:	0.7257
Lab ID:	294805-002	Batch#:	254213
Matrix:	Soil	Sampled:	11/27/17
Units:	ug/Kg	Received:	11/27/17
Basis:	as received	Analyzed:	11/30/17

Analyte	Result	RL	
Dibromochloromethane	ND	3.6	
1,2-Dibromoethane	ND	3.6	
Chlorobenzene	ND	3.6	
1,1,1,2-Tetrachloroethane	ND	3.6	
Ethylbenzene	ND	3.6	
m,p-Xylenes	ND	3.6	
o-Xylene	ND	3.6	
Styrene	ND	3.6	
Bromoform	ND	3.6	
Isopropylbenzene	ND	3.6	
1,1,2,2-Tetrachloroethane	ND	3.6	
1,2,3-Trichloropropane	ND	3.6	
Propylbenzene	ND	3.6	
Bromobenzene	ND	3.6	
1,3,5-Trimethylbenzene	ND	3.6	
2-Chlorotoluene	ND	3.6	
4-Chlorotoluene	ND	3.6	
tert-Butylbenzene	ND	3.6	
1,2,4-Trimethylbenzene	ND	3.6	
sec-Butylbenzene	ND	3.6	
para-Isopropyl Toluene	ND	3.6	
1,3-Dichlorobenzene	ND	3.6	
1,4-Dichlorobenzene	ND	3.6	
n-Butylbenzene	ND	3.6	
1,2-Dichlorobenzene	ND	3.6	
1,2-Dibromo-3-Chloropropane	ND	3.6	
1,2,4-Trichlorobenzene	ND	3.6	
Hexachlorobutadiene	ND	3.6	
Naphthalene	ND	3.6	
1,2,3-Trichlorobenzene	ND	3.6	

Surrogate	%REC	Limits
Dibromofluoromethane 1	108	76-132
1,2-Dichloroethane-d4 1	103	74-149
Toluene-d8 1	100	80-120
Bromofluorobenzene 9	97	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	294805	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Matrix:	Soil	Batch#:	254213	
Units:	ug/Kg	Analyzed:	11/30/17	
Diln Fac:	1.000			

Type:

BS

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	25.27	101	68-132
Benzene	25.00	23.95	96	75-123
Trichloroethene	25.00	22.95	92	75-120
Toluene	25.00	22.98	92	76-120
Chlorobenzene	25.00	23.45	94	80-120

Lab ID: QC910924

Surrogate	%REC	Limits	
Dibromofluoromethane	103	76-132	
1,2-Dichloroethane-d4	94	74-149	
Toluene-d8	99	80-120	
Bromofluorobenzene	98	78-134	

Type:

BSD

Lab ID:

QC910925

Analyte	Spiked	Result	%REC	Limits	RPI) Lim
1,1-Dichloroethene	25.00	24.79	99	68-132	2	28
Benzene	25.00	24.04	96	75-123	0	25
Trichloroethene	25.00	22.38	90	75-120	3	23
Toluene	25.00	22.73	91	76-120	1	24
Chlorobenzene	25.00	23.41	94	80-120	0	21

Surrogate	%REC	Limits
Dibromofluoromethane	102	76-132
1,2-Dichloroethane-d4	93	74-149
Toluene-d8	99	80-120
Bromofluorobenzene	101	78-134

Purgeable Organics by GC/MS						
Lab #:	294805	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5035			
Project#:	1101-17A	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC910926	Batch#:	254213			
Matrix:	Soil	Analyzed:	11/30/17			
Units:	ug/Kg					

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	294805	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5035			
Project#:	1101-17A	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC910926	Batch#:	254213			
Matrix:	Soil	Analyzed:	11/30/17			
Units:	ug/Kg					

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	100	76-132
1,2-Dichloroethane-d4	91	74-149
Toluene-d8	100	80-120
Bromofluorobenzene	105	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	294805	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5030B			
Project#:	1101-17A	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZ	Batch#:	254213			
MSS Lab ID:	294953-001	Sampled:	11/30/17			
Matrix:	Miscell.	Received:	11/30/17			
Units:	ug/Kg	Analyzed:	12/01/17			
Basis:	as received					

Туре:	MS	Diln Fac:	0.9823
Lab ID:	QC911050		

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.5664	49.12	60.87	124	64-131
Benzene	<0.5054	49.12	52.97	108	66-122
Trichloroethene	<0.6108	49.12	51.16	104	57-133
Toluene	<0.5432	49.12	48.36	98	61-120
Chlorobenzene	<0.3408	49.12	44.45	91	56-120

Surrogate	%REC	Limits
Dibromofluoromethane	113	76-132
1,2-Dichloroethane-d4	104	74-149
Toluene-d8	98	80-120
Bromofluorobenzene	101	78-134

Type:	MSD	Diln Fac:	0.9560
Lab ID:	QC911051		

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	47.80	53.40	112	64-131	10	32
Benzene	47.80	48.27	101	66-122	7	32
Trichloroethene	47.80	46.30	97	57-133	7	34
Toluene	47.80	44.01	92	61-120	7	32
Chlorobenzene	47.80	41.16	86	56-120	5	33

Surrogate	%REC	Limits
Dibromofluoromethane	108	76-132
1,2-Dichloroethane-d4	98	74-149
Toluene-d8	98	80-120
Bromofluorobenzene	101	78-134

Enthalpy Analytical

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 294849 ANALYTICAL REPORT

	: 1101-17A : NRLF Phase 4 : II

<u>Sample ID</u>	<u>Lab ID</u>
IDW-A3-17-1-SOILD	294849-001
IDW-A3-17-1-LIQUID	294849-002
A3-17-2-15	294849-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Will fice

Signature:

Will Rice Project Manager will.rice@enthalpy.com (510) 204-2221 Ext 13102

CA ELAP# 2896, NELAP# 4044-001

Date: <u>12/13/2017</u>

CASE NARRATIVE

Laboratory number:	294849
Client:	A3GEO Inc.
Project:	1101-17A
Location:	NRLF Phase 4
Request Date:	11/28/17
Samples Received:	11/28/17

This data package contains sample and QC results for two soil samples and one water sample, requested for the above referenced project on 11/28/17. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Soil:

Matrix spikes were not performed for this analysis in batch 254261 due to limited sample volume or interferences from the solvent in sample dilutions. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Miscell .:

Low recoveries were observed for isopropyl ether (DIPE) in the MS/MSD for batch 254470; the parent sample was not a project sample, and the associated RPD was within limits. No other analytical problems were encountered.

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM) Water:

IDW-A3-17-1-LIQUID (lab # 294849-002) was diluted due to high non-target analytes. No other analytical problems were encountered.

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM) Soil:

No analytical problems were encountered.

PCBs (EPA 8082) Water:

All samples underwent sulfuric acid cleanup using EPA Method 3665A. All samples underwent sulfur cleanup using the copper option in EPA Method 3660B. No analytical problems were encountered.

PCBs (EPA 8082) Soil:

All samples underwent sulfuric acid cleanup using EPA Method 3665A. All samples underwent sulfur cleanup using the copper option in EPA Method 3660B. Matrix spikes were not performed for this analysis in batch 254593 due to insufficient sample amount. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A) Soil:

No analytical problems were encountered.

Page 1 of 2

CASE NARRATIVE

Laboratory number:294849Client:A3GEO Inc.Project:1101-17ALocation:NRLF Phase 4Request Date:11/28/17Samples Received:11/28/17

Metals (EPA 6010B and EPA 7471A) Miscell .:

No analytical problems were encountered.

	Page 1 of 1 Chain of Custody # ANALYTICAL REQUEST	52207 52207 MI HLALL	<u>ک</u> ا	092 900 4092 4092	19	م ج عریہ ال ب ال ب ال ب ال ب ال ب ال ب ال ب ال ب	X				RECEIVED BY: C. J. M. DATE (-Zhime: / 52) DATE: 11-75 TIME: 17:24 DATE: TIME: 17:24
CHAIN OF CUSTODY	Formerly Curtis & Tompkins Labs	0) 486-0900 0) 486-0532	Phase 4 Report To: Laura Buchrynavy m Iond, CA Company: A36-E0	Xinnand Email: Laura & 3960, Com	CHEMICAL	Date Time Date Time None Collected Collected Collected Soliid	X	$\frac{1}{A^{3}-1^{2}-2} - 15$			SAMPLE RELINGUISHED BY: RECEIPT Receipt Intact Er/c Ar/c Intact L/c Date: II-19 time: 15 30 Cold Cold Date: II-28 time! 72 41 Ambient Date: II-28 time! 72 41
	Former	2323 Fifth Street Berkeley, CA 94710 Project No: 1/0/-	Project Name: NRLF Project P. O. No: Richm EDD format		qo	, N	H	A3			Notes:

COOLER RECE	IPT CHECKLIST					
Client <u>A3GEO</u>		Project		olers_\	ENTHALPY Berkeley	/
Date Opened <u>11/25</u> Date Logged in	$\frac{2}{3}$ (7 By (print) By (print)	<u> </u>	(sign) (sign)	7-7		
Date Labelled	By (print)	ÉAL	(sign)		······································	
1. Did cooler come Shipping inf	with a shipping slip) (airbill, etc)		YES	10 A	
2A. Were custody set How many	eals present? [∃YES (circle) Name	on cooler	Data		
2B. Were custody se 3. Were custody pap	THE DOMESTIC PROPERTY OF THE SERVER	Val7		VEC		
4. were castody pap	ers filled out prope	riy (ink. signed.	etc)?	OF ES	NO	
 Is the project iden Indicate the packing 	itifiable from custo	dy papers? (If so	o fill out top o	f form) VPS	NO	
Cloth mater 7. Temperature docu	np [] Foam bl ial [] Cardboa mentation: *]	urd ´⊓S	tyrofoam	□None □Paper tow eds 6°C	vels	
	d: Wet				, Z	
🔲 Temperature	blank(s) included?) 🔲 Thermomet	ter#_	д IR Gun#	4-	
	eived on ice directly				<u> </u>	
8. Were Method 503 If YES, what	5 sampling contain- time were they tran	ers present?sferred to freeze	r? 15 17	(E	D W Cs	
9. Did all bottles arriv	e unbroken/unoper	ned?		X	ÊS NO	
10. Are there any mis 11. Are samples in th	sing / extra samples	87		<u>\</u>	es no	
12. Are sample labels	Present in good or	mers for maicat	ed tests?		RS NO	
13. Do the sample lab	els arree with cust	nunson and con viv nanere?	inpiete?	¥	NO NO	
14. Was sufficient am	ount of sample sen	t for tests reques	ted?			
BAre the samples a	our of bumple sent	r ior reats reques ved?		YES X		
16. Did you check pre	servatives for all be	offles for each s	imple?			
17. Did you document	t your preservative	check? (nH stri	n lot# «>BDU	$\frac{1971}{1971}$		
18. Did you change th	e hold time in LIM	S for unpreserve	ed VOAs?	YES N	10 IVA 10 X178	
19. Did you change th	e hold time in LIM	S for preserved	terracores?	YES N		
20. Are bubbles $> 6 \text{m}$	n absent in VOA se	mules?		VER N		
21. Was the client con	tacted concerning t	his sample deliv	erv?		S XO	
If YES, Who w	vas called?	By_		Date:		
	HNO3 1203 a	ideled to mal			2 @ 18:05 On	
					ky	ENj
					<u> </u>	
				<u></u>		
				··· ·		

Rev 14, 8/01/17

5 of 52

Enthalpy Sample Preservation for 294849

<u>Sample</u>	pH:	<2	>9	>12	Other
-002a	-	[]	[]	[]	
b		[]	[]	[]	
С		[]	[]	[]	
d		[义]	[]	[]	
e		[]	[]	[]	
f		[]	[]	[]	
d		[] [×] [] []	[] [] [] []	[] [] [] []	

Analyst: $\mathcal{C}_{1/2}$ Date: $\underline{1/2s}$ Page 1 of 1

Detections Summary for 294849

Results for any subcontracted analyses are not included in this summary.

Client : A3GEO Inc. Project : 1101-17A Location : NRLF Phase 4

Client Sample ID : IDW-A3-17-1-SOILD Laboratory Sample ID : 294849-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	1.3	Y	1.0	mg/Kg	As Recd	1.000	EPA 8015B	EPA 3550C
Arsenic	9.5		1.5	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Barium	200		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Beryllium	0.48		0.10	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Cadmium	0.38		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Chromium	49		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Cobalt	19		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Copper	25		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Lead	7.6		1.0	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Mercury	0.10		0.017	mg/Kg	As Recd	1.000	EPA 7471A	METHOD
Molybdenum	0.72		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Nickel	59		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Vanadium	43		0.25	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Zinc	48		1.0	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B

Client Sample ID : IDW-A3-17-1-LIQUID Laboratory Sample ID : 294849-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Arsenic	2.1		0.65	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Barium	48		0.27	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Beryllium	0.16		0.11	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Chromium	22		0.27	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Cobalt	4.3		0.27	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Copper	6.0		0.27	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Lead	2.0		0.54	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Mercury	0.020		0.018	mg/Kg	As Recd	1.000	EPA 7471A	METHOD
Molybdenum	0.30		0.27	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Nickel	28		0.27	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Vanadium	13		0.27	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Zinc	12		1.1	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B

Client Sample ID : A3-17-2-15 Laboratory Sample ID : 294849-003

No Detections

Y = Sample exhibits chromatographic pattern which does not resemble standard Page 1 of 1 44.0

		Total	Volatil	.e Hydrocar	bons	
Lab #:	294849			Location:	NRLF Phase 4	
Client:	A3GEO Inc.			Prep:	EPA 5030B	
Project#:	1101-17A			Analysis:	EPA 8015B	
Field ID:	IDW-A3-17-1-	SOILD		Diln Fac:	1.000	
Matrix:	Soil			Batch#:	254183	
Units:	mg/Kg			Sampled:	11/28/17	
Basis:	as received			Received:	11/28/17	
Type: Lab ID:	SAMPLE 294849-001			Analyzed:	11/30/17	
	Analyte		Regult		RT.	
Gasoline (Analyte	NI	Result		RL 1 1	
Gasoline (———————————————————————————————————————	NI			RL 1.1	
Gasoline (———————————————————————————————————————	NI %REC				
	C7-C12)			
Bromofluor	C7-C12 Surrogate robenzene (FID)	%REC	Limits	Analyzed:	1.1	
Bromofluor Type:	C7-C12 Surrogate robenzene (FID) BLANK	%REC	Limits	Analyzed:		
Bromofluor	C7-C12 Surrogate robenzene (FID)	%REC	Limits	Analyzed:	1.1	
Bromofluor Type:	C7-C12 Surrogate robenzene (FID) BLANK	%REC	Limits	Analyzed:	1.1	
Bromofluor Type:	C7-C12 Surrogate robenzene (FID) BLANK QC910797 Analyte	%REC	Limits 65-136 Result	Analyzed:	1.1	
Bromofluon Type: Lab ID:	C7-C12 Surrogate robenzene (FID) BLANK QC910797 Analyte	%REC 88	Limits 65-136 Result	Analyzed:	1.1 11/29/17 RL	
Bromofluor Type: Lab ID: Gasoline (C7-C12 Surrogate robenzene (FID) BLANK QC910797 Analyte	%REC 88	Limits 65-136 Result	Analyzed:	1.1 11/29/17 RL	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	_				
	То	tal Volatile	e Hydrocarbo	ons	
Lab #:	294849		Location:	NRLF Phase 4	
Client:	A3GEO Inc.		Prep:	EPA 5030B	
Project#:	1101-17A		Analysis:	EPA 8015B	
Type:	LCS		Diln Fac:	1.000	
Lab ID:	QC910792		Batch#:	254183	
Matrix:	Soil		Analyzed:	11/29/17	
Units:	mg/Kg				
Ar	nalyte	Spiked	Res	sult %REC Limits	

Gasoline C7-C12		1.000	1.074	107	80-121
Surrogate	%REC	Limits			

Bromofluorobenzene (FID) 107 65-136

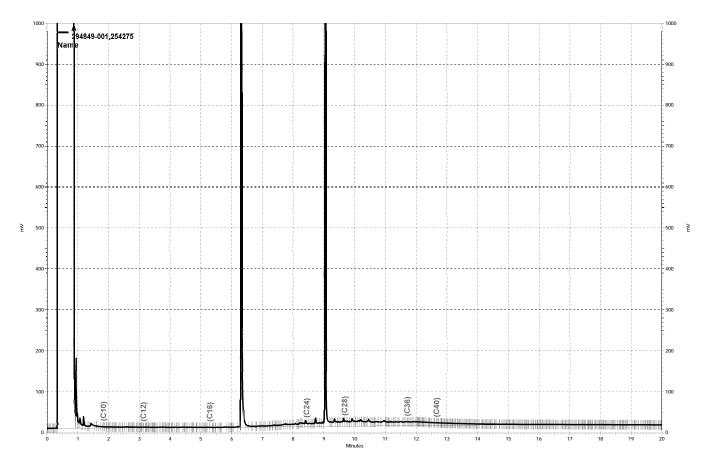
	Total	Volatile Hydrocarbo	ons	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5030B	
Project#:	1101-17A	Analysis:	EPA 8015B	
Field ID:	ZZZZZZZZZZ	Diln Fac:	1.000	
MSS Lab ID:	294890-001	Batch#:	254183	
Matrix:	Soil	Sampled:	11/27/17	
Units:	mg/Kg	Received:	11/29/17	
Basis:	as received	Analyzed:	11/29/17	

Туре:	MS			Lab ID:	QC91	0795		
1	Analyte	MSS Re	sult	Spike	d	Result	%REC	Limits
Gasoline C	7-C12		0.2195	9.	434	6.462	66	52-120
2	Surrogate	%REC	Limits					
Bromofluoro	obenzene (FID)	84	65-136					
Туре:	MSD			Lab ID:	0091	0796		
TYPC:					QCJI	0790		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline C	7-C12		9.34	б	5.318	55	52-120	19 25
2	Surrogate	%REC	Limits					

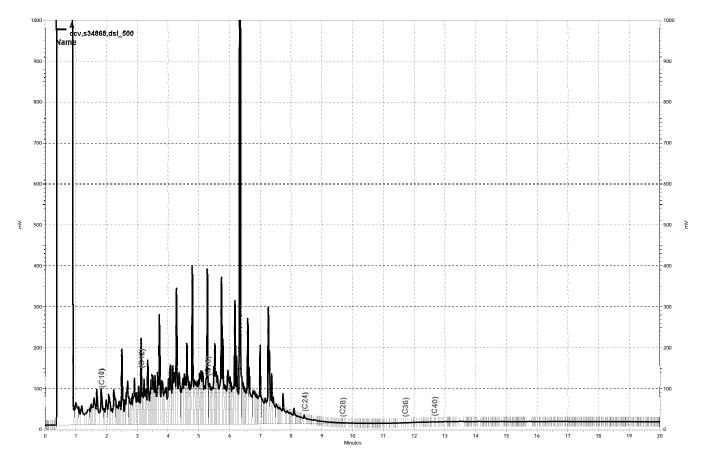
Bromofluorobenzene (FID) 85 65-136

		Total I	Extracta	ble Hydrod	arbons	
Lab #:	294849			Location:	NRLF Phase 4	
Client:	A3GEO Inc.			Prep:	EPA 3550C	
Project#:	1101-17A			Analysis:	EPA 8015B	
Field ID:	IDW-A3-17-1-	-SOILD		Batch#:	254275	
Matrix:	Soil			Sampled:	11/28/17	
Units:	mg/Kg			Received:	11/28/17	
Basis:	as received			Prepared:	12/01/17	
Diln Fac:	1.000			Analyzed:	12/04/17	
Туре:	SAMPLE			Lab ID:	294849-001	
	nalyte		Result		RL	
Diesel C10-C			1.3	Y	1.0	
Motor Oil C2	4-C36	NI)		5.0	
Su	rrogate	%REC	Limits			
o-Terphenyl		92	55-133			
Type:	BLANK			Lab ID:	QC911179	
A	nalyte		Result		RL	
Diesel C10-C	24	NI)		1.0	
Motor Oil C2	4-C36	NI)		5.0	
Su	rrogate	%REC	Limits			

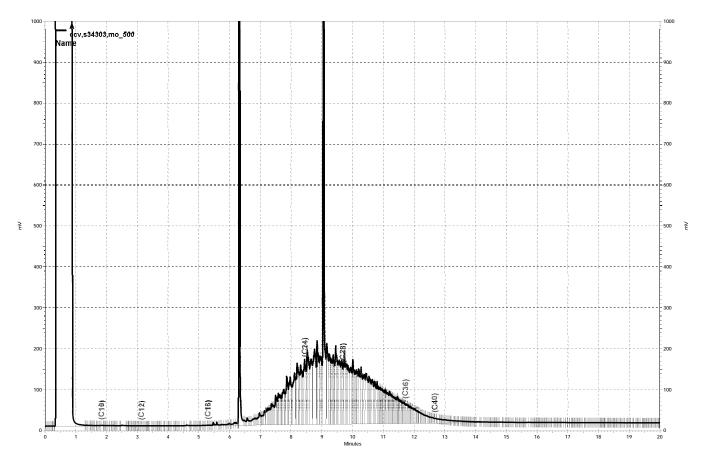
Total Extractable Hydrocarbons							
Lab #:	294849	Location:	NRLF Phase 4				
Client:	A3GEO Inc.	Prep:	EPA 3550C				
Project#:	1101-17A	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC911180	Batch#:	254275				
Matrix:	Soil	Prepared:	12/01/17				
Units:	mg/Kg	Analyzed:	12/04/17				


Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.99	49.53	99	51-137

Surrogate	%REC	Limits
o-Terphenyl	98	55-133



Total Extractable Hydrocarbons								
Lab #:	294849	Location:	NRLF Phase 4					
Client:	A3GEO Inc.	Prep:	EPA 3550C					
Project#:	1101-17A	Analysis:	EPA 8015B					
Field ID:	IDW-A3-17-1-SOILD	Batch#:	254275					
MSS Lab ID:	294849-001	Sampled:	11/28/17					
Matrix:	Soil	Received:	11/28/17					
Units:	mg/Kg	Prepared:	12/01/17					
Basis:	as received	Analyzed:	12/04/17					
Diln Fac:	1.000							


Type:	MS			Lab ID:	QC91	1181		
7	Analyte	MSS Res	ult	Spiked	i R	esult	%REC	Limits
Diesel Cl()-C24	1	.325	50.2	29	43.07	83	36-143
	Surrogate	%REC	Limits					
o-Terpheny	/1	85	55-133					
Type:	MSD			Lab ID:	QC91	1182		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Diesel C10	D-C24		50.26		48.70	94	36-143	12 55
	Surrogate	%REC	Limits					
o-Terpheny	/1	97	55-133					

-//kraken/gdrive/ezchrom/Projects/GC17a/Data/2017/338a011, A

-\\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\338a004, A

-\\kraken\gdrive\ezchrom\Projects\GC17a\Data\2017\338a005, A

	Purge	able Organics by GC/	MS	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	A3-17-2-15	Diln Fac:	0.7184	
Lab ID:	294849-003	Batch#:	254261	
Matrix:	Soil	Sampled:	11/28/17	
Units:	ug/Kg	Received:	11/28/17	
Basis:	as received	Analyzed:	12/01/17	

Analyte	Result	RL	
Freon 12	ND	7.2	
Chloromethane	ND	7.2	
Vinyl Chloride	ND	7.2	
Bromomethane	ND	7.2	
Chloroethane	ND	7.2	
Trichlorofluoromethane	ND	3.6	
Acetone	ND	14	
Freon 113	ND	3.6	
1,1-Dichloroethene	ND	3.6	
Methylene Chloride	ND	14	
Carbon Disulfide	ND	3.6	
MTBE	ND	3.6	
trans-1,2-Dichloroethene	ND	3.6	
Vinyl Acetate	ND	36	
1,1-Dichloroethane	ND	3.6	
2-Butanone	ND	7.2	
cis-1,2-Dichloroethene	ND	3.6	
2,2-Dichloropropane	ND	3.6	
Chloroform	ND	3.6	
Bromochloromethane	ND	3.6	
1,1,1-Trichloroethane	ND	3.6	
1,1-Dichloropropene	ND	3.6	
Carbon Tetrachloride	ND	3.6	
1,2-Dichloroethane	ND	3.6	
Benzene	ND	3.6	
Trichloroethene	ND	3.6	
1,2-Dichloropropane	ND	3.6	
Bromodichloromethane	ND	3.6	
Dibromomethane	ND	3.6	
4-Methyl-2-Pentanone	ND	7.2	
cis-1,3-Dichloropropene	ND	3.6	
Toluene	ND	3.6	
trans-1,3-Dichloropropene	ND	3.6	
1,1,2-Trichloroethane	ND	3.6	
2-Hexanone	ND	7.2	
1,3-Dichloropropane	ND	3.6	
Tetrachloroethene	ND	3.6	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgea	ble Organics by GC/	'MS	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	A3-17-2-15	Diln Fac:	0.7184	
Lab ID:	294849-003	Batch#:	254261	
Matrix:	Soil	Sampled:	11/28/17	
Units:	ug/Kg	Received:	11/28/17	
Basis:	as received	Analyzed:	12/01/17	

Analyte	Result	RL	
Dibromochloromethane	ND	3.6	
1,2-Dibromoethane	ND	3.6	
Chlorobenzene	ND	3.6	
1,1,1,2-Tetrachloroethane	ND	3.6	
Ethylbenzene	ND	3.6	
m,p-Xylenes	ND	3.6	
o-Xylene	ND	3.6	
Styrene	ND	3.6	
Bromoform	ND	3.6	
Isopropylbenzene	ND	3.6	
1,1,2,2-Tetrachloroethane	ND	3.6	
1,2,3-Trichloropropane	ND	3.6	
Propylbenzene	ND	3.6	
Bromobenzene	ND	3.6	
1,3,5-Trimethylbenzene	ND	3.6	
2-Chlorotoluene	ND	3.6	
4-Chlorotoluene	ND	3.6	
tert-Butylbenzene	ND	3.6	
1,2,4-Trimethylbenzene	ND	3.6	
sec-Butylbenzene	ND	3.6	
para-Isopropyl Toluene	ND	3.6	
1,3-Dichlorobenzene	ND	3.6	
1,4-Dichlorobenzene	ND	3.6	
n-Butylbenzene	ND	3.6	
1,2-Dichlorobenzene	ND	3.6	
1,2-Dibromo-3-Chloropropane	ND	3.6	
1,2,4-Trichlorobenzene	ND	3.6	
Hexachlorobutadiene	ND	3.6	
Naphthalene	ND	3.6	
1,2,3-Trichlorobenzene	ND	3.6	

Surrogate	%REC	Limits
Dibromofluoromethane 1	.06	76-132
1,2-Dichloroethane-d4 1	.09	74-149
Toluene-d8 9	95	80-120
Bromofluorobenzene 1	.04	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Organics by GC/MS					
Lab #:	294849	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5035			
Project#:	1101-17A	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC911106	Batch#:	254261			
Matrix:	Soil	Analyzed:	12/01/17			
Units:	ug/Kg					

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	294849	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 5035		
Project#:	1101-17A	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC911106	Batch#:	254261		
Matrix:	Soil	Analyzed:	12/01/17		
Units:	ug/Kg				

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane 1	_03	76-132
1,2-Dichloroethane-d4 1	L01	74-149
Toluene-d8 9	96	80-120
Bromofluorobenzene 1	05	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	294849	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5035			
Project#:	1101-17A	Analysis:	EPA 8260B			
Matrix:	Soil	Batch#:	254261			
Units:	ug/Kg	Analyzed:	12/01/17			
Diln Fac:	1.000					

Type:

BS

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	29.04	116	68-132
Benzene	25.00	22.96	92	75-123
Trichloroethene	25.00	23.01	92	75-120
Toluene	25.00	22.54	90	76-120
Chlorobenzene	25.00	22.86	91	80-120

Lab ID:

Surrogate	%REC	Limits	
Dibromofluoromethane	99	76-132	
1,2-Dichloroethane-d4	95	74-149	
Toluene-d8	99	80-120	
Bromofluorobenzene	101	78-134	

Type:

BSD

Lab ID:

QC911108

QC911107

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	32.08	128	68-132	10	28
Benzene	25.00	24.62	98	75-123	7	25
Trichloroethene	25.00	25.20	101	75-120	9	23
Toluene	25.00	24.18	97	76-120	7	24
Chlorobenzene	25.00	24.85	99	80-120	8	21

%REC	Limits	
101	76-132	
97	74-149	
100	80-120	
105	78-134	
	101 97 100	101 76-132 97 74-149 100 80-120

Lab B: 294849 Location: NRLF Phase 4 Client: AGRONTC. Pres: PR 50308 Project: 1101-17A Analysis: PR 850308 Lab D: 2944849-002 Batchi: PS 82608 Matrix: Miscell. Sampled: 11/28/17 Inits: ug/Kg Received: 11/28/17 Easter: as received Analyzed: 12/07/17 Intert-Butyl Alcohol (TBA) ND 9.6	Purgeable Organics by GC/MS				
project#: 1101-17A Analysis: EPA 8260B Tried ID: IWA3-1/1-LIQUID Diln Fac: 0.9579 Hab ID: 294849-002 Batch#: 254470 Watrix: Miscell. Sampled: 11/28/17 Watrix: Miscell. Sampled: 11/28/17 Watrix: Wiscell. ND 9.6 Chioromethame ND 9.6 Chioromethame ND 9.6 Ethyl tert-Butyl Ether (FTBE) ND 4.8 Winyl therewall ND 9.6 Chioromethame ND 4.8 Winyl tert-Butyl Ether (FTBE) ND 4.8 Wethyl tert-Amyl Ether (TAME) ND 4.8 Preconoll 3 ND 4.8 1.1-Dichloroethame ND 4.8 1.1-Dichloroethame <td< td=""><td>Lab #: 294849</td><td></td><td>Location:</td><td>NRLF Phase 4</td></td<>	Lab #: 294849		Location:	NRLF Phase 4	
Project#: 1101-17A Analysis: EPA 8260B Preid D: IWA3-17-1-LQUID Diln Fac: 0.9579 Lab ID: 234849-002 Batch#: 254470 Marrix: Miscell. Sampled: 11/28/17 Marrix: Miscell. Sampled: 11/28/17 Masis: MS Faceived Analyzed: 11/07/17 Analyze Result K K Freen ID: ND 9.6 Sampled: 11/07/17 Image: ND 9.6 Sampled: 12/07/17 Promomethane ND 9.6 Sampled: 110 Ethyl Chloride ND 9.6 Sampled: 110 Ethyl tert-Butyl Ether (TIME) ND 4.8 Sampled: 110 Promomethane ND 4.8 Sampled: 110 Sampled: 12 Promomethane ND 4.8 Sampled: 12 Sampled: 12 Promomethane ND 4.8 Sampled: 12 <td>Client: A3GEO Inc.</td> <td></td> <td>Prep:</td> <td>EPA 5030B</td>	Client: A3GEO Inc.		Prep:	EPA 5030B	
Field D: DW-A3-17-1-LQUID Diln Fac: 0.9579 Lab D: 29449-002 Batch#: 254470 Matrix: Miscell. Sampled: 11/28/17 mits: ug/Kg: Received: 11/28/17 Basis: as received Analyte Received: 11/28/17 Freen L: maiyzed: 12/07/17 Received: 11/28/17 Freen L: ND 96 State State Chioromethane ND 9.6 State State Chioromethane ND 9.6 State State Chiorothane ND 9.6 State State State Chiorothane ND 4.8 State State State State Chiorothane ND 4.8 State State State State State State State	Project#: 1101-17A				
Lab D1: 294849-002 Batchi: 25470 Matrix: Miscell. Sampled: 11/28/17 Datis: as received 11/28/17 Analyzed: 12/07/17 Analyzed: 12/07/07 Analyzed: 12/07/07 Analyzed: 12/07/07 Analyzed: 12/07/07 Analyzed:<		JID			
Matrix: Miscell. Sampled: 11/28/17 Basis: as received Analyzed: 12/07/17 Basis: as received Received: 11/28/17 Teron 12 Analyzed: 12/07/17 Teron 12 Analyzed: 12/07/17 Tert-Buryl Alcohol (TBA) ND 9.6 Chloromethane ND 9.6 Enomonethane ND 9.6 Enomonethane ND 9.6 Enomonethane ND 4.8 Premonethane ND 4.8 Trichlorofluoromethane ND 4.8 Acetone ND 4.8 Trichlorofluoromethane ND 4.8 Trichlorofluoroethane ND 4.8 trans-1,2-Dichloroethane ND 4.8 trin-12-					
Units: ug/Kg Reclived: 11/28/17 Basis: as received: Analyzed: 12/07/17 Recolt ND 9.6 Freen12 ND 9.6 Isopropyl Sther (DIFS) ND 9.6 Bromomethane ND 9.6 Envommethane ND 9.6 Envommethane ND 4.8 Chloromethane ND 4.8 Chloromethane ND 4.8 Chloromethane ND 4.8 Chloromethane ND 4.8 Methylenchloroethene ND 4.8 Methylenchloroethene ND 4.8 I.1-Dichloroethene ND 4.8 Trans 1.4-Dichloroethene ND 4.8					
Paris: as received Analyzed: 12/07/17 Analyte Result Result Result Result Tercon 12 ND 9.6 9.6 Chloromethame ND 9.6 Handy Chloride ND 9.6 Ethyl tert-Butyl Ether (FDBE) ND 9.6 Ethyl tert-Sutyl Ether (TAME) ND 4.8 Methyl tert-Auryl Ether (TAME) ND 4.8 Acetone ND 4.8 Nall Constraine ND 4.8 Acetone ND 4.8 Introlitoromethane ND 4.8 MTBE ND 4.8 Introlitoromethane ND 4.8 Vinyl Acetate ND 4.8 Vinyl Acetate ND 4.8 Introlitoromethane ND <td></td> <td></td> <td></td> <td></td>					
Analyte Result Rt Freen 12 ND 9.6 Freen 24 ND 9.6 Isoproxyl Ether (DIFE) ND 9.6 Jump Chloride ND 9.6 Errommethane ND 9.6 Ethyl tert-Butyl Ether (BTEE) ND 4.8 Chloroethane ND 9.6 Methyl tert-Amyl Ether (TAME) ND 4.8 Chloroethane ND 4.8 Methyl tert-Amyl Ether (TAME) ND 4.8 Trichlorofluoromethane ND 4.8 Methyl nee Chloride ND 4.8 Methyl nee Chloride ND 4.8 trans-1,2-Dichloroethene ND 4.8 trans-1,2-Dichloroethane ND 4.8					
Freen 12 ND 9.6 chioromethane ND 9.6 Chioromethane ND 9.6 Lisopropyl Ether (DIPE) ND 4.8 Vinyl Chioride ND 9.6 Bromomethane ND 9.6 Bromomethane ND 4.8 Winyl Chioride ND 4.8 Bromomethane ND 4.8 Methyl tert-Amyl Ether (TAME) ND 4.8 Trichlorofiluoromethane ND 4.8 Acctone ND 19 Freen 113 ND 4.8 Methylene Chloride ND 4.8 March 1, 2-Dichloroethane ND 4.8 MTBA 4.8 4.8 Lin-Lichloropethane ND 4.8 Lin-Dichloropethane ND <	basis. as received		Analyzeu	12/07/17	
Freen 12 ND 9.6 chioromethane ND 9.6 Chioromethane ND 9.6 Lisopropyl Ether (DIPE) ND 4.8 Vinyl Chioride ND 9.6 Bromomethane ND 9.6 Bromomethane ND 4.8 Winyl Chioride ND 4.8 Bromomethane ND 4.8 Methyl tert-Amyl Ether (TAME) ND 4.8 Trichlorofiluoromethane ND 4.8 Acctone ND 19 Freen 113 ND 4.8 Methylene Chloride ND 4.8 March 1, 2-Dichloroethane ND 4.8 MTBA 4.8 4.8 Lin-Lichloropethane ND 4.8 Lin-Dichloropethane ND <	Analyte	Result	RI		
tett-Butyl Alcohol (TBA) ND 96 Chloromethane ND 9.6 Isopropyl Ether (DIPE) ND 4.8 Vinyl Chloride ND 9.6 Bromomethane ND 9.6 Ethyl tert-Butyl Ether (ETBE) ND 4.8 Chloromethane ND 9.6 Methyl tert-Amyl Ether (TAME) ND 4.8 Freinhor ND 4.8 Freinhor ND 4.8 Freinhor ND 4.8 Freinhor ND 4.8 Vinyl Alcohoroethene ND 4.8 Vinyl Accetate ND 4.8 Vinyl Accetate ND 4.8 1.1-Dichloroethene ND 4.8 1.2-Dichloroethene ND 4.8 1.1-Trichloroethene ND 4.8 1.1.1-Trichloroethene ND 4.8			RE .		
ChloromethaneND9.6Lisopropyl Ether (DTPR)ND4.8Vinyl ChlorideND9.6BromomethaneND9.6ChloroethaneND4.8Methyl tert-Amyl Ether (ETBR)ND4.8AcetoneND4.8AcetoneND4.8J'richlorofluoromethaneND4.8AcetoneND4.8AcetoneND4.8J'reon 113ND4.8AcetoneND4.8J'reon 124ND4.8Yinyl AcetateND4.8Yinyl AcetateND4.8Yinyl AcetateND4.82.2 DichlorophaneND4.82.3 DichlorophaneND4.82.4 DichlorophaneND4.82.5 DichlorophaneND4.82.6 DichorophaneND4.82.7 DichlorophaneND4.82.7 DichlorophaneND4.83.8 DichorophaneND4.83.9 DichlorophaneND4.83.1, 1-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.1, 2-TrichlorophaneND4.83.2, 2-DichlorophaneND <td></td> <td></td> <td>Q</td> <td></td>			Q		
isopropyl Ether (DIPE) ND 4.8 Vinyl Chloride ND 9.6 Bromomethane ND 9.6 Ethyl text-Butyl Ether (BTEE) ND 4.8 Chloroethane ND 4.8 Trichlorofluoromethane ND 4.8 Trichlorofluoromethane ND 4.8 Trichlorofluoromethane ND 4.8 Hethyl text-Amyl Ether (TAME) ND 4.8 Trichloroethene ND 4.8 Hethyl echloride ND 4.8 Yinyl Acctate ND 4.8 Tablohloroethane ND 4.8 1,1-Dichloroethane ND 4.8 2,2-Dichloroethane ND 4.8 1,1-Trichloroethane ND 4.8 1,1-Trichloroethane ND 4.8 1,1-Trichloroethane ND 4.8 1,2-Dichloropropane ND 4.8 1,1-Trichloroethane ND 4.8 1,2-Dichloropropane ND 4.8			5		
Vinjl Chloride ND 9.6 Bromomethane ND 9.6 Ethyl tert-Butyl Ether (BTBE) ND 4.8 Chloroethane ND 4.8 Methyl tert-Amyl Ether (TAME) ND 4.8 Acetone ND 4.8 Preon 113 ND 4.8 Chloroethene ND 4.8 Trans-1, 2-Dichloroethene ND 4.8 Winyl Acetate ND 4.8 Vinyl Acetate ND 4.8 Vinyl Acetate ND 4.8 Vinyl Acetate ND 4.8 Chloroethane ND 4.8 Vinyl Acetate ND 4.8 Chloroform ND 4.8 JDichloroethane ND 4.8 Chloroform ND 4.8 JDichloroethane ND 4.8 JJDichloroethane ND 4.8 JJDichloroethane ND 4.8 JJDichloroethane ND 4.8 <td></td> <td></td> <td></td> <td></td>					
Bromomethane ND 9.6 Ethyl tert-Butyl Ether (TEB) ND 4.8 Chloroethane ND 4.8 Trichlorofluoromethane ND 4.8 Trichlorofluoromethane ND 4.8 Trichlorofluoromethane ND 4.8 Trichlorofluoromethane ND 4.8 Methyl tert-Amyl Ether (TAME) ND 4.8 Trichlorofluoroethene ND 4.8 MERD 19 Carbon Carbon Dishlfide ND 4.8 MTEB ND 4.8 Vinyl Acetate ND 4.8 2.4:10:0roethane ND 4.8 2.1:-Dichloroethane ND 4.8 2.2:-Dichloroptomethane ND 4.8 Chloroform ND 4.8 1.1-Dichloroptomethane ND 4.8 1.1-Dichloroptomethane ND 4.8 1.1-Dichloroptomethane ND 4.8 1.2-Dichloroptomethane ND 4.8 <td< td=""><td></td><td></td><td></td><td></td></td<>					
Ethyl tert-Butyl Ether (ETEE) ND 4.8 Chloroethane ND 4.8 Trichlorofluoromethane ND 4.8 Acetone ND 4.8 Preon 113 ND 4.8 1,1-Dichloroethene ND 4.8 Methylenc Chloride ND 4.8 Methylenc Chloride ND 4.8 Trans-1,2-Dichloroethene ND 4.8 Trans-1,2-Dichloroethene ND 4.8 1,1-Dichloroethene ND 4.8 2,2-Dichloroethene ND 4.8 1,1-Dichloroethane ND 4.8 2,2-Dichloropopane ND 4.8 Chloroform ND 4.8 1,1-Dichloroethane ND 4.8 1,1-Dichloropopane ND 4.8 Chloroform ND 4.8 1,1-Dichloroethane ND 4.8 1,2-Dichloropropane ND 4.8 1,2-Dichloropropane ND 4.8 1,2-Dichloropropane<					
Chlörethane ND 9.6 Methyl tert-Amyl Ether (TAME) ND 4.8 Acetone ND 4.8 Acetone ND 4.8 Trichlorofluoromethane ND 4.8 Acetone ND 4.8 Methylene Chloride ND 4.8 Methylene Chloride ND 4.8 MTBE ND 4.8 MTBE ND 4.8 Vinyl Acetate ND 4.8 Vinyl Acetate ND 4.8 2-bichloroethane ND 4.8 1,1-Dichloroethane ND 4.8 1,1-Dichloroethane ND 4.8 1,2-Dichloropropane ND 4.8 1,2-Dichloropropane ND 4.8 1,2-Dichloropropane ND 4.8 1,2-Dichloropropa					
Methyl tert-Amyl Ether (TAME) ND 4.8 Trichlorofluoromethane ND 19 Freon 113 ND 4.8 1,1-Dichloroethene ND 4.8 Methylenc Chloride ND 4.8 Methylenc Chloride ND 4.8 Trans-1,2-Dichloroethene ND 4.8 Trans-1,2-Dichloroethene ND 4.8 1,1-Dichloroethane ND 4.8 2,2-Dichloroethane ND 4.8 2,2-Dichloroethane ND 4.8 Chloroform ND 4.8 1,1-Dichloroethane ND 4.8 1,2-Dichloropenpene ND 4.8 1,2-Dichloropropene ND 4.8 1,2-Dichloropropene ND 4.8 1,2-Dichloropropane ND 4.8 1,2-Dichloropropane					
TrichlorofluoromethaneND4.8AcetoneND19Freon 113ND4.8(1.1-DichloroetheneND4.8Methylene ChlorideND4.8MTBBND4.8MTBBND4.8Yinyl AcetateND4.82-DichloroetheneND4.82-SutanoneND4.82-JoichloroetheneND4.82-JoichloroetheneND4.82-JoichloroetheneND4.82-JoichloroetheneND4.82-JoichloroetheneND4.82.2-JoichloroetheneND4.82.2-JoichloroetheneND4.81.1.1-TichloroethaneND4.81.1.2-JoichloroethaneND4.81.1.2-JoichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-Dichloroethane<					
AcetoneND19Preon 113ND4.81.1-DichloroetheneND4.8Methylene ChlorideND4.8Carbon DisulfideND4.8WTBBND4.8trans-1,2-DichloroetheneND4.8trans-1,2-DichloroetheneND4.8.1-DichloroethaneND4.8.2-ButanoneND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8ChloroformND4.8.1, 1-TrichloroethaneND4.8.1, 2-DichloroethaneND4.8.1, 2-DichloroethaneND4.8.1, 2-DichloroethaneND4.8.1, 2-DichloroethaneND4.8.1, 2-DichloroethaneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-DichloropeneND4.8.2-HexanoneND4.8 </td <td></td> <td></td> <td></td> <td></td>					
Freen 113 ND 4.8 1.1-Dichloroethene ND 4.8 Methylene Chloride ND 19 Carbon Disulfide ND 4.8 MTBB ND 4.8 Trans-1,2-Dichloroethene ND 4.8 Vinyl Acetate ND 4.8 2-Butanone ND 4.8 2-Foichloroethene ND 4.8 2-Joichloroethene ND 4.8 2-Joichloroethene ND 4.8 2-Joichloroethene ND 4.8 2-Joichloropropane ND 4.8 2-Joichloroethane ND 4.8 2-Joichloropropane ND 4.8 Carbon Tetrachloride ND 4.8 1.1-Trichloroethane ND 4.8 1.2-Dichloroethane ND 4.8 1.2-Dichloropene ND 4.8 1.2-Dichloropene ND 4.8 1.2-Dichloropene ND 4.8 1.2-Dichloropene ND			-		
1,1-Dichloroethene ND 4.8 Methylene Chloride ND 4.8 Carbon Disulfide ND 4.8 HTBE ND 4.8 trans-1,2-Dichloroethene ND 4.8 1,1-Dichloroethane ND 4.8 1,1-Dichloroethane ND 4.8 2-Butanone ND 4.8 Chloroformoropane ND 4.8 Chloroform ND 4.8 Bromochloromethane ND 4.8 1,1-Trichloroethane ND 4.8 1,1-Dichloropopane ND 4.8 Carbon Tetrachloride ND 4.8 1,1-Dichloropopane ND 4.8 1,2-Dichloropopane ND 4.8 Irichloropopane ND 4.8			T		
Methylene ChlorideND19Carbon DisulfideND4.8MTBEND4.8Vinyl AcetateND4.8Vinyl AcetateND4.82-ButanoneND4.82-DichloroethaneND4.82-DichloropaneND4.8ChloroformND4.81.1-DichloroethaneND4.8ChloroformND4.8ChloroformND4.81.1-DichloroethaneND4.81.1-DichloroethaneND4.81.1-DichloroethaneND4.81.1-DichloroethaneND4.81.1-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloroethaneND4.81.2-DichloropropaneND4.81.2-DichloropropaneND4.81.2-DichloropropaneND4.82-HexanoneND4.81.1.2-TichloroethaneND4.82-HexanoneND4.82-HexanoneND4.82-HexanoneND4.82-HexanoneND4.82-HexanoneND4.82-HexanoneND4.82-HexanoneND4.82-JibromoethaneND <td></td> <td></td> <td></td> <td></td>					
Carbon DisulfideND4.8MTBEND4.8trans-1, 2-DichloroetheneND4.8vinyl AcetateND4.82-ButanoneND4.82-DichloroetheneND4.82, 2-DichloroptopaneND4.82, 2-DichloroptopaneND4.81, 1, 1-TrichloroethaneND4.81, 1, 1-TrichloroethaneND4.81, 1, 1-TrichloroethaneND4.81, 1, 1-TrichloroptopeneND4.81, 1, 1-TrichloroptopeneND4.81, 2-DichloroptopeneND4.81, 2-DichloroptopeneND4.81, 2-DichloroptopeneND4.81, 2-DichloroptopeneND4.81, 2-DichloroptopeneND4.81, 2-TrichloroptopeneND4.81, 2-TrichloroptopeneND4.81, 2-TrichloroptopeneND4.81, 2-TrichloroptopeneND4.8DibromomethaneND4.8DibromotethaneND4.81, 2-TrichloroptopeneND4.81, 1, 2-TrichloroptopeneND4.81, 3-DichloropropeneND4.81, 1, 2-TrichloroptopeneND4.81, 3-DichloroptopeneND4.81, 3-DichloroptopeneND4.81, 2-TrichloroptopeneND4.82-HexanoneND4.81, 2-TrichloroptopeneND4.81, 2-DibromotethaneND4.8<			_		
MTBEND4.8trans-1, 2-DichloroetheneND4.8Vinyl AcetateND4.82-ButanoneND9.6cis-1, 2-DichloroetheneND4.82, 2-DichloropaneND4.8ChloroformND4.8ChloroformND4.81, 1-DichloroethaneND4.8ChloroformND4.8ChloroformND4.81, 1-TrichloroethaneND4.81, 1-DichloroppeneND4.81, 2-DichloroppeneND4.8Carbon TetrachlorideND4.81, 2-DichloroppeneND4.81, 2-DichloroppeneND4.8EenzeneND4.8TrichloroppopaneND4.81, 2-DichloroppopaneND4.81, 2-DichloropropaneND4.81, 2-TrichloropethaneND4.81, 3-DichloropropeneND4.8ColloropropeneND4.8TolueneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChloropropaneND4.8ChlorobethaneND4.8ChlorobethaneN			1		
trans-1,2-DichloroetheneND4.8Vinyl AcctateND481.1-DichloroethaneND4.82-ButanoneND4.82.2-DichloroptopaneND4.82.2-DichloroptopaneND4.81.1.1-TrichloroethaneND4.81.1.1-TrichloroptopaneND4.82.2-DichloroptopaneND4.81.1.1-TrichloroptopeneND4.81.1.1-TrichloroptopeneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.82-PetranoneND4.81.2-DichloroptopeneND4.81.2-DichloroptopeneND4.81.3-DichloroptopeneND4.81.1.2-TrichloroptopeneND4.81.1.2-TrichloroptopeneND4.82-HexanoneND4.81.3-DichloroptopeneND4.81.3-DichloroptopeneND4.82-HexanoneND4.81.3-DichloroptopeneND4.82-HexanoneND4.82.3-DichloroptopeneND4.82.4-DichloroptopeneND4.83.5-DichloroptopeneND4.83.6-Dichloroptopene<					
Vinyl AcetateND481.1-DichloroethaneND4.82-ButanoneND9.6cis-1,2-DichloropethaneND4.82,2-DichloropropaneND4.8ChloroformND4.8BromochloromethaneND4.81,1-DichloropethaneND4.81,1-DichloropethaneND4.81,2-DichloropethaneND4.8Carbon TetrachlorideND4.8BenzeneND4.8TrichloropethaneND4.8StrinchtoromethaneND4.8I,2-DichloropropaneND4.8BromodichloromethaneND4.8Garbon TetrachlorideND4.8BromodichloromethaneND4.8BromodichloromethaneND4.8TrichloroptopaneND4.8StoropropaneND4.8I,2-DichloropropaneND4.8StoromethaneND4.8StoromethaneND4.8TrichloropropeneND4.8Transl, 3-DichloropropeneND4.81,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.81,2-DichloropropaneND4.81,3-DichloropropaneND4.81,3-DichloropropaneND4.81,2,2-TrichloroethaneND4.81,2,2-TrichloroethaneND4.81,2,2-TrichloroethaneND4.81,1,1,2-TetrachloroethaneND<					
1.1-DichloroethaneND4.82-ButanoneND9.6cis-1,2-DichloroethaneND4.82,2-DichloropropaneND4.82,2-DichloropropaneND4.83,1,1-TrichloroethaneND4.81,1,1-TrichloroethaneND4.81,2-DichloropropeneND4.81,2-DichloropropeneND4.81,2-DichloropropeneND4.81,2-DichloropropeneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,3-DichloropropaneND4.81,1,2-TrichloropropaneND4.81,1,2-TrichloropropaneND4.81,1,2-TrichloropropaneND4.81,1,2-TrichloropropaneND4.81,1,2-TrichloropropaneND4.81,1,2-TrichloropropaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,2,2		ND			
2-ButanoneND9.6cis-1, 2-DichloroptoneND4.82,2-DichloroptopaneND4.8ChloroformND4.8BromechloromethaneND4.81,1-TrichloroethaneND4.81,1-DichloroptopeneND4.8Carbon TetrachlorideND4.81,2-DichloroptopaneND4.8EnzeneND4.8PrinchloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopaneND4.8I,2-DichloroptopeneND4.8TolueneND4.8I,3-DichloroptopeneND4.81,1,2-TrichloroethaneND4.81,3-DichloroptopaneND4.81,3-DichloroptopaneND4.81,3-DichloroptopaneND4.81,3-DichloroptopaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,2,3-Tirchloropro		ND	4		
cis-1,2-DichloroptheneND4.82,2-DichloroptopaneND4.8ChloroformND4.8BromochloromethaneND4.81,1,1-TrichloroethaneND4.81,1-DichloroptopeneND4.82arbon TetrachlorideND4.81,2-DichloroethaneND4.82arbon TetrachlorideND4.82arbon TetrachlorideND4.81,2-DichloroptopaneND4.82arbon TetrachlorideND4.82,2-DichloroptopaneND4.81,2-DichloroptopaneND4.81,2-DichloroptopaneND4.81,2-DichloroptopaneND4.81,3-DichloroptopeneND4.81,3-DichloroptopeneND4.81,1,2-TrichloroptopaneND4.81,1,2-TrichloroptopaneND4.81,2-DibromochlaneND4.81,2-DichloroptopaneND4.81,2-DichloroptopaneND4.81,1,2-TrichloroethaneND4.81,2-DibromochlaneND4.81,2-DibromochlaneND4.81,2-DibromochlaneND4.81,2-DibromochlaneND4.81,2-DibromochlaneND4.81,2-DibromochlaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,2,3-TirchloroethaneND <td< td=""><td></td><td>ND</td><td></td><td></td></td<>		ND			
2.2-DichloropropaneND4.8ChloroformND4.8ChloroformND4.81.1-TirtichloroethaneND4.81.1-DichloropropeneND4.8Carbon TetrachlorideND4.8Carbon TetrachloroethaneND4.8SenzeneND4.8TrichloroethaneND4.8BenzeneND4.8TrichloropropaneND4.8BromodichloromethaneND4.8BromodichloromethaneND4.8TrichloropropaneND4.8StormethaneND4.8TolueneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8ZhexanoneND4.8ZhexanoneND4.8DiboromochhaneND4.8ChloroberzeneND4.81, 2-DichloropropaneND4.81, 2-DichloropropaneND4.82-HexanoneND4.82-HexanoneND4.82-HexanoneND4.81, 2-DichloropropeneND4.81, 2-DichloropropeneND4.81, 2-DichloropropeneND4.82-HexanoneND4.82-HexanoneND4.81, 2-2-TetrachloroethaneND4.81, 1, 1, 2-TetrachloroethaneND4.81, 1, 1, 2-Tetrachloroethane	2-Butanone	ND			
ChloroformND4.8BromochloromethaneND4.81,1,1-TrichloroethaneND4.81,1-DichloropropeneND4.81,2-DichloroethaneND4.81,2-DichloroethaneND4.81,2-DichloroethaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,3-DichloropropaneND4.81,3-DichloropropeneND4.8TruschloropropeneND4.8TolueneND4.81,1,2-TrichloropropeneND4.82-HexanoneND4.82-DibromoethaneND4.82-DibromoethaneND4.82-HexanoneND4.81,3-DichloropropaneND4.82-DibromoethaneND4.82-DibromoethaneND4.82-DibromoethaneND4.82-DibromoethaneND4.82-DibromoethaneND4.82-DibromoethaneND4.83-DichloropropaneND4.83-DichloropropaneND4.83-DichloropropaneND4.83-DichloropropaneND4.83-DichloropropaneND4.83-DichloropropaneND4.83-DichloropropaneND4.83-Dichloropropan	cis-1,2-Dichloroethene	ND			
ChloroformND4.8BromochloromethaneND4.81,1,1-TrichloroethaneND4.81,1-DichloropropeneND4.8(Carbon TetrachlorideND4.81,2-DichloroethaneND4.8BenzeneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,2-DichloropropaneND4.81,3-DichloropropaneND4.81,3-DichloropropeneND4.8Trans-1,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.81,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND4.81,3-DichloropropaneND4.82-HexanoneND4.81,3-DichloropropaneND4.8DibromochlaneND4.81,1,2-TrichloroethaneND4.8DibromochlaneND4.8DibromochlaneND4.8ChlorobenzeneND4.8EthylbenzeneND4.8StyreneND4.8BromoformND4.8StyreneND4.8StyreneND4.8BromoformND4.8LisopropylbenzeneND4.8LisopropylbenzeneND4.8LisopropylbenzeneND4.8<	2,2-Dichloropropane	ND		4.8	
1,1,1-TrichloroethaneND4.81,1-DichloropropeneND4.8Carbon TetrachlorideND4.81,2-DichloroethaneND4.8BenzeneND4.8TrichloroetheneND4.81,2-DichloropropaneND4.8DibromomethaneND4.8DibromomethaneND4.8OlueneND4.8TrichloropropaneND4.81,1,2-TrichloropropeneND4.81,1,2-TrichloropropeneND4.81,1,2-TrichloropropeneND4.81,3-DichloropropaneND4.81,3-DichloropropaneND4.81,3-DichloropropaneND4.81,1,2-TrichloroethaneND4.8DibromochlaneND4.8DibromochlaneND4.81,2-DibromochlaneND4.8DibromochlaneND4.8DibromochlaneND4.8StyreneND4.8StyreneND4.8StyreneND4.8StyreneND4.8StyreneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8Isopropyl	Chloroform	ND		4.8	
1.1-DichloropropeneND4.8Carbon TetrachlorideND4.8Carbon TetrachloroethaneND4.8BenzeneND4.8TrichloroetheneND4.81.2-DichloropropaneND4.8BromodichloromethaneND4.84-Methyl-2-PentanoneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.81, 1, 2-TrichloroethaneND4.81, 2-DibromoethaneND4.81, 2-DichloropropaneND4.81, 1, 2-TrichloroethaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 1, 2-TetrachloroethaneND4.81, 1, 1, 2-TetrachloroethaneND4.8trans-1, 3-NichloropropaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 2-TetrachloroethaneND4.85tyreneND4.85tyreneND4.815opropylbenzeneND4.815opropylbenzeneND4.81, 2, 2-TetrachloroethaneND4.81, 1, 2, 2-TetrachloroethaneND4.81, 2, 2, 3-TrichloropropaneND4.81, 2, 2, 3-Trichloropropane	Bromochloromethane	ND		4.8	
1.1-DichloropropeneND4.8Carbon TetrachlorideND4.8Carbon TetrachloroethaneND4.8BenzeneND4.8TrichloroetheneND4.81.2-DichloropropaneND4.8BromodichloromethaneND4.84-Methyl-2-PentanoneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.8trans-1, 3-DichloropropeneND4.81, 1, 2-TrichloroethaneND4.81, 2-DibromoethaneND4.81, 2-DichloropropaneND4.81, 1, 2-TrichloroethaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 1, 2-TetrachloroethaneND4.81, 1, 1, 2-TetrachloroethaneND4.8trans-1, 3-NichloropropaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 2-TetrachloroethaneND4.81, 1, 2-TetrachloroethaneND4.85tyreneND4.85tyreneND4.815opropylbenzeneND4.815opropylbenzeneND4.81, 2, 2-TetrachloroethaneND4.81, 1, 2, 2-TetrachloroethaneND4.81, 2, 2, 3-TrichloropropaneND4.81, 2, 2, 3-Trichloropropane	1,1,1-Trichloroethane	ND		4.8	
Carbon TetrachlorideND4.81,2-DichloroethaneND4.8TrichloroethaneND4.8TrichloroetheneND4.81,2-DichloropropaneND4.8BromodichloromethaneND4.8DibromomethaneND4.8-Pmethyl-2-PentanoneND4.8TolueneND4.81,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.81,3-DichloropropeneND4.81,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.81,3-DichloropropeneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.8chylenesND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND4.8stypeneND<		ND			
1,2-DichloroethaneND4.8BenzeneND4.8TrichloroptopaneND4.81,2-DichloropropaneND4.8BromodichloromethaneND4.8DibromomethaneND4.84-Methyl-2-PentanoneND4.8TolueneND4.8TolueneND4.8trans-1,3-DichloropropeneND4.82-HexanoneND4.82-HexanoneND4.8DibromochlaneND4.82-HexanoneND4.81,3-DichloropropaneND4.8DibromochloromethaneND4.82-HexanoneND4.8DibromochloromethaneND4.81,2-TrichloroptopaneND4.81,2-DibromochlaneND4.8DibromochloromethaneND4.81,1,1,2-TetrachloroethaneND4.8thylbenzeneND4.8thylenesND4.8styreneND4.8styreneND4.8styreneND4.8styreneND4.8styreneND4.8stopropylbenzeneND4.8stopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropenpaneND4.81,2,3-TrichloropenpaneND4.81,2,3-TrichloropenpaneND4.81,2,3-TrichloropenpaneND4.81,2,3-Tr				4.8	
BenzeneND4.8TrichloroetheneND4.8TrichloropropaneND4.8BromodichloromethaneND4.8DibromomethaneND4.8OlucneND4.8TolueneND4.81,1,2-TrichloropropeneND4.82-HexanoneND4.81,3-DichloropropaneND4.81,1,2-TrichloroethaneND4.82-HexanoneND4.81,2-DibromochloropropaneND4.81,2-DibromochloromethaneND4.81,1,2-TrichloropropaneND4.81,1,1,2-TrichloroethaneND4.82-HexanoneND4.82-HexanoneND4.81,1,2-TrichloropropaneND4.8StyreneND4.8StyreneND4.81,1,1,2-TetrachloroethaneND4.85tyreneND4.8StyreneND4.8StyreneND4.8Japper ND4.8Japper ND4					
TrichloroptheneND4.81,2-DichloroptopaneND4.8BromodichloromethaneND4.8DibromomethaneND4.84-Methyl-2-PentanoneND4.8cis-1,3-DichloroptopeneND4.8TolueneND4.8trans-1,3-DichloroptopeneND4.82-HexanoneND4.82-HexanoneND4.82-HexanoneND4.81,1,2-TrichloroptopaneND4.82-HexanoneND4.82-HexanoneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8m,p-XylenesND4.8o-XyleneND4.8BromoformND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND <t< td=""><td></td><td></td><td></td><td></td></t<>					
1,2-DichloropropaneND4.8BromodichloromethaneND4.8DibromomethaneND4.84-Methyl-2-PentanoneND9.6cis-1,3-DichloropropeneND4.8TolueneND4.8trans-1,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND4.8TetrachloroethaneND4.8TetrachloroethaneND4.8DibromochloromethaneND4.81,3-DichloropropaneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4.8styreneND4.8BromoformND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4					
BromodichloromethaneND4.8DibromomethaneND4.8DibromomethaneND4.84-Methyl-2-PentanoneND4.8cis-1,3-DichloropropeneND4.8TolueneND4.8trans-1,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND4.82-HexanoneND4.8TetrachloroptopaneND4.8TetrachloroethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8I,1,2,2-TetrachloroethaneND4.8I,1,2,3-TrichloropropaneND4.8I,2,3-TrichloropropaneND4.8					
DibromomethaneND4.84-Methyl-2-PentanoneND9.6cis-1,3-DichloropropeneND4.8TolueneND4.8trans-1,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND9.61,3-DichloropropaneND4.8TetrachloroethaneND4.8TetrachloroethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8stylenesND4.8stylenesND4.8styleneND4.8styleneND4.8styleneND4.8styleneND4.8styreneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8JisopropylbenzeneND4.8<	Bromodichloromethane				
4-Methyl-2-PentanoneND9.6cis-1,3-DichloropropeneND4.8TolueneND4.8trans-1,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND9.61,3-DichloropropaneND4.8TetrachloroethaneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8StyreneND4.8StyreneND4.8StyreneND4.8JopropylenzeneND4.8Jop				4 8	
cis-1,3-DichloropropeneND4.8TolueneND4.8trans-1,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND9.61,3-DichloropropaneND4.8TetrachloroetheneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8styreneND4.8StyreneND4.8StyreneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8JaronformND4.8StyreneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8I,2,3-TrichloropropaneND4.8					
TolueneND4.8trans-1, 3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND9.61,3-DichloropropaneND4.8TetrachloroetheneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8thylbenzeneND4.8m,p-XylenesND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.8I,1,2,2-TetrachloroethaneND4.8StyreneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.8I,2,2-TetrachloroethaneND4.8I,2,3-TrichloropropaneND4.8					
trans-1,3-DichloropropeneND4.81,1,2-TrichloroethaneND4.82-HexanoneND9.61,3-DichloropropaneND4.8TetrachloroetheneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8chlylenzeneND4.8styreneND4.8styreneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,2,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4.8JappeneND	· · · ·				
1,1,2-TrichloroethaneND4.82-HexanoneND9.61,3-DichloropropaneND4.8TetrachloroetheneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.81,1,2-TetrachloroethaneND4.81,1,2-TetrachloroethaneND4.81,1,1,2-TetrachloroethaneND4.8chlorobenzeneND4.8styreneND4.8styreneND4.8styreneND4.8StyreneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.8IsopropylbenzeneND4.8IsopropylbenzeneND4.81,2,3-TrichloropropaneND4.8					
2-HexanoneND9.61,3-DichloropropaneND4.8TetrachloroetheneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.8ChlorobenzeneND4.81,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8StyreneND4.8BromoformND4.8I,2,2-TetrachloroethaneND4.81,1,2,3-TrichloropropaneND4.8					
1,3-DichloropropaneND4.8TetrachloroetheneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.8ChlorobenzeneND4.81,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8o-XyleneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.8All All All All All All All All All All				9.6	
TetrachloroetheneND4.8DibromochloromethaneND4.81,2-DibromoethaneND4.8ChlorobenzeneND4.81,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8o-XyleneND4.8StyreneND4.8BromoformND4.8I.1,2,2-TetrachloroethaneND4.8J.1,2,2-TetrachloroethaneND4.8J.1,2,2-TetrachloroethaneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8				7.0 1 Q	
DibromochloromethaneND4.81,2-DibromoethaneND4.8ChlorobenzeneND4.81,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8o-XyleneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8				т. 0 Л О	
1,2-DibromoethaneND4.8ChlorobenzeneND4.81,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8o-XyleneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
ChlorobenzeneND4.81,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8o-XyleneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
1,1,1,2-TetrachloroethaneND4.8EthylbenzeneND4.8m,p-XylenesND4.8o-XyleneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
EthylbenzeneND4.8m,p-XylenesND4.8o-XyleneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
m,p-XylenesND4.8o-XyleneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
o-XyleneND4.8StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
StyreneND4.8BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
BromoformND4.8IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
IsopropylbenzeneND4.81,1,2,2-TetrachloroethaneND4.81,2,3-TrichloropropaneND4.8					
1,1,2,2-Tetrachloroethane ND 4.8 1,2,3-Trichloropropane ND 4.8					
1,2,3-Trichloropropane ND 4.8					
				4.8	
Propyldenzene ND 4.8	Propylbenzene	ND		4.8	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #: 294	849		Location:	NRLF Phase 4	
	EO Inc.		Prep:	EPA 5030B	
	1-17A		Analysis:	EPA 8260B	
	-A3-17-1-LIQUID		Diln Fac:	0.9579	
	849-002		Batch#:	254470	
Matrix: Mis	cell.		Sampled:	11/28/17	
Units: ug/	Kg		Received:	11/28/17	
Basis: as	received		Analyzed:	12/07/17	
Analyte		Result		RL	
Bromobenzene	NI			4.8	
1,3,5-Trimethylbenze				4.8	
2-Chlorotoluene	NI			4.8	
4-Chlorotoluene	NI			4.8	
tert-Butylbenzene	NI			4.8	
1,2,4-Trimethylbenze				4.8	
sec-Butylbenzene	NI			4.8	
para-Isopropyl Tolue				4.8	
1,3-Dichlorobenzene	NI			4.8	
1,4-Dichlorobenzene	NI			4.8	
n-Butylbenzene	NI			4.8	
1,2-Dichlorobenzene	NI			4.8	
1,2-Dibromo-3-Chloro	propane NI			4.8	
1,2,4-Trichlorobenze				4.8	
Hexachlorobutadiene	NI			4.8	
Naphthalene	NI			4.8	
1,2,3-Trichlorobenze	ne NI)		4.8	
Surrogate	%REC	Limits			
Dibromofluoromethane		76-132			
1,2-Dichloroethane-d		74-149			
Toluene-d8	94	80-120			
Bromofluorobenzene	93	78-134			

Bromofluorobenzene

	Purgeable Organics by GC/MS					
Lab #:	294849	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5030B			
Project#:	1101-17A	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZ	Batch#:	254470			
MSS Lab ID:	295025-001	Sampled:	12/01/17			
Matrix:	Soil	Received:	12/01/17			
Units:	ug/Kg	Analyzed:	12/07/17			
Basis:	as received	_				

Type:

MS

Diln Fac: 0.9398 Lab ID: QC911968 MSS Result Spiked Result %REC Limits Analyte <7.704 tert-Butyl Alcohol (TBA) 235.0 154.8 66 57-155 Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) <0.5028 46.99 22.26 47 * 56-137 60-137 <0.5063 46.99 32.38 69 Methyl tert-Amyl Ether (TAME) <0.4319 46.99 40.62 86 60-129 46.99 1,1-Dichloroethene <0.5326 31.92 68 64-131 46.99 66-122 Benzene <0.6205 32.04 68 Trichloroethene 46.99 39.33 57-133 <0.6463 84 <0.6797 Toluene 46.99 33.14 71 61-120 Chlorobenzene <0.5572 46.99 34.14 73 56-120 Surrogate %REC Limits Dibromofluoromethane 76-132 82 74-149 124 1,2-Dichloroethane-d4 Toluene-d8 94 80-120

95

78-134

Type: MSD Diln Fac: 0.9615 Lab ID: QC911969 Spiked Analyte Result Limits %REC RPD Lim 167.6 57-155 tert-Butyl Alcohol (TBA) 240.4 41 70 6 Isopropyl Ether (DIPE) 48.08 25.56 53 * 56-137 11 28 Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 75 48.08 35.93 60-137 8 31 48.08 44.17 92 60-129 6 30 1,1-Dichloroethene 48.08 35.50 74 64-131 8 32 32 33.59 70 2 Benzene 48.08 66-122 Trichloroethene 48.08 42.79 89 57-133 6 34 48.08 35.77 61-120 Toluene 74 5 32 Chlorobenzene 48.08 36.43 76 56-120 4 33 Surrogate %REC Limits Dibromofluoromethane 86 76-132 1,2-Dichloroethane-d4 125 74-149 Toluene-d8 94 80-120 Bromofluorobenzene 94 78-134

*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

	Purgeable Organics by GC/MS				
Lab #: Client: Project#:	294849 A3GEO Inc. 1101-17A	Location: Prep: Analysis:	NRLF Phase 4 EPA 5030B EPA 8260B		
Type: Lab ID: Matrix: Units:	BLANK QC911970 Soil ug/Kg	Diln Fac: Batch#: Analyzed:	1.000 254470 12/07/17		

Analyte	Result	RL
Freon 12	ND	10
tert-Butyl Alcohol (TBA)	ND	100
Chloromethane	ND	10
Isopropyl Ether (DIPE)	ND	5.0
Vinyl Chloride	ND	10
Bromomethane	ND	10
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Chloroethane	ND	10
Methyl tert-Amyl Ether (TAME)	ND	5.0
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
	ND	5.0
trans-1,2-Dichloroethene		50
Vinyl Acetate	ND	
1,1-Dichloroethane 2-Butanone	ND	5.0 10
	ND	
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0

ND= Not Detected RL= Reporting Limit

Page 1 of 2

	Purgeable Organics by GC/MS					
Lab #:	294849	Location:	NRLF Phase 4			
Client: Project#:	A3GEO Inc. 1101-17A	Prep: Analysis:	EPA 5030B EPA 8260B			
	BLANK	Diln Fac:	1.000			
Type: Lab ID:	QC911970	Batch#:	254470			
Matrix:	Soil	Analyzed:	12/07/17			
Units:	ug/Kg					

Analyte		Result	RL	
Bromobenzene	ND		5.0	
1,3,5-Trimethylbenzene	ND		5.0	
2-Chlorotoluene	ND		5.0	
4-Chlorotoluene	ND		5.0	
tert-Butylbenzene	ND		5.0	
1,2,4-Trimethylbenzene	ND		5.0	
sec-Butylbenzene	ND		5.0	
para-Isopropyl Toluene	ND		5.0	
1,3-Dichlorobenzene	ND		5.0	
1,4-Dichlorobenzene	ND		5.0	
n-Butylbenzene	ND		5.0	
1,2-Dichlorobenzene	ND		5.0	
1,2-Dibromo-3-Chloropropane	ND		5.0	
1,2,4-Trichlorobenzene	ND		5.0	
Hexachlorobutadiene	ND		5.0	
Naphthalene	ND		5.0	
1,2,3-Trichlorobenzene	ND		5.0	
Surrogate	%REC	Limits		
Dibromofluoromethane	91	76-132		
1,2-Dichloroethane-d4	113	74-149		
Toluene-d8	98	80-120		
Bromofluorobenzene	105	78-134		

	Purgea	able Organics by GC/	ms	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5030B	
Project#:	1101-17A	Analysis:	EPA 8260B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC912020	Batch#:	254470	
Matrix:	Soil	Analyzed:	12/07/17	
Units:	ug/Kg			

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	111.3	89	54-155
Isopropyl Ether (DIPE)	25.00	18.16	73	55-134
Ethyl tert-Butyl Ether (ETBE)	25.00	20.70	83	59-134
Methyl tert-Amyl Ether (TAME)	25.00	22.56	90	63-126
1,1-Dichloroethene	25.00	23.94	96	68-132
Benzene	25.00	22.65	91	75-123
Trichloroethene	25.00	26.48	106	75-120
Toluene	25.00	24.25	97	76-120
Chlorobenzene	25.00	24.16	97	80-120
Surrogate	REC Limits			

Surrogate	%REC	Limits
Dibromofluoromethane	91	76-132
1,2-Dichloroethane-d4	115	74-149
Toluene-d8	100	80-120
Bromofluorobenzene	104	78-134

	Semivolatile	Organics by GC/	'MS SIM	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3520C	
Project#:	1101-17A	Analysis:	EPA 8270C-SIM	
Field ID:	IDW-A3-17-1-LIQUID	Batch#:	254344	
Lab ID:	294849-002	Sampled:	11/28/17	
Matrix:	Water	Received:	11/28/17	
Units:	ug/L	Prepared:	12/04/17	
Diln Fac:	20.00	Analyzed:	12/05/17	

Analyte	Result	RL	
Naphthalene	ND	20	
Acenaphthylene	ND	20	
Acenaphthene	ND	20	
Fluorene	ND	20	
Phenanthrene	ND	20	
Anthracene	ND	20	
Fluoranthene	ND	20	
Pyrene	ND	20	
Benzo(a)anthracene	ND	20	
Chrysene	ND	20	
Benzo(b)fluoranthene	ND	20	
Benzo(k)fluoranthene	ND	20	
Benzo(a)pyrene	ND	20	
Indeno(1,2,3-cd)pyrene	ND	20	
Dibenz(a,h)anthracene	ND	20	
Benzo(g,h,i)perylene	ND	20	

Surrogate	%REC	imits	
Nitrobenzene-d5	DO	4-139	
2-Fluorobiphenyl	DO	7-120	
Terphenyl-d14	DO	5-123	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivola	tile Organics by GC/	MS SIM	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3520C	
Project#:	1101-17A	Analysis:	EPA 8270C-SIM	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC911432	Batch#:	254344	
Matrix:	Water	Prepared:	12/04/17	
Units:	ug/L	Analyzed:	12/05/17	

Analyte	Result	RL	
Naphthalene	ND	0.1	
Acenaphthylene	ND	0.1	
Acenaphthene	ND	0.1	
Fluorene	ND	0.1	
Phenanthrene	ND	0.1	
Anthracene	ND	0.1	
Fluoranthene	ND	0.1	
Pyrene	ND	0.1	
Benzo(a)anthracene	ND	0.1	
Chrysene	ND	0.1	
Benzo(b)fluoranthene	ND	0.1	
Benzo(k)fluoranthene	ND	0.1	
Benzo(a)pyrene	ND	0.1	
Indeno(1,2,3-cd)pyrene	ND	0.1	
Dibenz(a,h)anthracene	ND	0.1	
Benzo(g,h,i)perylene	ND	0.1	

Surrogate	%REC	Limits	
Nitrobenzene-d5	84	44-139	
2-Fluorobiphenyl	80	47-120	
Terphenyl-d14	77	25-123	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolatile Org	anics by GC/MS	SIM
Lab #:	294849	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 3520C
Project#:	1101-17A	Analysis:	EPA 8270C-SIM
Matrix:	Water	Batch#:	254344
Units:	ug/L	Prepared:	12/04/17
Diln Fac:	1.000	Analyzed:	12/05/17

Type:

BS

Lab ID: QC911433

Analyte	Spiked	Result	%REC	Limits
Acenaphthene	1.000	0.8212	82	54-120
Pyrene	1.000	0.7632	76	50-120

Surrogate	%REC	Limits
Nitrobenzene-d5	92	44-139
2-Fluorobiphenyl	87	47-120
Terphenyl-d14	79	25-123

Туре:	BSD		Lab	D ID:	QC911	434			
	Analyte		Spiked	Re	sult	%REC	Limits	RPD	Lim
Acenaphth	ene		1.000		0.7304	73	54-120	12	36
Pyrene			1.000		0.6605	66	50-120	14	37
	Surrogate	%REC	Limits						
Nitrobong	ana dE	01	11 120						

%REC	Limits	
81	44-139	
75	47-120	
68	25-123	
	81 75	81 44-139 75 47-120

Semivolatile Organics by GC/MS SIM						
Lab #:	294849	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 3550C			
Project#:	1101-17A	Analysis:	EPA 8270C-SIM			
Field ID:	IDW-A3-17-1-SOILD	Batch#:	254190			
Lab ID:	294849-001	Sampled:	11/28/17			
Matrix:	Soil	Received:	11/28/17			
Units:	ug/Kg	Prepared:	11/29/17			
Basis:	as received	Analyzed:	11/30/17			
Diln Fac:	1.000					

Analyte	Result	RL	
Naphthalene	ND	5.0	
Acenaphthylene	ND	5.0	
Acenaphthene	ND	5.0	
Fluorene	ND	5.0	
Phenanthrene	ND	5.0	
Anthracene	ND	5.0	
Fluoranthene	ND	5.0	
Pyrene	ND	5.0	
Benzo(a)anthracene	ND	5.0	
Chrysene	ND	5.0	
Benzo(b)fluoranthene	ND	5.0	
Benzo(k)fluoranthene	ND	5.0	
Benzo(a)pyrene	ND	5.0	
Indeno(1,2,3-cd)pyrene	ND	5.0	
Dibenz(a,h)anthracene	ND	5.0	
Benzo(g,h,i)perylene	ND	5.0	

Surrogate	%REC	Limits
Nitrobenzene-d5	93	46-126
2-Fluorobiphenyl	75	50-120
Terphenyl-d14	69	53-123

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivola	tile Organics by GC/	MS SIM	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3550C	
Project#:	1101-17A	Analysis:	EPA 8270C-SIM	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC910819	Batch#:	254190	
Matrix:	Soil	Prepared:	11/29/17	
Units:	ug/Kg	Analyzed:	11/30/17	

Analyte	Result	RL	
Naphthalene	ND	5.0	
Acenaphthylene	ND	5.0	
Acenaphthene	ND	5.0	
Fluorene	ND	5.0	
Phenanthrene	ND	5.0	
Anthracene	ND	5.0	
Fluoranthene	ND	5.0	
Pyrene	ND	5.0	
Benzo(a)anthracene	ND	5.0	
Chrysene	ND	5.0	
Benzo(b)fluoranthene	ND	5.0	
Benzo(k)fluoranthene	ND	5.0	
Benzo(a)pyrene	ND	5.0	
Indeno(1,2,3-cd)pyrene	ND	5.0	
Dibenz(a,h)anthracene	ND	5.0	
Benzo(g,h,i)perylene	ND	5.0	

Surrogate	%REC	Limits	
Nitrobenzene-d5	98	46-126	
2-Fluorobiphenyl	92	50-120	
Terphenyl-d14	97	53-123	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolat	cile Organics by GC/	MS SIM	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3550C	
Project#:	1101-17A	Analysis:	EPA 8270C-SIM	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC910820	Batch#:	254190	
Matrix:	Soil	Prepared:	11/29/17	
Units:	ug/Kg	Analyzed:	11/30/17	

Analyte	Spiked	Result	%REC	Limits
Acenaphthene	33.33	31.56	95	62-120
Pyrene	33.33	33.72	101	56-130

Surrogate	%REC	Limits
Nitrobenzene-d5	123	46-126
2-Fluorobiphenyl	96	50-120
Terphenyl-d14	103	53-123

	Semivolatile Orga	anics by GC/MS	SIM
Lab #:	294849	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 3550C
Project#:	1101-17A	Analysis:	EPA 8270C-SIM
Field ID:	IDW-A3-17-1-SOILD	Batch#:	254190
MSS Lab ID:	294849-001	Sampled:	11/28/17
Matrix:	Soil	Received:	11/28/17
Units:	ug/Kg	Prepared:	11/29/17
Basis:	as received	Analyzed:	11/30/17
Diln Fac:	1.000		

Type:	MS	Lab ID:	QC910821		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Acenaphthene	<1.004	33.33	23.62	71	54-120
Pyrene	<1.004	33.33	22.80	68	35-143
Pyrene	<1.004	33.33	22.80	68	

Surrogate	%REC	Limits	
Nitrobenzene-d5	92	46-126	
2-Fluorobiphenyl	75	50-120	
Terphenyl-d14	66	53-123	

Туре:	MSD			Lab ID:	QCS	910822			
Ana	alyte		Spiked		Result	%REC	Limits	RPD	Lim
Acenaphthene			33.33		21.82	65	54-120	8	35
Pyrene			33.33		21.25	64	35-143	7	58
Suri	rogate	%REC	Limits						
Nitrobenzene-o	15	83	46-126						
2-Fluorobipher	nyl	70	50-120						
Terphenyl-d14		60	53-123						

		Polychlorina	ted Biphenyls	(PCBc)	
		FOLYCIILOLIIIA	ced biphenyis	(FCDS)	
Lab #:	294849		Location:	NRLF Phase 4	
Client:	A3GEO Inc.		Prep:	EPA 3520C	
Project#:	1101-17A		Analysis:	EPA 8082	
Field ID:	IDW-A3-17-	1-LIQUID	Batch#:	254212	
Matrix:	Water		Sampled:	11/28/17	
Units:	ug/L		Received:	11/28/17	
Diln Fac:	1.000				
Type:	SAMPLE		Prepared:	12/01/17	
Lab ID:	294849-002		Analyzed:	12/04/17	
300	1	Resul	-	RL	
Ana Aroclor-1016	lyte	ND	L	1.2	
Aroclor-1221		ND		2.8	
Aroclor-1232		ND		1.2	
Aroclor-1242		ND		1.2	
Aroclor-1248		ND		1.6	
Aroclor-1248 Aroclor-1254		ND		1.2	
Aroclor-1254 Aroclor-1260		ND		1.2	
ALOCIOL 1200		ND		1.2	
Surr	ogate	%REC Limi	ts		
Decachlorobiph		50 22-1			
	-				
Type:	BLANK		Prepared:	11/30/17	
Lab ID:	QC910921		Analyzed:	12/01/17	
	lyte	Resul	t	RL	
Aroclor-1016		ND		0.20	
Aroclor-1221		ND		0.40	
Aroclor-1232		ND		0.20	
Aroclor-1242		ND		0.20	
Aroclor-1248		ND		0.20	
Aroclor-1254		ND		0.20	
Aroclor-1260		ND		0.20	
Curr	ogate	%REC Limi	+ a		
Decachlorobiph		119 22-1			
Decacintorobipii	спут	119 22-1	ر د		

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Polychlo	orinated	Biphenyl	Ls (PCBs)			
Lab #:	294849			Location:	NRLF	Phase 4		
Client:	A3GEO Inc.			Prep:	EPA	3520C		
Project#:	1101-17A			Analysis:	EPA	8082		
Matrix:	Water			Batch#:	2542	12		
Units:	ug/L			Prepared:	11/3	0/17		
Diln Fac:	1.000			Analyzed:	12/0	1/17		
Type:	BS		Spiked	Lab ID:	QC91 Result	0922 %REC	Limits	
Aroclor-1016			2.500		1.966	79	59-134	
Aroclor-1260			2.500		2.041	82	54-144	
Sui	rrogate	%REC	Limits					
Decachlorobig	phenyl	92	22-139					
Туре:	BSD			Lab ID:	QC91	0923		

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Aroclor-1016	2.500	2.579	103	59-134	27	33
Aroclor-1260	2.500	2.614	105	54-144	25	44

Surrogate	%REC	Limits
Decachlorobiphenyl	96	22-139

		Polychlc	rinated	Biphenyls	(PC	Bs)
Lab #:	294849			Location:		NRLF Phase 4
Client:	A3GEO Inc.			Prep:		EPA 3540C
Project#:	1101-17A			Analysis:		EPA 8082
Field ID:	IDW-A3-17-1	-SOILD		Batch#:		254593
Units:	ug/Kg			Sampled:		11/28/17
Basis:	as received	l		Received:		11/28/17
Diln Fac:	1.000			Prepared:		12/11/17
Type:	SAMPLE			Matrix:		Soil
Lab ID:	294849-001			Analyzed:		12/13/17
				1		
	lyte		Result		RL	
Aroclor-1016		ND			84	
Aroclor-1221		ND			170	
Aroclor-1232		ND			84	
Aroclor-1242		ND			84	
Aroclor-1248		ND			84	
Aroclor-1254		ND			84	
Aroclor-1260		ND			84	
Surr	ogate	%REC	Limits			
Decachlorobiph		89	26-153			
Type:	BLANK			Matrix:		Miscell.
Lab ID:	QC912438			Analyzed:		12/12/17
	QCJ12430			Anaryzeu		
Ana	lyte		Result		RL	
Aroclor-1016		ND			9.	6
Aroclor-1221		ND			19	
Aroclor-1232		ND			9.	
Aroclor-1242		ND			9.	
Aroclor-1248		ND			9.	
Aroclor-1254		ND			9.	
Aroclor-1260		ND			9.	6
Gumm	ogate	%REC	Limits			
Decachlorobiph		113	26-153			
Decaciiioropipn	тептут	113	20-193			

	Polychl	orinated Biphenyls (PCBs)	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3540C	
Project#:	1101-17A	Analysis:	EPA 8082	
Matrix:	Miscell.	Batch#:	254593	
Units:	ug/Kg	Prepared:	12/11/17	
Diln Fac:	1.000	Analyzed:	12/12/17	

Туре:	BS			Lab ID:	QC91	2439		
	Analyte		Spiked		Result	%REC	Limits	
Aroclor-1	1016		166.7		203.4	122	56-152	
Aroclor-1	1260		166.7		199.5	120	52-165	
	Surrogate	%REC	Limits					
Decachlor	robiphenyl	116	26-153					
Туре:	BSD			Lab ID:	QC91	2440		

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Aroclor-1016	166.7	178.2	107	56-152	13	48
Aroclor-1260	166.7	182.4	109	52-165	9	39

Surrogate	%REC	Limits
Decachlorobiphenyl	107	26-153

California Title 22 Metals							
Lab #:	294849]	Project#:	11	01-17A	
Client:	A3GEO Inc.		1	Location:	NR	LF Phase 4	
Field ID:	IDW-A3-17-1-SO	ILD]	Basis:	as	received	
Lab ID:	294849-001]	Diln Fac:	1.	000	
Matrix:	Soil		:	Sampled:	11	/28/17	
Units:	mg/Kg]	Received:	11	/28/17	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	2.0		11/29/17		EPA 3050B	EPA 6010B
Arsenic	9.5	1.5	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Barium	200	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Beryllium	0.48	0.10	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Cadmium	0.38	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Chromium	49	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Cobalt	19	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Copper	25	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Lead	7.6	1.0	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Mercury	0.10	0.017	254349	12/04/17	12/04/17	METHOD	EPA 7471A
Molybdenum	0.72	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Nickel	59	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Selenium	ND	2.0	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Silver	ND	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Thallium	ND	0.50	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Vanadium	43	0.25	254195	11/29/17	11/29/17	EPA 3050B	EPA 6010B
Zinc	48	1.0	254195	11/29/17	11/30/17	EPA 3050B	EPA 6010B

California Title 22 Metals				
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3050B	
Project#:	1101-17A	Analysis:	EPA 6010B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC910835	Batch#:	254195	
Matrix:	Soil	Prepared:	11/29/17	
Units:	mg/Kg	Analyzed:	11/29/17	

Analyte	Result	RL	
Antimony	ND	2.0	
Arsenic	ND	1.5	
Barium	ND	0.26	
Beryllium	ND	0.10	
Cadmium	ND	0.26	
Chromium	ND	0.26	
Cobalt	ND	0.26	
Copper	ND	0.26	
Lead	ND	1.0	
Molybdenum	ND	0.26	
Nickel	ND	0.26	
Selenium	ND	2.0	
Silver	ND	0.26	
Thallium	ND	0.52	
Vanadium	ND	0.26	
Zinc	ND	1.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals					
Lab #:	294849	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 3050B		
Project#:	1101-17A	Analysis:	EPA 6010B		
Matrix:	Soil	Batch#:	254195		
Units:	mg/Kg	Prepared:	11/29/17		
Diln Fac:	1.000	Analyzed:	11/29/17		

Type: BS	Lab I	D: QC9108	336	
Analyte	Spiked	Result	%REC	Limits
Antimony	49.02	47.67	97	80-120
Arsenic	49.02	48.71	99	80-120
Barium	49.02	50.57	103	80-120
Beryllium	24.51	24.41	100	80-120
Cadmium	49.02	50.36	103	80-120
Chromium	49.02	53.18	108	80-120
Cobalt	49.02	51.43	105	80-120
Copper	49.02	47.50	97	80-120
Lead	49.02	47.94	98	80-120
Molybdenum	49.02	47.84	98	80-120
Nickel	49.02	47.78	97	80-120
Selenium	49.02	52.68	107	80-120
Silver	4.902	4.325	88	80-120
Thallium	49.02	49.05	100	80-120
Vanadium	49.02	50.21	102	80-120
Zinc	49.02	51.31	105	80-120

Type:	BSD	Lab ID: QCS	910837			
Analy	vte Spiked	Result	%REC	Limits	RPD	Lim
Antimony		49.49	99	80-120	2	20
Arsenic	50.00	52.94	106	80-120	б	20
Barium	50.00	51.67	103	80-120	0	20
Beryllium	25.00	24.94	100	80-120	0	20
Cadmium	50.00	50.29	101	80-120	2	20
Chromium	50.00	53.28	107	80-120	2	20
Cobalt	50.00	51.76	104	80-120	1	20
Copper	50.00	51.16	102	80-120	5	20
Lead	50.00	49.00	98	80-120	0	20
Molybdenum	50.00	48.78	98	80-120	0	20
Nickel	50.00	48.52	97	80-120	0	20
Selenium	50.00	52.26	105	80-120	3	20
Silver	5.00) 4.392	88	80-120	0	22
Thallium	50.00	53.52	107	80-120	7	20
Vanadium	50.00	53.53	107	80-120	4	20
Zinc	50.00	52.05	104	80-120	1	20

	California Title 22 Metals				
Lab #:	294849	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 3050B		
Project#:	1101-17A	Analysis:	EPA 6010B		
Field ID:	ZZZZZZZZZ	Batch#:	254195		
MSS Lab ID:	294876-001	Sampled:	11/29/17		
Matrix:	Soil	Received:	11/29/17		
Units:	mg/Kg	Prepared:	11/29/17		
Basis:	as received	Analyzed:	11/29/17		
Diln Fac:	1.000	-			

Type: MS		Lab ID:	QC910838		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	0.7755	50.51	17.51	33	1-120
Arsenic	6.627	50.51	58.63	103	71-123
Barium	141.7	50.51	194.6	105	48-155
Beryllium	0.3951	25.25	24.70	96	80-120
Cadmium	0.2563	50.51	51.94	102	78-120
Chromium	39.94	50.51	83.02	85	64-135
Cobalt	8.689	50.51	55.81	93	65-120
Copper	20.46	50.51	79.70	117	75-132
Lead	22.25	50.51	69.58	94	53-128
Molybdenum	0.8214	50.51	44.44	86	68-120
Nicĥel	33.61	50.51	77.48	87	56-128
Selenium	<0.2365	50.51	52.78	104	59-120
Silver	<0.05263	5.051	4.721	93	36-123
Thallium	<0.1585	50.51	45.70	90	55-120
Vanadium	34.61	50.51	90.73	111	73-129
Zinc	67.76	50.51	114.4	92	49-138

Type:	MSD	Lab ID: QC	2910839			
Analy	rte Spiked	Result	%REC	Limits	RPD	Lim
Antimony	49.50	15.82	30	1-120	8	50
Arsenic	49.50	55.81	99	71-123	3	27
Barium	49.50	183.2	84	48-155	5	41
Beryllium	24.75	23.27	92	80-120	4	20
Cadmium	49.50	48.78	98	78-120	4	21
Chromium	49.50	78.16	77	64-135	5	37
Cobalt	49.50	52.27	88	65-120	5	32
Copper	49.50	70.98	102	75-132	10	33
Lead	49.50	68.19	93	53-128	1	48
Molybdenum	49.50	41.65	82	68-120	5	23
Nickel	49.50	74.02	82	56-128	3	38
Selenium	49.50	49.82	101	59-120	4	30
Silver	4.95	0 4.502	2 91	36-123	3	47
Thallium	49.50	42.92	87	55-120	4	22
Vanadium	49.50	84.95	102	73-129	5	27
Zinc	49.50	111.0	87	49-138	2	39

California Title 22 Metals				
- 1				
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	METHOD	
Project#:	1101-17A	Analysis:	EPA 7471A	
Analyte:	Mercury	Diln Fac:	1.000	
Type:	BLANK	Batch#:	254349	
Lab ID:	QC911459	Prepared:	12/04/17	
Matrix:	Soil	Analyzed:	12/04/17	
Units:	mg/Kg			
Degult	זת			

Result	RL	
ND	0.016	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Cali	fornia Title 22 Meta	ls	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	METHOD	
Project#:	1101-17A	Analysis:	EPA 7471A	
Analyte:	Mercury	Batch#:	254349	
Matrix:	Soil	Prepared:	12/04/17	
Units:	mg/Kg	Analyzed:	12/04/17	
Diln Fac:	1.000			

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC911460	0.2155	0.2040	95	80-126		
BSD	QC911461	0.2119	0.1912	90	80-126	5	45

QC911463

MSD

	Cali	fornia Title 22 Me	tals				
Lab #:	294849	Location:	NRLF	Phase 4			
Client:	A3GEO Inc.	Prep:	METHO)D			
Project#:	1101-17A	Analysis:	EPA 7	471A			
Analyte:	Mercury	Diln Fac:	1.000)			
Field ID:	ZZZZZZZZZZ	Batch#:	25434	19			
MSS Lab ID:	294564-001	Sampled:	11/15	5/17			
Matrix:	Soil	Received:	11/15	5/17			
Units:	mg/Kg	Prepared:	12/04	l/17			
Basis:	as received	Analyzed:	12/04	l/17			
Type Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS QC911462	0.01261	0.1923	0.1969	96	61-157		

0.2083

0.1991

89

61-157

б

57

		Califor	nia Title 22 M	etals	
Lab #:	294849		Project#:	1101-17A	
Client:	A3GEO Inc.		Location:	NRLF Phase 4	
Field ID:	IDW-A3-17-1-LI	QUID	Basis:	as received	
Lab ID:	294849-002		Diln Fac:	1.000	
Matrix:	Miscell.		Sampled:	11/28/17	
Units:	mg/Kg		Received:	11/28/17	
Analyte	Result	RL	Batch# Prepared	Analyzed Prep	Analysis
Antimony	ND	2.0	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Arsenic	2.1	0.65	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Barium	48	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Beryllium	0.16	0.11	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Cadmium	ND	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Chromium	22	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Cobalt	4.3	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Copper	6.0	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Lead	2.0	0.54	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Mercury	0.020	0.018	254350 12/04/17	12/04/17 METHOD	EPA 7471A
Molybdenum	0.30	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Nickel	28	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Selenium	ND	2.0	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Silver	ND	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Thallium	ND	0.54	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Vanadium	13	0.27	254195 11/29/17	11/29/17 EPA 3050B	EPA 6010B
Zinc	12	1.1	254195 11/29/17	11/30/17 EPA 3050B	EPA 6010B

	Cali	fornia Title 22 Meta	ls	
Lab #:	294849	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3050B	
Project#:	1101-17A	Analysis:	EPA 6010B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC910835	Batch#:	254195	
Matrix:	Soil	Prepared:	11/29/17	
Units:	mg/Kg	Analyzed:	11/29/17	

Analyte	Result	RL	
Antimony	ND	2.0	
Arsenic	ND	0.63	
Barium	ND	0.26	
Beryllium	ND	0.10	
Cadmium	ND	0.26	
Chromium	ND	0.26	
Cobalt	ND	0.26	
Copper	ND	0.26	
Lead	ND	0.52	
Molybdenum	ND	0.26	
Nickel	ND	0.26	
Selenium	ND	2.0	
Silver	ND	0.26	
Thallium	ND	0.52	
Vanadium	ND	0.26	
Zinc	ND	1.0	

	California T	itle 22 Metals	
Lab #:	294849	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 3050B
Project#:	1101-17A	Analysis:	EPA 6010B
Matrix:	Soil	Batch#:	254195
Units:	mg/Kg	Prepared:	11/29/17
Diln Fac:	1.000	Analyzed:	11/29/17

Type: BS	Lab I	D: QC9108	336	
Analyte	Spiked	Result	%REC	Limits
Antimony	49.02	47.67	97	80-120
Arsenic	49.02	48.71	99	80-120
Barium	49.02	50.57	103	80-120
Beryllium	24.51	24.41	100	80-120
Cadmium	49.02	50.36	103	80-120
Chromium	49.02	53.18	108	80-120
Cobalt	49.02	51.43	105	80-120
Copper	49.02	47.50	97	80-120
Lead	49.02	47.94	98	80-120
Molybdenum	49.02	47.84	98	80-120
Nickel	49.02	47.78	97	80-120
Selenium	49.02	52.68	107	80-120
Silver	4.902	4.325	88	80-120
Thallium	49.02	49.05	100	80-120
Vanadium	49.02	50.21	102	80-120
Zinc	49.02	51.31	105	80-120

Type:	BSD	Lab ID: QCS	910837			
Analy	vte Spiked	Result	%REC	Limits	RPD	Lim
Antimony		49.49	99	80-120	2	20
Arsenic	50.00	52.94	106	80-120	б	20
Barium	50.00	51.67	103	80-120	0	20
Beryllium	25.00	24.94	100	80-120	0	20
Cadmium	50.00	50.29	101	80-120	2	20
Chromium	50.00	53.28	107	80-120	2	20
Cobalt	50.00	51.76	104	80-120	1	20
Copper	50.00	51.16	102	80-120	5	20
Lead	50.00	49.00	98	80-120	0	20
Molybdenum	50.00	48.78	98	80-120	0	20
Nickel	50.00	48.52	97	80-120	0	20
Selenium	50.00	52.26	105	80-120	3	20
Silver	5.00) 4.392	88	80-120	0	22
Thallium	50.00	53.52	107	80-120	7	20
Vanadium	50.00	53.53	107	80-120	4	20
Zinc	50.00	52.05	104	80-120	1	20

		California Title 22 Metals	
Lab #:	294849	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 3050B
Project#:	1101-17A	Analysis:	EPA 6010B
Field ID:	ZZZZZZZZZZ	Batch#:	254195
MSS Lab ID:	294876-001	Sampled:	11/29/17
Matrix:	Soil	Received:	11/29/17
Units:	mg/Kg	Prepared:	11/29/17
Basis:	as received	Analyzed:	11/29/17
Diln Fac:	1.000	_	

Type: MS		Lab ID:	QC910838		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	0.7755	50.51	17.51	33	1-120
Arsenic	6.627	50.51	58.63	103	71-123
Barium	141.7	50.51	194.6	105	48-155
Beryllium	0.3951	25.25	24.70	96	80-120
Cadmium	0.2563	50.51	51.94	102	78-120
Chromium	39.94	50.51	83.02	85	64-135
Cobalt	8.689	50.51	55.81	93	65-120
Copper	20.46	50.51	79.70	117	75-132
Lead	22.25	50.51	69.58	94	53-128
Molybdenum	0.8214	50.51	44.44	86	68-120
Nickel	33.61	50.51	77.48	87	56-128
Selenium	<0.2365	50.51	52.78	104	59-120
Silver	<0.05263	5.051	4.721	93	36-123
Thallium	<0.1585	50.51	45.70	90	55-120
Vanadium	34.61	50.51	90.73	111	73-129
Zinc	67.76	50.51	114.4	92	49-138

Type: MSD	Lab ID:	QC910	839			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	49.50	15.82	30	1-120	8	50
Arsenic	49.50	55.81	99	71-123	3	27
Barium	49.50	183.2	84	48-155	5	41
Beryllium	24.75	23.27	92	80-120	4	20
Cadmium	49.50	48.78	98	78-120	4	21
Chromium	49.50	78.16	77	64-135	5	37
Cobalt	49.50	52.27	88	65-120	5	32
Copper	49.50	70.98	102	75-132	10	33
Lead	49.50	68.19	93	53-128	1	48
Molybdenum	49.50	41.65	82	68-120	5	23
Nickel	49.50	74.02	82	56-128	3	38
Selenium	49.50	49.82	101	59-120	4	30
Silver	4.950	4.502	91	36-123	3	47
Thallium	49.50	42.92	87	55-120	4	22
Vanadium	49.50	84.95	102	73-129	5	27
Zinc	49.50	111.0	87	49-138	2	39

California Title 22 Metals					
7.1.0.	004040				
Lab #:	294849	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	METHOD		
Project#:	1101-17A	Analysis:	EPA 7471A		
Analyte:	Mercury	Diln Fac:	1.000		
Туре:	BLANK	Batch#:	254350		
Lab ID:	QC911465	Prepared:	12/04/17		
Matrix:	Soil	Analyzed:	12/04/17		
Units:	mg/Kg				
D] +-	DI				

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals						
Lab #:	294849	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	METHOD			
Project#:	1101-17A	Analysis:	EPA 7471A			
Analyte:	Mercury	Batch#:	254350			
Matrix:	Soil	Prepared:	12/04/17			
Units:	mg/Kg	Analyzed:	12/04/17			
Diln Fac:	1.000					

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC911466	0.2193	0.2101	96	80-126		
BSD	QC911467	0.2016	0.2009	100	80-126	4	45

QC911469

MSD

California Title 22 Metals									
Lab #:	294849	Location:	NRLF	Phase 4					
Client:	A3GEO Inc.	Prep:	METHC	D					
Project#:	1101-17A	Analysis:	EPA 7	471A					
Analyte:	Mercury	Diln Fac:	1.000						
Field ID:	ZZZZZZZZZZ	Batch#:	25435	0					
MSS Lab ID:	294590-014	Sampled:	11/17/17						
Matrix:	Soil	Received:	11/17/17						
Units:	mg/Kg	Prepared:	d: 12/04/17						
Basis:	as received	Analyzed: 12/04/17							
Type Lab II	MSS Result	Spiked 1	Result	%REC	Limits	RPD	Lim		
MS QC911468	0.03410	0.1923	0.2414	108	61-157				

0.1953

0.2152

93

57

61-157 13

Enthalpy Analytical

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 294938 ANALYTICAL REPORT

A3GEO Inc.	Project : 1101-17A Location : NRLF Phase 4 Level : II

<u>Lab ID</u>
294938-001
294938-002
294938-003
294938-004

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Patrick McCarthy Project Manager patrick.mccarthy@enthalpy.com (510) 204-2236

CA ELAP# 2896, NELAP# 4044-001

Date: <u>12/13/2017</u>

CASE NARRATIVE

Laboratory number:	294938
Client:	A3GEO Inc.
Project:	1101-17A
Location:	NRLF Phase 4
Request Date:	11/30/17
Samples Received:	11/29/17

This data package contains sample and QC results for two soil samples and two water samples, requested for the above referenced project on 11/30/17. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B) Soil:

No analytical problems were encountered.

TPH-Purgeables and/or BTXE by GC (EPA 8015B) Miscell.:

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B) Soil:

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Soil:

High recoveries were observed for benzene and 1,1-dichloroethene in the MSD for batch 254562; the parent sample was not a project sample, the LCS was within limits, the associated RPDs were within limits, and these analytes were not detected at or above the RL in the associated sample. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Miscell .:

No analytical problems were encountered.

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM) Water:

IDW-A3-17-2-LIQUID (lab # 294938-003) was diluted due to high non-target analytes. No other analytical problems were encountered.

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM) Soil:

No analytical problems were encountered.

PCBs (EPA 8082) Water:

No analytical problems were encountered.

PCBs (EPA 8082) Soil:

All samples underwent sulfuric acid cleanup using EPA Method 3665A. All samples underwent sulfur cleanup using the copper option in EPA Method 3660B. Matrix spikes were not performed for this analysis in batch 254593 due to insufficient sample amount. No other analytical problems were encountered.

Page 1 of 2

CASE NARRATIVE

Laboratory number:294938Client:A3GEO Inc.Project:1101-17ALocation:NRLF Phase 4Request Date:11/30/17Samples Received:11/29/17

Metals (EPA 6010B and EPA 7470A) Water:

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A) Soil:

High recovery was observed for lead in the MSD for batch 254268; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPD was within limits. No other analytical problems were encountered.

*** Missing Items ***

The following items are valid in the narrative, but for some reason didn't end up in the above report:

Item 2 (PCBS/Miscell.): All samples underwent sulfuric acid cleanup using EPA Method 3665A. Item 5 (PCBS/Miscell.): All samples underwent sulfur cleanup using the copper option in EPA Method 3660B.

You can invalidate these items, or adjust rgroup/matrix/method ([C] button) for each until they appear in the main body of the report. See the operations manager or LIMS staff for assistance if necessary.

Fri, Dec 1, 2017 at 10:54 AM

Re: 1101-17A - Enthalpy (Berkeley) Login Summary (294938)

1 message

Laura Buchanan <laura@a3geo.com>

To: Patrick McCarthy <patrick.mccarthy@enthalpy.com>

Hi Patrick.

As discussed on the phone, the following analyses should be run:

- IDW-A3-17-2-Solid should be analyzed for PCBs, CAM 17 Metals, PAHs, and TPH DRO/GRO/ORO by 8015. Please DO NOT analyze the contents of this jar for VOCs
- by 8260B. • A3-17-2-40 (soil) should be analyzed for VOCs by 8260B.

If you have any additional questions please don't hesitate to give me a call.

Best, Laura

On Fri, Dec 1, 2017 at 11:04 AM, Patrick McCarthy <patrick.mccarthy@enthalpy.com> wrote:

Hi Laura, When you're available, please respond to this email with the requested revisions to sample 2. Thanks!

Enthalpy (Berkeley) Login Summary for 294938

Project: 1101-17A Site: NRLF Phase 4 Lab Login #: 294938 Report Level: II PO#: Enthalpy (Berkeley) Proj Mgr: Will Rice	Report To: A3GEO Inc. ATTN: Laura Buchanan	Bill To:	A3GEO Inc.
	•		
	ATTN: Laura Buchanan		

Client ID	Lab ID	Sampled	Received	DueDate	Matrix	Dry	Analyses	COC #	Comments
IDW-A3-17-1-LIQUID	001	11/29/17 00:00	11/29/17			N			
				12/07	Water		TEHM		
IDW-A3-17-2-SOLID	002	11/28/17 00:00	11/29/17			N	······		
				12/07	Soil		6010-T22 MET		
				12/07	Soil		8260		
				12/07	Soil		8270-SIM		
				12/07	Soll		PCB		SOXHLET EXTRACTION.
IDW-A3-17-2-LIQUID	003	11/29/17 00:00	11/29/17			N			
				12/07	Miscell.		8260		3/3 VOAs arrived with bubbles.
				12/07	Miscell.		РСВ		
				12/07	Miscell.		т∨н		
				12/07	Water		6010-T22 MET		Added HNO3 (#2017013053) => ph <2. 11-30-17 0945
				12/07	Water		8270-SIM		
				12/07	Water		тенм		
A3-17-2-40	004	11/29/17 00:00	11/29/17			N			
				12/07	Soil		HOLD		

Email compiled and sent 12/01/17 09:04 AM.

Laura J. Buchanan, P.E., P.G. Senior Project Engineer

A3GEO 1331 Seventh Street, Unit E Berkeley, CA 94710

CHAIN OF CUSTOM HALPY YIIICAI MINING COST MINING COST		Meon	1
CHAIN OF CUSTODY HALPY Y T I C A 1 mpkins Labs ample: amp	Page L Chain of Custody #	Mis in 289 403 M 5HV0 × 1000000 PA ELY 801 Wis in 2000000 PA ELY 8000000 PA ELY 801 X X X Lbh D8000000 PA ELY 801 X X X Lbh D8000000 PA ELY 801 X 2000 PA ELY 8000 X 2000 PA ELY 800 X 2000 PA ELY 8000 X 2000 PA ELY 8000	e(t-2/time: t73 1/2%/th: 17 e: time:
	CHAIN OF CUSTODY Carlosin #294938	ax (510) 486-0632 Sample:: Sample:: Sample:: Company: A3 (-FC) Company: A3 (-FC) Co	RELINQUISHE
	Formerly Curtis & Tompki	17-2-5eliguid mple ID.	

COOLER RECEIPT CHECKLIST	
Login # <u>294938</u> Date Received <u>1129/17</u> Number of coolers Client <u>A3GEO</u> Project <u>NRUF</u> Phase T	ENTHALPY Berkeley
Date Opened 1/26/17 By (print) Tk1 (sign) 74/17 Date Logged in 11-30-17 By (print) kp (sign) 1 Date Labelled 1(-30-17 By (print) kp (sign) 1	<u>кр</u>
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler on sa How many Name Date 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe) 	YES NO MA
☐ Bubble Wrap ☐ Foam blocks ➢ Bags ☐ ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	None Paper towels
Type of ice used: ₩et □Blue/Gel □None Temp(°C	
Temperature blank(s) included? □ Thermometer# R	
20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By I	VES NO IV29/17 VES 00 VES 00 VES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO
(15) Added HNO; (# 2017013053) => pH 22 fr (co) 7/3 VOAs arrived with tabbles for samp	or sample 3. 11-30-1-

Enthalpy Sample Preservation for 294938

<u>Sample</u>	<u>:Hq</u>	<2	>9	>12	Other
-003a		[]	[]	[]	
b		[]	[]	[]	
С		[]	[]	[]	
d		[X]	[]	[]	
e		[]	[]	[]	
f		[]	[]	[]	
g		[]	[]	[]	

Analyst: ______ Date: _______ Page 1 of 1

•

Detections Summary for 294938

Results for any subcontracted analyses are not included in this summary.

Client : A3GEO Inc. Project : 1101-17A Location : NRLF Phase 4

Client Sample ID : IDW-A3-17-1-LIQUID Laboratory Sample ID : 294938-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	3,500	Y	250	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Motor Oil C24-C36	11,000		1,500	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : IDW-A3-17-2-SOLID Laboratory Sample ID : 294938-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Arsenic	3.5		1.5	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Barium	120		0.26	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Beryllium	0.39		0.10	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Chromium	48		0.26	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Cobalt	11		0.26	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Copper	20		0.26	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Lead	5.0		1.0	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Mercury	0.12		0.017	mg/Kg	As Recd	1.000	EPA 7471A	METHOD
Nickel	59		0.26	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Vanadium	32		0.26	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B
Zinc	44		1.0	mg/Kg	As Recd	1.000	EPA 6010B	EPA 3050B

Client Sample ID : IDW-A3-17-2-LIQUID Laboratory Sample ID : 294938-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	2,300	Y	250	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Motor Oil C24-C36	6,100		1,500	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Antimony	160		100	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Arsenic	3,100		54	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Barium	61,000		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Beryllium	150		20	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Cadmium	85		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Chromium	17,000		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Cobalt	3,700		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Copper	7,100		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Lead	2,200		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Mercury	4.6		0.20	ug/L	TOTAL	1.000	EPA 7470A	METHOD
Molybdenum	150		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Nickel	19,000		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Selenium	120		100	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Silver	130		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Vanadium	15,000		50	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Zinc	14,000		200	ug/L	TOTAL	1.000	EPA 6010B	EPA 3010A
Page 1 of 2								53.0

Client Sample ID : A3-17-2-40

Laboratory Sample ID : 294938-004

No Detections

Y = Sample exhibits chromatographic pattern which does not resemble standard Page 2 of 2 53.0

		metel			hang		
		Total	VOLATII	e Hydrocari	bons		
Lab #:	294938			Location:		NRLF Phase 4	
Client:	A3GEO Inc.			Prep:		EPA 5030B	
Project#:	1101-17A			Analysis:		EPA 8015B	
Field ID:	IDW-A3-17-2-	SOLID		Batch#:		254345	
Matrix:	Soil			Sampled:		11/28/17	
Units:	mg/Kg			Received:		11/29/17	
Basis:	as received			Analyzed:		12/04/17	
Diln Fac:	1.000						
Type:	SAMPLE			Lab ID:		294938-002	
iype.						291950 002	
	Analyte		Result		RL		
Gasoline (C7-C12	NE)		1.	0	
	Surrogate	%REC	Limits				
Bromofluor	robenzene (FID)	89	65-136				
Туре:	BLANK			Lab ID:		QC911440	
Type:	BLANK		Result	Lab ID:	RL	QC911440	
Type: Gasoline (Analyte	NE		Lab ID:	RL		
	Analyte 27-C12	NE)	Lab ID:			
Gasoline (Analyte			Lab ID:			

	т	otal Volatile Hydr	ocarbons	
Lab #:	294938	Locati	on:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:		EPA 5030B
Project#:	1101-17A	Analys	is:	EPA 8015B
Type:	LCS	Diln F	ac:	1.000
Lab ID:	QC911435	Batch#	:	254345
Matrix:	Soil	Analyz	ed:	12/04/17
Units:	mg/Kg			
А	nalyte	Spiked	Result	t %REC Limits

Gasoline C7-C12		1.000	0.8714	87	80-121	
Surrogate	%REC	Limits				
Bromofluorobenzene (FID)	01	65-136				

	Total	Volatile Hydrocarbo	ns	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5030B	
Project#:	1101-17A	Analysis:	EPA 8015B	
Field ID:	ZZZZZZZZZZ	Diln Fac:	1.000	
MSS Lab ID:	295010-001	Batch#:	254345	
Matrix:	Soil	Sampled:	12/01/17	
Units:	mg/Kg	Received:	12/01/17	
Basis:	as received	Analyzed:	12/05/17	

Type:	MS			Lab ID:	QC9	11438		
	Analyte	MSS Re	sult	Spike	ed	Result	%REC	Limits
Gasoline C	27-C12	0	.07254	10.	31	6.592	63	52-120
	Surrogate	%REC	Limits					
Bromofluor	obenzene (FID)	94	65-136					
Type:	MSD			Lab ID:	QC9	11439		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline C	27-C12		9.259)	5.541	59	52-120	7 25
	Surrogate	%REC	Limits					

Bromofluorobenzene (FID) 94 65-136

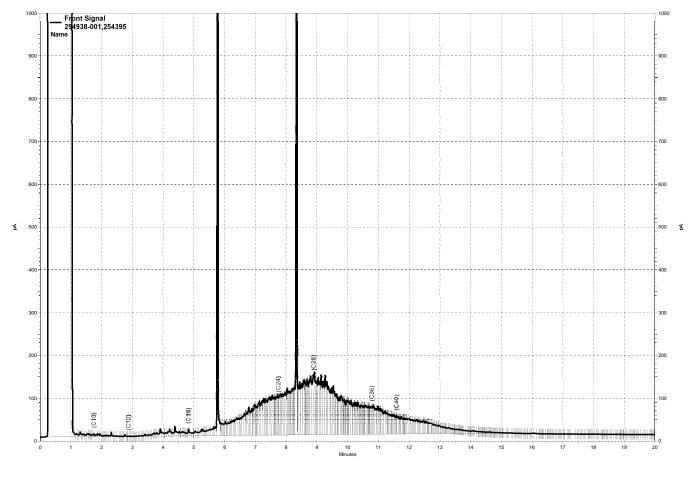
	т	otal Volatile Hydr	ocarbons	
Lab #:	294938	Locati	on:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:		EPA 5030B
Project#:	1101-17A	Analys	is:	EPA 8015B
Type:	LCS	Diln F	ac:	1.000
Lab ID:	QC911435	Batch#	:	254345
Matrix:	Soil	Analyz	ed:	12/04/17
Units:	mg/Kg			
А	nalyte	Spiked	Result	t %REC Limits

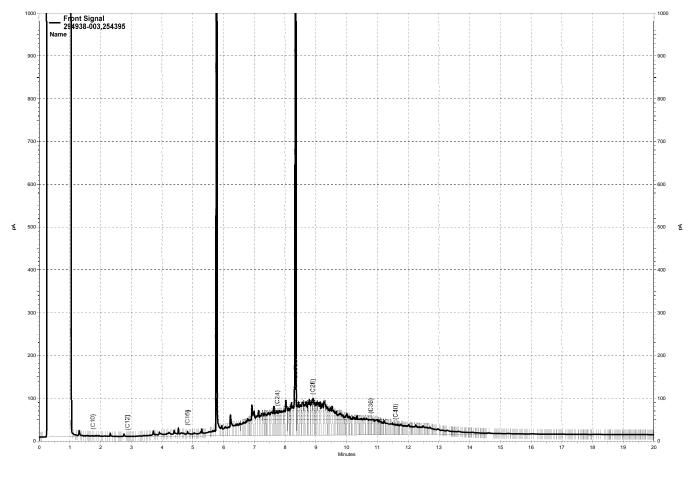
Gasoline C7-C12		1.000	0.8714	87	80-121	
Surrogate	%REC	Limits				
Bromofluorobenzene (FID)	01	65-136				

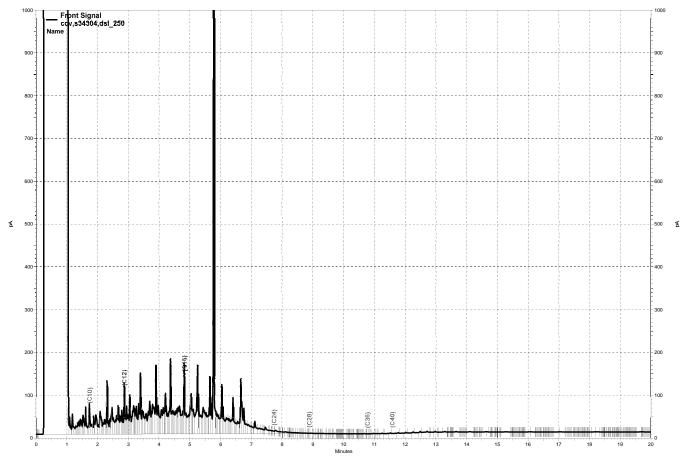
	Total	Volatile Hydrocarbo	ons
Lab #:	294938	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 5030B
Project#:	1101-17A	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Diln Fac:	1.000
MSS Lab ID:	295010-001	Batch#:	254345
Matrix:	Soil	Sampled:	12/01/17
Units:	mg/Kg	Received:	12/01/17
Basis:	as received	Analyzed:	12/05/17

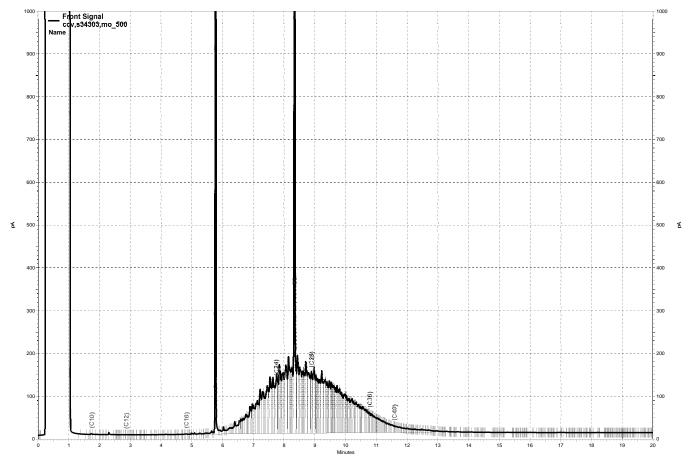
Type:	MS			Lab ID:	QC9	11438		
	Analyte	MSS Re	sult	Spike	ed	Result	%REC	Limits
Gasoline C	27-C12	0	.07254	10.	31	6.592	63	52-120
	Surrogate	%REC	Limits					
Bromofluor	obenzene (FID)	94	65-136					
Type:	MSD			Lab ID:	QC9	11439		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline C	27-C12		9.259)	5.541	59	52-120	7 25
	Surrogate	%REC	Limits					

Bromofluorobenzene (FID) 94 65-136




	_			ble Hydroc	arboi		
	.1.0	nrai i	нуггаста		ar boi		
	1		BACT CCCC	bie nyaroe		10	
Lab #:	294938			Location:		NRLF Phase 4	
Client:	A3GEO Inc.			Prep:		EPA 3520C	
Project#:	1101-17A			Analysis:		EPA 8015B	
Matrix:	Water			Sampled:		11/29/17	
Units:	ug/L			Received:		11/29/17	
Diln Fac:	1.000			Prepared:		12/05/17	
Batch#:	254395			Analyzed:		12/06/17	
Field ID:	IDW-A3-17-1-LIQ	QUID		Lab ID:		294938-001	
Гуре:	SAMPLE						
	nalyte		Result		RL		
Diesel C10-C	224		3,500 Y		250		
		1	L1,000	1	,500		
Motor Oil C2	24-C36		,				
	rrogate	%REC	Limits				
Su o-Terphenyl Field ID:		%REC 88	Limits	Lab ID:		294938-003	
Su o-Terphenyl Field ID: Fype: A	IDW-A3-17-2-LIQ SAMPLE	%REC 88	Limits 51-134 Result		RL	294938-003	
Su o-Terphenyl Field ID: Type:	IDW-A3-17-2-LIQ SAMPLE	%REC 88	Limits 51-134			294938-003	
Su o-Terphenyl Field ID: Cype: A	IDW-A3-17-2-LIQ SAMPLE malyte	%REC 88	Limits 51-134 Result	Lab ID:	RL	294938-003	
Su o-Terphenyl Field ID: Type: Diesel C10-C Motor Oil C2	IDW-A3-17-2-LIQ SAMPLE malyte	%REC 88	Limits 51-134 Result 2,300 Y	Lab ID:	RL 250	294938-003	
Su o-Terphenyl Field ID: Fype: Diesel C10-C Motor Oil C2	IDW-A3-17-2-LIQ SAMPLE 224 24-C36	%REC 88 2011D	Limits 51-134 Result 2,300 Y 6,100	Lab ID:	RL 250	294938-003	
Su o-Terphenyl Field ID: Fype: A Diesel C10-C Motor Oil C2	IDW-A3-17-2-LIQ SAMPLE 224 24-C36	%REC	Limits 51-134 Result 2,300 Y 6,100 Limits	Lab ID:	RL 250	294938-003	
Su o-Terphenyl Field ID: Type: Diesel C10-C Motor Oil C2 Su o-Terphenyl	IDW-A3-17-2-LIQ SAMPLE 224 24-C36	%REC	Limits 51-134 Result 2,300 Y 6,100 Limits	Lab ID:	RL 250	294938-003 	
Su o-Terphenyl Field ID: Fype: Diesel C10-C Motor Oil C2 Su o-Terphenyl	IDW-A3-17-2-LIQ SAMPLE 224 24-C36 Irrogate	%REC	Limits 51-134 Result 2,300 Y 6,100 Limits	Lab ID: 1	RL 250		
Su o-Terphenyl Field ID: Fype: Diesel C10-C Motor Oil C2 Su o-Terphenyl	IDW-A3-17-2-LIQ SAMPLE 224 24-C36 Irrogate BLANK Malyte	%REC	Limits 51-134 2,300 Y 6,100 Limits 51-134 Result	Lab ID: 1	RL 250 .,500		
Su o-Terphenyl Field ID: Type: Diesel C10-C Motor Oil C2 Su o-Terphenyl	IDW-A3-17-2-LIQ SAMPLE 224 24-C36 Irrogate BLANK BLANK	%REC 88 QUID %REC 89	Limits 51-134 2,300 Y 6,100 Limits 51-134 Result	Lab ID: 1	RL 250 .,500		
Su o-Terphenyl Field ID: Type: Diesel C10-C Motor Oil C2 Su o-Terphenyl Type: A Diesel C10-C Motor Oil C2	IDW-A3-17-2-LIQ SAMPLE 224 24-C36 Irrogate BLANK BLANK	%REC 88 QUID %REC 89 NI	Limits 51-134 2,300 Y 6,100 Limits 51-134 Result	Lab ID: 1	RL 250 .,500 RL 50		


Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 1


		Total 1	Extracta	able Hydro	ocarbo	าร			
Lab #:	294938			Location:		NRLF Phase 4			
Client:	A3GEO Inc.			Prep:		EPA 3520C			
Project#:	1101-17A			Analysis:		EPA 8015B			
Matrix:	Water			Batch#:		254395			
Units:	ug/L			Prepared:		12/05/17			
Diln Fac:	1.000			Analyzed:		12/06/17			
Туре:	BS			Lab ID:		QC911639			
	nalyte		Spiked		Result	%REC	Limits		
Diesel C10-C	24		2,500		2,283	91	50-123		
Sun o-Terphenyl	rrogate	%REC 93	Limits 51-134						
Туре:	BSD			Lab ID:		QC911640			
	nalyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C10-C	24		2,500		2,096	84	50-123	9	34
Sun o-Terphenyl	rrogate	%REC 86	Limits 51-134						
C ICIPHCHYI			<u> </u>						

-\\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\338a121.dat, Front Signal

\\kraken\gdrive\ezchrom\Projects\GC27\Data\2017\338a122.dat, Front Signal

		Total 1	Extracta	able Hydrod	arbons	
				•		
Lab #:	294938			Location:	NRLF Phase 4	
Client:	A3GEO Inc.			Prep:	EPA 3550C	
Project#:	1101-17A			Analysis:	EPA 8015B	
Field ID:	IDW-A3-17-2-	SOLID		Batch#:	254376	
Matrix:	Soil			Sampled:	11/28/17	
Units:	mg/Kg			Received:	11/29/17	
Basis:	as received			Analyzed:	12/06/17	
Diln Fac:	1.000					
Type:	SAMPLE			Prepared:	12/06/17	
Lab ID:	294938-002					
	nalyte		Result		RL	
Diesel C10-C		NI			1.0	
Motor Oil C2	24-C36	NI)		5.0	
Su	rrogate	%REC	Limits			
o-Terphenyl		101	55-133			
Type:	BLANK			Prepared:	12/05/17	
Lab ID:	QC911595					
	nalyte		Result		RL	
Diesel C10-C		NI			1.0	
Motor Oil C2		NI			5.0	
						·
	irrogate	%REC	Limits			
o-Terphenyl		93	55-133			

Total Extractable Hydrocarbons				
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3550C	
Project#:	1101-17A	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC911596	Batch#:	254376	
Matrix:	Soil	Prepared:	12/05/17	
Units:	mg/Kg	Analyzed:	12/06/17	

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.99	46.95	94	51-137

Surrogate	%REC	Limits
o-Terphenyl	94	55-133

	Total Extrac	table Hydrocar	bons
Lab #:	294938	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 3550C
Project#:	1101-17A	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	254376
MSS Lab ID:	295079-003	Sampled:	12/04/17
Matrix:	Soil	Received:	12/04/17
Units:	mg/Kg	Prepared:	12/05/17
Basis:	as received	Analyzed:	12/06/17
Diln Fac:	2.000		

Туре:	MS			Lab ID:	QC91	L1597			
	Analyte	MSS Res		Spiked		Result	%REC	Limi	
Diesel Cl	0-C24	4	.070	49.7	/2	53.91	100	36-1	.43
	Surrogate	%REC	Limits						
o-Terpheny	yl	94	55-133						
Туре:	MSD			Lab ID:	QC91	L1598			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel Cl	0-C24		49.79		51.78	96	36-143	4	55
	Surrogate	%REC	Limits						
o-Terpheny	yl	87	55-133						

	Purgea	ble Organics by GC/	MS	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	A3-17-2-40	Diln Fac:	0.7788	
Lab ID:	294938-004	Batch#:	254562	
Matrix:	Soil	Sampled:	11/29/17	
Units:	ug/Kg	Received:	11/29/17	
Basis:	as received	Analyzed:	12/10/17	

Analyte	Result	RL	
Freon 12	ND	7.8	
Chloromethane	ND	7.8	
Vinyl Chloride	ND	7.8	
Bromomethane	ND	7.8	
Chloroethane	ND	7.8	
Trichlorofluoromethane	ND	3.9	
Acetone	ND	16	
Freon 113	ND	3.9	
1,1-Dichloroethene	ND	3.9	
Methylene Chloride	ND	16	
Carbon Disulfide	ND	3.9	
MTBE	ND	3.9	
trans-1,2-Dichloroethene	ND	3.9	
Vinyl Acetate	ND	39	
1,1-Dichloroethane	ND	3.9	
2-Butanone	ND	7.8	
cis-1,2-Dichloroethene	ND	3.9	
2,2-Dichloropropane	ND	3.9	
Chloroform	ND	3.9	
Bromochloromethane	ND	3.9	
1,1,1-Trichloroethane	ND	3.9	
1,1-Dichloropropene	ND	3.9	
Carbon Tetrachloride	ND	3.9	
1,2-Dichloroethane	ND	3.9	
Benzene	ND	3.9	
Trichloroethene	ND	3.9	
1,2-Dichloropropane	ND	3.9	
Bromodichloromethane	ND	3.9	
Dibromomethane	ND	3.9	
4-Methyl-2-Pentanone	ND	7.8	
cis-1,3-Dichloropropene	ND	3.9	
Toluene	ND	3.9	
trans-1,3-Dichloropropene	ND	3.9	
1,1,2-Trichloroethane	ND	3.9	
2-Hexanone	ND	7.8	
1,3-Dichloropropane	ND	3.9	
Tetrachloroethene	ND	3.9	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgea	able Organics by GC/	'ms	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	A3-17-2-40	Diln Fac:	0.7788	
Lab ID:	294938-004	Batch#:	254562	
Matrix:	Soil	Sampled:	11/29/17	
Units:	ug/Kg	Received:	11/29/17	
Basis:	as received	Analyzed:	12/10/17	

Analyte	Result	RL	
Dibromochloromethane	ND	3.9	
1,2-Dibromoethane	ND	3.9	
Chlorobenzene	ND	3.9	
1,1,1,2-Tetrachloroethane	ND	3.9	
Ethylbenzene	ND	3.9	
m,p-Xylenes	ND	3.9	
o-Xylene	ND	3.9	
Styrene	ND	3.9	
Bromoform	ND	3.9	
Isopropylbenzene	ND	3.9	
1,1,2,2-Tetrachloroethane	ND	3.9	
1,2,3-Trichloropropane	ND	3.9	
Propylbenzene	ND	3.9	
Bromobenzene	ND	3.9	
1,3,5-Trimethylbenzene	ND	3.9	
2-Chlorotoluene	ND	3.9	
4-Chlorotoluene	ND	3.9	
tert-Butylbenzene	ND	3.9	
1,2,4-Trimethylbenzene	ND	3.9	
sec-Butylbenzene	ND	3.9	
para-Isopropyl Toluene	ND	3.9	
1,3-Dichlorobenzene	ND	3.9	
1,4-Dichlorobenzene	ND	3.9	
n-Butylbenzene	ND	3.9	
1,2-Dichlorobenzene	ND	3.9	
1,2-Dibromo-3-Chloropropane	ND	3.9	
1,2,4-Trichlorobenzene	ND	3.9	
Hexachlorobutadiene	ND	3.9	
Naphthalene	ND	3.9	
1,2,3-Trichlorobenzene	ND	3.9	

Surrogate	%REC	Limits
Dibromofluoromethane	119	76-132
1,2-Dichloroethane-d4	114	74-149
Toluene-d8	99	80-120
Bromofluorobenzene	108	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purge	able Organics by GC/	ms	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5035	
Project#:	1101-17A	Analysis:	EPA 8260B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC912331	Batch#:	254562	
Matrix:	Soil	Analyzed:	12/10/17	
Units:	ug/Kg			

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	28.72	115	68-132
Benzene	25.00	27.77	111	75-123
Trichloroethene	25.00	26.49	106	75-120
Toluene	25.00	26.43	106	76-120
Chlorobenzene	25.00	27.97	112	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	105	76-132
1,2-Dichloroethane-d4	97	74-149
Toluene-d8	97	80-120
Bromofluorobenzene	97	78-134

Purgeable Organics by GC/MS						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5035			
Project#:	1101-17A	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC912332	Batch#:	254562			
Matrix:	Soil	Analyzed:	12/10/17			
Units:	ug/Kg					

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5035			
Project#:	1101-17A	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC912332	Batch#:	254562			
Matrix:	Soil	Analyzed:	12/10/17			
Units:	ug/Kg					

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate %	REC	Limits
Dibromofluoromethane 10	16	76-132
1,2-Dichloroethane-d4 96		74-149
Toluene-d8 10	0	80-120
Bromofluorobenzene 10')7	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5030B			
Project#:	1101-17A	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZ	Batch#:	254562			
MSS Lab ID:	295205-009	Sampled:	12/07/17			
Matrix:	Soil	Received:	12/07/17			
Units:	ug/Kg	Analyzed:	12/10/17			
Basis:	as received					

Type:	MS	Diln Fac:	0.8532
Lab ID:	QC912354		

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.5525	42.66	52.71	124	64-131
Benzene	<0.4930	42.66	46.80	110	66-122
Trichloroethene	<0.5958	42.66	45.43	106	57-133
Toluene	<0.5299	42.66	41.68	98	61-120
Chlorobenzene	<0.3324	42.66	40.91	96	56-120

Surrogate	%REC	Limits
Dibromofluoromethane	116	76-132
1,2-Dichloroethane-d4	115	74-149
Toluene-d8	96	80-120
Bromofluorobenzene	99	78-134

Type:	MSD	Diln Fac:	0.9690
Lab ID:	QC912355		

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	48.45	72.43	149 *	64-131	19	32
Benzene	48.45	63.28	131 *	66-122	17	32
Trichloroethene	48.45	63.54	131	57-133	21	34
Toluene	48.45	58.37	120	61-120	21	32
Chlorobenzene	48.45	56.73	117	56-120	20	33

Surrogate	%REC	Limits
Dibromofluoromethane	108	76-132
1,2-Dichloroethane-d4	104	74-149
Toluene-d8	97	80-120
Bromofluorobenzene	98	78-134

*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

	Purgeable	Organics by GC/	'MS	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5030B	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	IDW-A3-17-2-LIQUID	Diln Fac:	0.9294	
Lab ID:	294938-003	Batch#:	254488	
Matrix:	Miscell.	Sampled:	11/29/17	
Units:	ug/Kg	Received:	11/29/17	
Basis:	as received	Analyzed:	12/07/17	

Analyte	Result	RL	
Freon 12	ND	9.3	
Chloromethane	ND	9.3	
Vinyl Chloride	ND	9.3	
Bromomethane	ND	9.3	
Chloroethane	ND	9.3	
Trichlorofluoromethane	ND	4.6	
Acetone	ND	19	
Freon 113	ND	4.6	
1,1-Dichloroethene	ND	4.6	
Methylene Chloride	ND	19	
Carbon Disulfide	ND	4.6	
MTBE	ND	4.6	
trans-1,2-Dichloroethene	ND	4.6	
Vinyl Acetate	ND	46	
1,1-Dichloroethane	ND	4.6	
2-Butanone	ND	9.3	
cis-1,2-Dichloroethene	ND	4.6	
2,2-Dichloropropane	ND	4.6	
Chloroform	ND	4.6	
Bromochloromethane	ND	4.6	
1,1,1-Trichloroethane	ND	4.6	
1,1-Dichloropropene	ND	4.6	
Carbon Tetrachloride	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Trichloroethene	ND	4.6	
1,2-Dichloropropane	ND	4.6	
Bromodichloromethane	ND	4.6	
Dibromomethane	ND	4.6	
4-Methyl-2-Pentanone	ND	9.3	
cis-1,3-Dichloropropene	ND	4.6	
Toluene	ND	4.6	
trans-1,3-Dichloropropene	ND	4.6	
1,1,2-Trichloroethane	ND	4.6	
2-Hexanone	ND	9.3	
1,3-Dichloropropane	ND	4.6	
Tetrachloroethene	ND	4.6	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS

Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5030B	
Project#:	1101-17A	Analysis:	EPA 8260B	
Field ID:	IDW-A3-17-2-LIQUID	Diln Fac:	0.9294	
Lab ID:	294938-003	Batch#:	254488	
Matrix:	Miscell.	Sampled:	11/29/17	
Units:	ug/Kg	Received:	11/29/17	
Basis:	as received	Analyzed:	12/07/17	

Analyte	Result	RL	
Dibromochloromethane	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Chlorobenzene	ND	4.6	
1,1,1,2-Tetrachloroethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	
Styrene	ND	4.6	
Bromoform	ND	4.6	
Isopropylbenzene	ND	4.6	
1,1,2,2-Tetrachloroethane	ND	4.6	
1,2,3-Trichloropropane	ND	4.6	
Propylbenzene	ND	4.6	
Bromobenzene	ND	4.6	
1,3,5-Trimethylbenzene	ND	4.6	
2-Chlorotoluene	ND	4.6	
4-Chlorotoluene	ND	4.6	
tert-Butylbenzene	ND	4.6	
1,2,4-Trimethylbenzene	ND	4.6	
sec-Butylbenzene	ND	4.6	
para-Isopropyl Toluene	ND	4.6	
1,3-Dichlorobenzene	ND	4.6	
1,4-Dichlorobenzene	ND	4.6	
n-Butylbenzene	ND	4.6	
1,2-Dichlorobenzene	ND	4.6	
1,2-Dibromo-3-Chloropropane	ND	4.6	
1,2,4-Trichlorobenzene	ND	4.6	
Hexachlorobutadiene	ND	4.6	
Naphthalene	ND	4.6	
1,2,3-Trichlorobenzene	ND	4.6	

Surrogate	%REC	Limits
Dibromofluoromethane	104	76-132
1,2-Dichloroethane-d4	125	74-149
Toluene-d8	101	80-120
Bromofluorobenzene	120	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Pu	geable Organics by GC/	MS	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 5030B	
Project#:	1101-17A	Analysis:	EPA 8260B	
Matrix:	Soil	Batch#:	254488	
Units:	ug/Kg	Analyzed:	12/07/17	
Diln Fac:	1.000			

Type:

BS

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	22.06	88	68-132
Benzene	25.00	23.88	96	75-123
Trichloroethene	25.00	24.96	100	75-120
Toluene	25.00	24.91	100	76-120
Chlorobenzene	25.00	25.47	102	80-120

Lab ID:

Surrogate	%REC	Limits	
Dibromofluoromethane	100	76-132	
1,2-Dichloroethane-d4	120	74-149	
Toluene-d8	100	80-120	
Bromofluorobenzene	101	78-134	

Type:

BSD

SD

Lab ID:

QC912056

QC912055

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	22.68	91	68-132	3	28
Benzene	25.00	24.39	98	75-123	2	25
Trichloroethene	25.00	25.46	102	75-120	2	23
Toluene	25.00	25.74	103	76-120	3	24
Chlorobenzene	25.00	26.29	105	80-120	3	21

Surrogate	%REC	Limits	
Dibromofluoromethane	99	76-132	
1,2-Dichloroethane-d4	118	74-149	
Toluene-d8	102	80-120	
Bromofluorobenzene	97	78-134	

Purgeable Organics by GC/MS						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5030B			
Project#:	1101-17A	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC912057	Batch#:	254488			
Matrix:	Soil	Analyzed:	12/07/17			
Units:	ug/Kg					

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 5030B			
Project#:	1101-17A	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC912057	Batch#:	254488			
Matrix:	Soil	Analyzed:	12/07/17			
Units:	ug/Kg					

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	104	76-132
1,2-Dichloroethane-d4	119	74-149
Toluene-d8	105	80-120
Bromofluorobenzene	129	78-134

ND= Not Detected RL= Reporting Limit Page 2 of 2

Semivolatile Organics by GC/MS SIM					
Lab #:	294938	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 3520C		
Project#:	1101-17A	Analysis:	EPA 8270C-SIM		
Field ID:	IDW-A3-17-2-LIQUID	Batch#:	254344		
Lab ID:	294938-003	Sampled:	11/29/17		
Matrix:	Water	Received:	11/29/17		
Units:	ug/L	Prepared:	12/04/17		
Diln Fac:	3.000	Analyzed:	12/05/17		

Analyte	Result	RL	
Naphthalene	ND	3.0	
Acenaphthylene	ND	3.0	
Acenaphthene	ND	3.0	
Fluorene	ND	3.0	
Phenanthrene	ND	3.0	
Anthracene	ND	3.0	
Fluoranthene	ND	3.0	
Pyrene	ND	3.0	
Benzo(a)anthracene	ND	3.0	
Chrysene	ND	3.0	
Benzo(b)fluoranthene	ND	3.0	
Benzo(k)fluoranthene	ND	3.0	
Benzo(a)pyrene	ND	3.0	
Indeno(1,2,3-cd)pyrene	ND	3.0	
Dibenz(a,h)anthracene	ND	3.0	
Benzo(g,h,i)perylene	ND	3.0	

Surrogate	%REC	Limits
Nitrobenzene-d5	69	44-139
2-Fluorobiphenyl	76	47-120
Terphenyl-d14	26	25-123

ND= Not Detected RL= Reporting Limit Page 1 of 1

Semivolatile Organics by GC/MS SIM						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 3520C			
Project#:	1101-17A	Analysis:	EPA 8270C-SIM			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC911432	Batch#:	254344			
Matrix:	Water	Prepared:	12/04/17			
Units:	ug/L	Analyzed:	12/05/17			

Analyte	Result	RL	
Naphthalene	ND	0.1	
Acenaphthylene	ND	0.1	
Acenaphthene	ND	0.1	
Fluorene	ND	0.1	
Phenanthrene	ND	0.1	
Anthracene	ND	0.1	
Fluoranthene	ND	0.1	
Pyrene	ND	0.1	
Benzo(a)anthracene	ND	0.1	
Chrysene	ND	0.1	
Benzo(b)fluoranthene	ND	0.1	
Benzo(k)fluoranthene	ND	0.1	
Benzo(a)pyrene	ND	0.1	
Indeno(1,2,3-cd)pyrene	ND	0.1	
Dibenz(a,h)anthracene	ND	0.1	
Benzo(g,h,i)perylene	ND	0.1	

Surrogate	%REC	Limits	
Nitrobenzene-d5	84	44-139	
2-Fluorobiphenyl	80	47-120	
Terphenyl-d14	77	25-123	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Semivolatile Organics by GC/MS SIM						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 3520C			
Project#:	1101-17A	Analysis:	EPA 8270C-SIM			
Matrix:	Water	Batch#:	254344			
Units:	ug/L	Prepared:	12/04/17			
Diln Fac:	1.000	Analyzed:	12/05/17			

Type:

BS

Lab ID: QC911433

Analyte	Spiked	Result	%REC	Limits
Acenaphthene	1.000	0.8212	82	54-120
Pyrene	1.000	0.7632	76	50-120

Surrogate	%REC	Limits
Nitrobenzene-d5	92	44-139
2-Fluorobiphenyl	87	47-120
Terphenyl-d14	79	25-123

Туре:	BSD		Lab	D ID:	QC911	434			
	Analyte		Spiked	Re	esult	%REC	Limits	RPD	Lim
Acenaphth	iene		1.000		0.7304	73	54-120	12	36
Pyrene			1.000		0.6605	66	50-120	14	37
	Surrogate	%REC	Limits						
Nitrohong	rono_d5	Q 1	11-120						

Surrogate	%REC	LIMICS
Nitrobenzene-d5	81	44-139
2-Fluorobiphenyl	75	47-120
Terphenyl-d14	68	25-123

Semivolatile Organics by GC/MS SIM						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 3550C			
Project#:	1101-17A	Analysis:	EPA 8270C-SIM			
Field ID:	IDW-A3-17-2-SOLID	Batch#:	254323			
Lab ID:	294938-002	Sampled:	11/28/17			
Matrix:	Soil	Received:	11/29/17			
Units:	ug/Kg	Prepared:	12/04/17			
Basis:	as received	Analyzed:	12/04/17			
Diln Fac:	1.000					

Jane Justie	Deguilt	DI	
Analyte	Result	RL	
Naphthalene	ND	5.1	
Acenaphthylene	ND	5.1	
Acenaphthene	ND	5.1	
Fluorene	ND	5.1	
Phenanthrene	ND	5.1	
Anthracene	ND	5.1	
Fluoranthene	ND	5.1	
Pyrene	ND	5.1	
Benzo(a)anthracene	ND	5.1	
Chrysene	ND	5.1	
Benzo(b)fluoranthene	ND	5.1	
Benzo(k)fluoranthene	ND	5.1	
Benzo(a)pyrene	ND	5.1	
Indeno(1,2,3-cd)pyrene	ND	5.1	
Dibenz(a,h)anthracene	ND	5.1	
Benzo(g,h,i)perylene	ND	5.1	

Surrogate	%REC	Limits
Nitrobenzene-d5	100	46-126
2-Fluorobiphenyl	87	50-120
Terphenyl-d14	89	53-123

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivola	tile Organics by GC/	MS SIM	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3550C	
Project#:	1101-17A	Analysis:	EPA 8270C-SIM	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC911339	Batch#:	254323	
Matrix:	Soil	Prepared:	12/04/17	
Units:	ug/Kg	Analyzed:	12/04/17	

Analyte	Result	RL	
Naphthalene	ND	5.0	
Acenaphthylene	ND	5.0	
Acenaphthene	ND	5.0	
Fluorene	ND	5.0	
Phenanthrene	ND	5.0	
Anthracene	ND	5.0	
Fluoranthene	ND	5.0	
Pyrene	ND	5.0	
Benzo(a)anthracene	ND	5.0	
Chrysene	ND	5.0	
Benzo(b)fluoranthene	ND	5.0	
Benzo(k)fluoranthene	ND	5.0	
Benzo(a)pyrene	ND	5.0	
Indeno(1,2,3-cd)pyrene	ND	5.0	
Dibenz(a,h)anthracene	ND	5.0	
Benzo(g,h,i)perylene	ND	5.0	

Surrogate	%REC	Limits	
Nitrobenzene-d5	97	46-126	
2-Fluorobiphenyl	89	50-120	
Terphenyl-d14	88	53-123	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivola	tile Organics by GC/	MS SIM	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3550C	
Project#:	1101-17A	Analysis:	EPA 8270C-SIM	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC911340	Batch#:	254323	
Matrix:	Soil	Prepared:	12/04/17	
Units:	ug/Kg	Analyzed:	12/04/17	

Analyte	Spiked	Result	%REC	Limits
Acenaphthene	33.52	30.36	91	62-120
Pyrene	33.52	28.80	86	56-130

	Surrogate	%REC	Limits	
N	litrobenzene-d5	101	46-126	
2	-Fluorobiphenyl	94	50-120	
Т	erphenyl-d14	90	53-123	

	Semivolatile Org	anics by GC/MS	SIM
Lab #:	294938	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 3550C
Project#:	1101-17A	Analysis:	EPA 8270C-SIM
Field ID:	ZZZZZZZZZ	Batch#:	254323
MSS Lab ID:	294936-001	Sampled:	11/28/17
Matrix:	Soil	Received:	11/30/17
Units:	ug/Kg	Prepared:	12/04/17
Basis:	as received	Analyzed:	12/04/17
Diln Fac:	1.000		

Type: MS		Lab ID:	QC911341		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Acenaphthene	<1.010	33.70	29.47	87	54-120
Pyrene	<1.010	33.70	28.63	85	35-143
Surrogate	%REC Limits				

Surrogate	%REC	Limits
Nitrobenzene-d5	103	46-126
2-Fluorobiphenyl	90	50-120
Terphenyl-d14	86	53-123

Type:	MSD			Lab ID:	QC9	11342			
Anal	yte		Spiked		Result	%REC	Limits	RPD	Lim
Acenaphthene			33.42		30.01	90	54-120	3	35
Pyrene			33.42		29.15	87	35-143	3	58
Surro	gate	%REC	Limits						
Nitrobenzene-d5		99	46-126						
2-Fluorobipheny	1	87	50-120						
Terphenyl-d14		89	53-123						

	Polychlorina	ted Biphenyls (PCBs)	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3520C	
Project#:	1101-17A	Analysis:	EPA 8082	
Field ID:	IDW-A3-17-2-LIQUID	Batch#:	254212	
Matrix:	Water	Sampled:	11/29/17	
Units:	ug/L	Received:	11/29/17	
Diln Fac:	1.000	Prepared:	11/30/17	

Type: Lab ID: SAMPLE

Analyzed:

12/02/17

294938-003

Result	RL	
ND	1.2	
ND	2.8	
ND	1.2	
ND	1.2	
ND	1.6	
ND	1.2	
ND	1.2	
ND	1.0	
	ND ND ND ND ND ND ND	ND 1.2 ND 2.8 ND 1.2 ND 1.2 ND 1.6 ND 1.2 ND 1.2 ND 1.6 ND 1.2 ND 1.2 ND 1.2

Surrogate	%REC	Limits
Decachlorobiphenyl	56	22-139

1 L -	BLANK QC910921	Analyzed: 12	/01/17
Analy	te Resu	lt RL	
Aroclor-1016	ND	0.20	
Aroclor-1221	ND	0.40	
Aroclor-1232	ND	0.20	
Aroclor-1242	ND	0.20	
Aroclor-1248	ND	0.20	

Surrogate	%REC Limits		
Aroclor-1268	ND	0.20	
Aroclor-1260	ND	0.20	
Aroclor-1254	ND	0.20	

22-139

119

Decachlorobiphenyl

		Polychlo	orinated	Biphenyl	Ls (PCBs)			
Lab #:	294938			Location:	NRLF	Phase 4		
Client:	A3GEO Inc.			Prep:	EPA	3520C		
Project#:	1101-17A			Analysis:	EPA	8082		
Matrix:	Water			Batch#:	2542	12		
Units:	ug/L			Prepared:	11/3	0/17		
Diln Fac:	1.000			Analyzed:	12/0	1/17		
Type:	BS		Spiked	Lab ID:	QC91 Result	0922 %REC	Limits	
Aroclor-1016			2.500		1.966	79	59-134	
Aroclor-1260			2.500		2.041	82	54-144	
Sui	rogate	%REC	Limits					
Decachlorobig	phenyl	92	22-139					
Туре:	BSD			Lab ID:	QC91	0923		

	59-134 27	33
Aroclor-1260 2.500 2.614 105 54-	54-144 25	44

Surrogate	%REC	Limits	
Decachlorobiphenyl	96	22-139	

		Polychlor:	inated	Biphenyls	(PCI	Bs)
		-			-	
Lab #:	294938			Location:		NRLF Phase 4
Client:	A3GEO Inc.			Prep:		EPA 3540C
Project#:	1101-17A			Analysis:		EPA 8082
Field ID:	IDW-A3-17-	2-SOLID		Batch#:		254593
Units:	ug/Kg			Sampled:		11/28/17
Basis:	as receive	d		Received:		11/29/17
Diln Fac:	1.000			Prepared:		12/11/17
Turno '	SAMPLE			Matrix:		Soil
Type: Lab ID:						
Lap ID.	294938-002			Analyzed:		12/13/17
Ana	lyte	Re	sult		RL	
Aroclor-1016	•	ND			110	
Aroclor-1221		ND			220	
Aroclor-1232		ND			110	
Aroclor-1242		ND			110	
Aroclor-1248		ND			110	
Aroclor-1254		ND			110	
Aroclor-1260		ND			110	
	rogate		imits			
Decachlorobiph	lenyl	89 2	6-153			
Type:	BLANK			Matrix:		Miscell.
Lab ID:	QC912438			Analyzed:		12/12/17
	2					,,,
Ana	lyte	Re	sult		RL	
Aroclor-1016		ND			9.	6
Aroclor-1221		ND			19	
Aroclor-1232		ND			9.	
Aroclor-1242		ND			9.	
Aroclor-1248		ND			9.	
Aroclor-1254		ND			9.	
Aroclor-1260		ND			9.	6
		0.550 -				
	ogate		imits			
Decachlorobiph	тепут	113 2	6-153			

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Polychlo	orinated Biphenyls (PCBs)	
Lab #:	294938	Location:	NRLF Phase 4	
Client:	A3GEO Inc.	Prep:	EPA 3540C	
Project#:	1101-17A	Analysis:	EPA 8082	
Matrix:	Miscell.	Batch#:	254593	
Units:	ug/Kg	Prepared:	12/11/17	
Diln Fac:	1.000	Analyzed:	12/12/17	

Туре:	BS			Lab ID:	QC91	2439		
	Analyte		Spiked		Result	%REC	Limits	
Aroclor-1	1016		166.7		203.4	122	56-152	
Aroclor-1	1260		166.7		199.5	120	52-165	
	Surrogate	%REC	Limits					
Decachlor	robiphenyl	116	26-153					
Туре:	BSD			Lab ID:	QC91	2440		

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Aroclor-1016	166.7	178.2	107	56-152	13	48
Aroclor-1260	166.7	182.4	109	52-165	9	39

Surrogate	%REC	Limits
Decachlorobiphenyl	107	26-153

EPA 6010B

EPA 6010B

EPA 6010B

EPA 6010B

EPA 6010B

EPA 6010B

California Title 22 Metals							
Lab #:	294938		P	roject#:	11(01-17A	
Client:	A3GEO Inc.		L	ocation:	NRI	LF Phase 4	
Field ID:	IDW-A3-17-2-L	IQUID	D	iln Fac:	1.0	000	
Lab ID:	294938-003		Sa	ampled:	11,	/29/17	
Matrix:	Water		R	eceived:	11,	/29/17	
Units:	ug/L						
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	160	100	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Arsenic	3,100	54	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Barium	61,000	50	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Beryllium	150	20	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Cadmium	85	50	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Chromium	17,000	50	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Cobalt	3,700	50	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Copper	7,100	50	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Lead	2,200	50	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B
Mercury	4.6	0.20	254444	12/06/17	12/06/17	METHOD	EPA 7470A
Molybdenum	150	50	254321	12/04/17	12/05/17	EPA 3010A	EPA 6010B

254321 12/04/17 12/05/17 EPA 3010A

ND= Not Detected RL= Reporting Limit Page 1 of 1

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

19,000

15,000

14,000

ND

120

130

50

50

50

200

100

100

California Title 22 Metals					
Lab #:	294938	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 3010A		
Project#:	1101-17A	Analysis:	EPA 6010B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC911328	Batch#:	254321		
Matrix:	Water	Prepared:	12/04/17		
Units:	ug/L	Analyzed:	12/05/17		

Analyte	Result	RL	
Antimony	ND	10	
Arsenic	ND	10	
Barium	ND	5.0	
Beryllium	ND	2.0	
Cadmium	ND	5.0	
Chromium	ND	5.0	
Cobalt	ND	5.0	
Copper	ND	5.0	
Lead	ND	5.0	
Molybdenum	ND	5.0	
Nickel	ND	5.0	
Selenium	ND	10	
Silver	ND	5.0	
Thallium	ND	10	
Vanadium	ND	5.0	
Zinc	ND	20	

California Title 22 Metals					
Lab #:	294938	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 3010A		
Project#:	1101-17A	Analysis:	EPA 6010B		
Matrix:	Water	Batch#:	254321		
Units:	ug/L	Prepared:	12/04/17		
Diln Fac:	1.000	Analyzed:	12/05/17		

Type: BS	Lab	ID: QC911	L329	
Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	95.32	95	68-120
Arsenic	100.0	98.61	99	76-120
Barium	100.0	98.81	99	80-120
Beryllium	100.0	100.3	100	80-120
Cadmium	100.0	96.19	96	80-120
Chromium	100.0	98.78	99	80-120
Cobalt	100.0	97.51	98	80-120
Copper	100.0	99.72	100	80-120
Lead	100.0	101.0	101	80-120
Molybdenum	100.0	99.00	99	80-120
Nickel	100.0	101.2	101	80-120
Selenium	100.0	98.91	99	76-120
Silver	100.0	89.54	90	80-120
Thallium	50.00	50.51	101	80-127
Vanadium	100.0	107.5	107	80-120
Zinc	100.0	112.3	112	77-120

Type:	BSD	Lab II	QC911:	330			
	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony		100.0	101.3	101	68-120	6	20
Arsenic		100.0	103.1	103	76-120	4	20
Barium		100.0	100.3	100	80-120	2	20
Beryllium		100.0	97.76	98	80-120	3	20
Cadmium		100.0	97.80	98	80-120	2	20
Chromium		100.0	100.8	101	80-120	2	20
Cobalt		100.0	98.77	99	80-120	1	20
Copper		100.0	102.5	102	80-120	3	20
Lead		100.0	105.8	106	80-120	5	20
Molybdenum		100.0	104.9	105	80-120	6	20
Nickel		100.0	94.94	95	80-120	6	20
Selenium		100.0	102.6	103	76-120	4	20
Silver		100.0	91.55	92	80-120	2	21
Thallium		50.00	51.30	103	80-127	2	20
Vanadium		100.0	111.6	112	80-120	4	20
Zinc		100.0	104.9	105	77-120	7	23

California Title 22 Metals						
Lab #:	294938	Location:	NRLF Phase 4			
Client:	A3GEO Inc.	Prep:	EPA 3010A			
Project#:	1101-17A	Analysis:	EPA 6010B			
Field ID:	ZZZZZZZZZ	Batch#:	254321			
MSS Lab ID:	294979-002	Sampled:	11/30/17			
Matrix:	Water	Received:	11/30/17			
Units:	ug/L	Prepared:	12/04/17			
Diln Fac:	1.000	Analyzed:	12/05/17			

Type: MS		Lab ID:	QC911331		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<2.832	100.0	102.9	103	42-130
Arsenic	11.44	100.0	121.4	110	53-139
Barium	12.13	100.0	113.2	101	71-123
Beryllium	<0.5336	100.0	92.91	93	80-120
Cadmium	18.09	100.0	128.7	111	80-124
Chromium	<0.5602	100.0	91.35	91	76-124
Cobalt	1.617	100.0	96.06	94	75-122
Copper	9.312	100.0	108.2	99	69-125
Lead	<1.185	100.0	72.04	72	59-127
Molybdenum	3.042	100.0	97.90	95	78-122
Nickel	95.94	100.0	192.9	97	70-123
Selenium	<2.791	100.0	107.1	107	50-144
Silver	14.84	100.0	110.9	96	66-125
Thallium	<1.934	50.00	39.96	80	65-130
Vanadium	41.86	100.0	141.8	100	77-124
Zinc	11.42	100.0	108.3	97	66-130

Type:	MSD	Lab ID: QC9113	32			
Analy		Result	%REC	Limits	RPD	Lim
Antimony	100.0	103.8	104	42-130	1	58
Arsenic	100.0	122.7	111	53-139	1	48
Barium	100.0	113.2	101	71-123	0	28
Beryllium	100.0	95.07	95	80-120	2	20
Cadmium	100.0	130.3	112	80-124	1	20
Chromium	100.0	92.75	93	76-124	2	25
Cobalt	100.0	97.34	96	75-122	1	20
Copper	100.0	111.6	102	69-125	3	27
Lead	100.0	74.25	74	59-127	3	32
Molybdenum	100.0	98.84	96	78-122	1	24
Nickel	100.0	192.8	97	70-123	0	26
Selenium	100.0	107.1	107	50-144	0	52
Silver	100.0	113.2	98	66-125	2	29
Thallium	50.00	39.04	78	65-130	2	30
Vanadium	100.0	146.4	105	77-124	3	23
Zinc	100.0	109.7	98	66-130	1	22

California Title 22 Metals					
Lab #:	294938	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	METHOD		
Project#:	1101-17A	Analysis:	EPA 7470A		
Analyte:	Mercury	Diln Fac:	1.000		
Type:	BLANK	Batch#:	254444		
Lab ID:	QC911863	Prepared:	12/06/17		
Matrix:	Water	Analyzed:	12/06/17		
Units:	ug/L				

Result	RL	
ND	0.20	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals					
Lab #:	294938	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	METHOD		
Project#:	1101-17A	Analysis:	EPA 7470A		
Analyte:	Mercury	Batch#:	254444		
Matrix:	Water	Prepared:	12/06/17		
Units:	ug/L	Analyzed:	12/06/17		
Diln Fac:	1.000				

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC911864	2.500	2.579	103	80-120		
BSD	QC911865	2.500	2.546	102	80-120	1	20

	Calli	Eornia Title 22 Meta	115
Lab #:	294938	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	METHOD
Project#:	1101-17A	Analysis:	EPA 7470A
Analyte:	Mercury	Batch#:	254444
Field ID:	ZZZZZZZZZZ	Sampled:	11/30/17
MSS Lab ID:	294964-001	Received:	11/30/17
Matrix:	Water	Prepared:	12/06/17
Units:	ug/L	Analyzed:	12/06/17
Diln Fac:	1.000		

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC911866	<0.04000	2.500	2.539	102	63-120		
MSD	QC911867		2.500	2.507	100	63-120	1	36

		Califor	nia Ti	tle 22 M	letals		
Lab #:	294938]	Project#:	11	01-17A	
Client:	A3GEO Inc.		1	Location:	NR	LF Phase 4	
Field ID:	IDW-A3-17-2-SC	LID]	Basis:	as	received	
Lab ID:	294938-002]	Diln Fac:	1.	000	
Matrix:	Soil		:	Sampled:	11	/28/17	
Units:	mg/Kg]	Received:	11	/29/17	
Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	2.0			12/01/17		EPA 6010B
Arsenic	3.5	1.5		12/01/17		EPA 3050B	EPA 6010B
Barium	120	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Beryllium	0.39	0.10	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Cadmium	ND	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Chromium	48	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Cobalt	11	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Copper	20	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Lead	5.0	1.0	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Mercury	0.12	0.017	254393	12/05/17	12/05/17	METHOD	EPA 7471A
Molybdenum	ND	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Nickel	59	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Selenium	ND	2.0	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Silver	ND	0.26	254268	12/01/17	12/02/17	EPA 3050B	EPA 6010B
Thallium	ND	0.52	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Vanadium	32	0.26	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B
Zinc	44	1.0	254268	12/01/17	12/01/17	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals					
Lab #:	294938	Location:	NRLF Phase 4		
Client:	A3GEO Inc.	Prep:	EPA 3050B		
Project#:	1101-17A	Analysis:	EPA 6010B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC911129	Batch#:	254268		
Matrix:	Soil	Prepared:	12/01/17		
Units:	mg/Kg	Analyzed:	12/01/17		

Analyte	Result	RL	
Antimony	ND	1.9	
Arsenic	ND	1.4	
Barium	ND	0.23	
Beryllium	ND	0.093	
Cadmium	ND	0.23	
Chromium	ND	0.23	
Cobalt	ND	0.23	
Copper	ND	0.23	
Lead	ND	0.93	
Molybdenum	ND	0.23	
Nickel	ND	0.23	
Selenium	ND	1.9	
Silver	ND	0.23	
Thallium	ND	0.47	
Vanadium	ND	0.23	
Zinc	ND	0.93	

	California T	itle 22 Metals	
Lab #:	294938	Location:	NRLF Phase 4
Client:	A3GEO Inc.	Prep:	EPA 3050B
Project#:	1101-17A	Analysis:	EPA 6010B
Matrix:	Soil	Batch#:	254268
Units:	mg/Kg	Prepared:	12/01/17
Diln Fac:	1.000	Analyzed:	12/01/17

Type: BS	Lab 1	ID: QC911	130	
Analyte	Spiked	Result	%REC	Limits
Antimony	46.73	47.20	101	80-120
Arsenic	46.73	47.02	101	80-120
Barium	46.73	46.50	100	80-120
Beryllium	23.36	22.95	98	80-120
Cadmium	46.73	45.05	96	80-120
Chromium	46.73	48.27	103	80-120
Cobalt	46.73	46.20	99	80-120
Copper	46.73	45.94	98	80-120
Lead	46.73	48.26	103	80-120
Molybdenum	46.73	44.55	95	80-120
Nickel	46.73	43.35	93	80-120
Selenium	46.73	45.85	98	80-120
Silver	4.673	4.118	88	80-120
Thallium	46.73	47.95	103	80-120
Vanadium	46.73	48.53	104	80-120
Zinc	46.73	46.44	99	80-120

Type:	BSD	Lab ID	: QC911	131			
	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony		49.02	50.78	104	80-120	3	20
Arsenic		49.02	50.37	103	80-120	2	20
Barium		49.02	50.35	103	80-120	3	20
Beryllium		24.51	24.45	100	80-120	2	20
Cadmium		49.02	48.36	99	80-120	2	20
Chromium		49.02	51.78	106	80-120	2	20
Cobalt		49.02	49.48	101	80-120	2	20
Copper		49.02	49.35	101	80-120	2	20
Lead		49.02	47.57	97	80-120	6	20
Molybdenum		49.02	47.85	98	80-120	2	20
Nickel		49.02	46.61	95	80-120	2	20
Selenium		49.02	49.22	100	80-120	2	20
Silver		4.902	4.368	89	80-120	1	22
Thallium		49.02	51.57	105	80-120	2	20
Vanadium		49.02	52.16	106	80-120	2	20
Zinc		49.02	50.10	102	80-120	3	20

California Title 22 Metals								
Lab #:	294938	Location:	NRLF Phase 4					
Client:	A3GEO Inc.	Prep:	EPA 3050B					
Project#:	1101-17A	Analysis:	EPA 6010B					
Field ID:	ZZZZZZZZZZ	Batch#:	254268					
MSS Lab ID:	294932-002	Sampled:	11/29/17					
Matrix:	Soil	Received:	11/29/17					
Units:	mg/Kg	Prepared:	12/01/17					
Basis:	as received	Analyzed:	12/01/17					
Diln Fac:	1.000	_						

Type: MS		Lab ID:	QC911132		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	0.3105	50.00	17.31	34	1-120
Arsenic	4.503	50.00	50.51	92	71-123
Barium	106.9	50.00	146.1	79	48-155
Beryllium	0.4015	25.00	22.98	90	80-120
Cadmium	0.2828	50.00	46.93	93	78-120
Chromium	36.84	50.00	89.97	106	64-135
Cobalt	9.175	50.00	50.17	82	65-120
Copper	20.14	50.00	69.14	98	75-132
Lead	61.54	50.00	105.8	88	53-128
Molybdenum	0.4218	50.00	41.26	82	68-120
Nickel	30.60	50.00	74.61	88	56-128
Selenium	<0.2160	50.00	45.86	92	59-120
Silver	<0.04808	5.000	4.154	83	36-123
Thallium	<0.1448	50.00	41.67	83	55-120
Vanadium	32.64	50.00	80.59	96	73-129
Zinc	60.93	50.00	117.1	112	49-138

Type: MSD	Lab ID:	QC911	133			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	45.45	14.20	31	1-120	10	50
Arsenic	45.45	45.19	90	71-123	2	27
Barium	45.45	140.5	74	48-155	1	41
Beryllium	22.73	20.61	89	80-120	2	20
Cadmium	45.45	41.99	92	78-120	2	21
Chromium	45.45	87.60	112	64-135	3	37
Cobalt	45.45	44.41	78	65-120	4	32
Copper	45.45	63.58	96	75-132	2	33
Lead	45.45	141.3	175 *	53-128	33	48
Molybdenum	45.45	36.67	80	68-120	2	23
Nickel	45.45	69.90	86	56-128	1	38
Selenium	45.45	41.18	91	59-120	1	30
Silver	4.545	3.686	81	36-123	2	47
Thallium	45.45	37.84	83	55-120	0	22
Vanadium	45.45	71.26	85	73-129	7	27
Zinc	45.45	111.8	112	49-138	0	39

*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

California Title 22 Metals							
Lab #:	294938	Location:	NRLF Phase 4				
Client:	A3GEO Inc.	Prep:	METHOD				
Project#:	1101-17A	Analysis:	EPA 7471A				
Analyte:	Mercury	Diln Fac:	1.000				
Type:	BLANK	Batch#:	254393				
Lab ID:	QC911627	Prepared:	12/05/17				
Matrix:	Soil	Analyzed:	12/05/17				
Units:	mg/Kg						
D =] +	DI DI						

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals								
Lab #:	294938	Location:	NRLF Phase 4					
Client:	A3GEO Inc.	Prep:	METHOD					
Project#:	1101-17A	Analysis:	EPA 7471A					
Analyte:	Mercury	Batch#:	254393					
Matrix:	Soil	Prepared:	12/05/17					
Units:	mg/Kg	Analyzed:	12/05/17					
Diln Fac:	1.000							

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC911628	0.1953	0.1758	90	80-126		
BSD	QC911629	0.2016	0.1858	92	80-126	2	45

QC911631

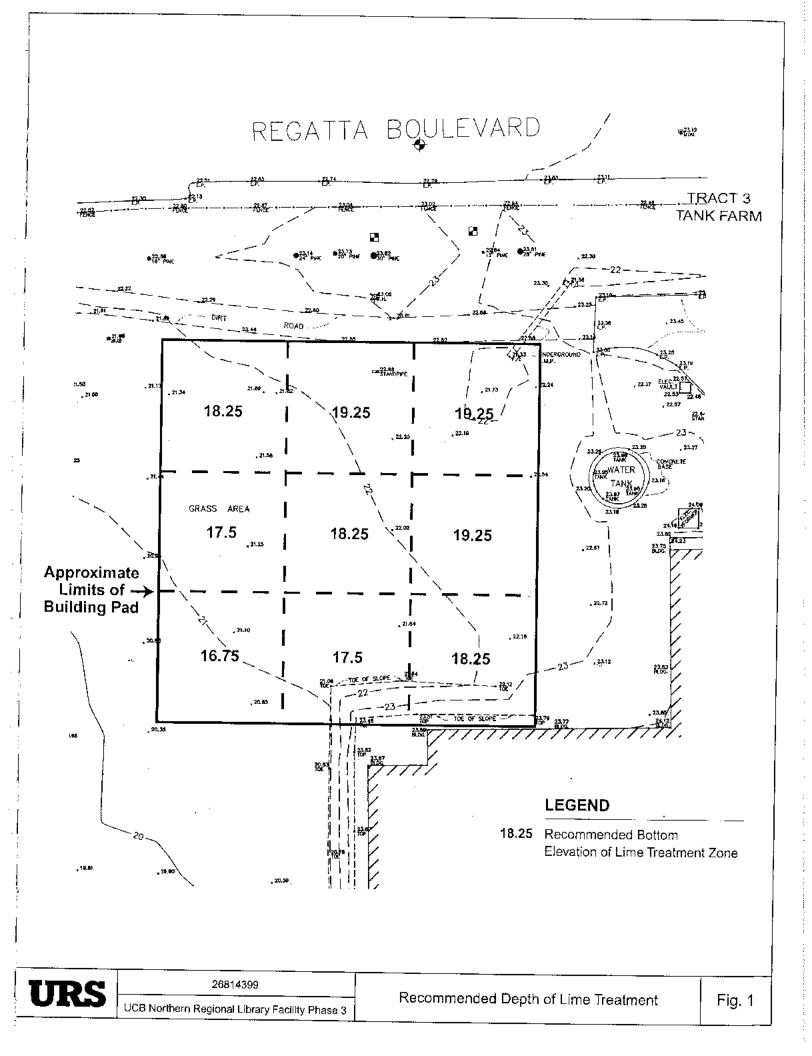
MSD

California Title 22 Metals								
	00111							
Lab #:	294938	Location:	NRLF	Phase 4				
Client:	A3GEO Inc.	Prep:	METHC	D				
Project#:	1101-17A	Analysis:	EPA 7	7471A				
Analyte:	Mercury	Diln Fac:	1.000)				
Field ID:	ZZZZZZZZZZ	Batch#:	25439	93				
MSS Lab ID:	294996-001	Sampled:	11/30)/17				
Matrix:	Soil	Received:	12/01	/17				
Units:	mg/Kg	Prepared:	12/05	5/17				
Basis:	as received	Analyzed:	12/05/17					
Type Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim	
MS QC911630	<0.003033	0.1923	0.1873	97	61-157			

0.2119

0.2078

98

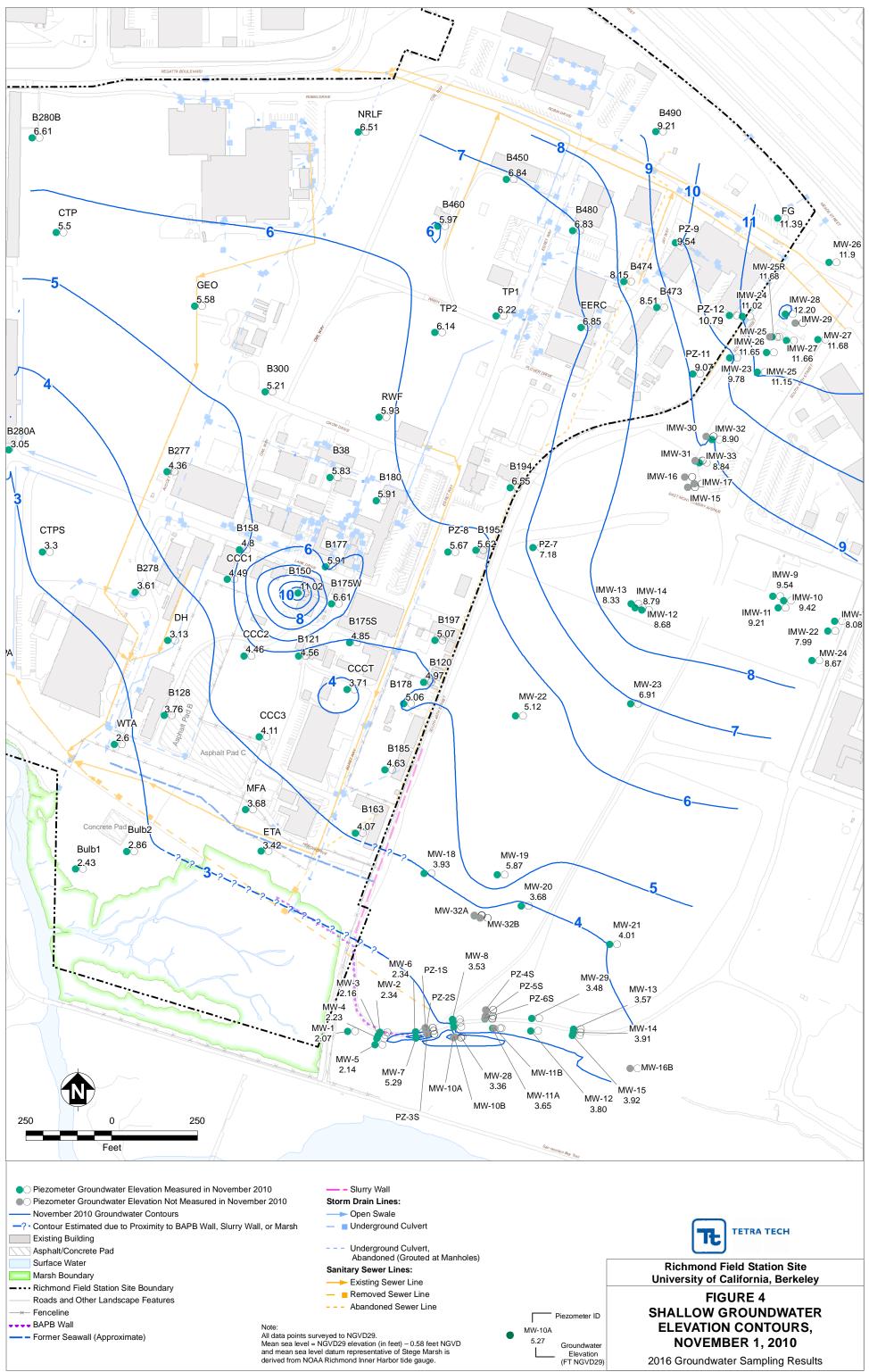

57

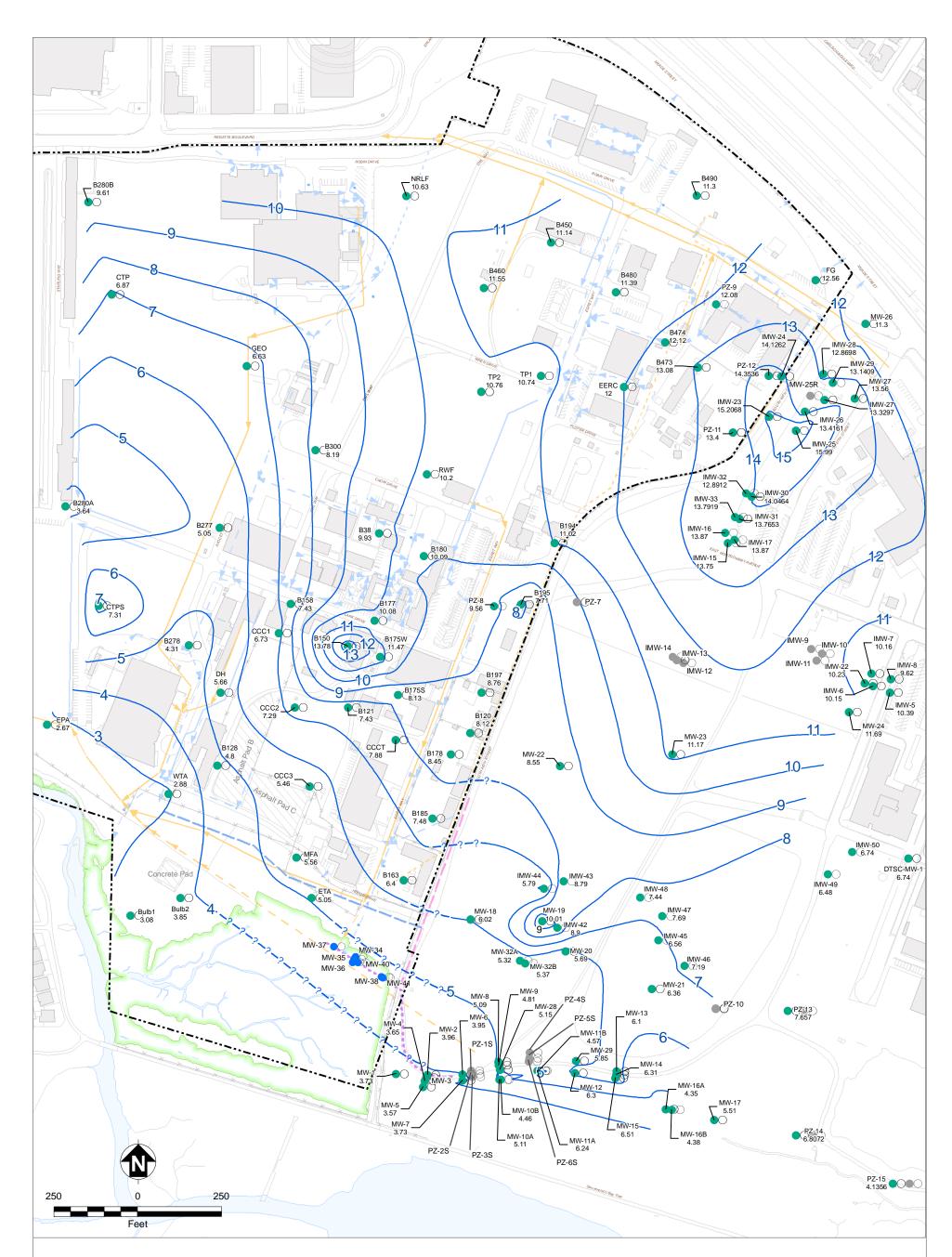
61-157 1

APPENDIX F

NRLF Phase 3 – Lime Treatment Plan

APPENDIX G


Groundwater Data by Others


Table 2: Groundwater Elevation Data

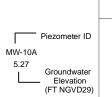
Piezometer Name	Sample Date	TOC Elevation (feet NGVD)	Depth to Water (feet below TOC)	Groundwater Elevation (feet NGVD)
GEO	11/1/10	16.37	10.79	5.58
GEO	2/10/11	16.37	9.04	7.33
GEO	4/2/11	16.37	8.35	8.02
GEO	4/11/11	16.37	9.74	6.63
GEO	10/3/11	16.37	10.42	5.95
GEO	10/1/12	16.37	10.71	5.66
GEO	4/1/13	16.37	9.76	6.61
GEO	10/7/13	16.37	11.92	4.45
GEO	3/28/14	16.37	9.84	6.53
GEO	10/1/14	16.37	11.21	5.16
GEO	4/1/15	16.37	9.93	6.44
GEO	10/5/15	16.37	11.45	4.92
GEO	4/4/16	16.37	8.40	7.97
MFA	11/1/10	8.23	4.55	3.68
MFA	2/10/11	8.23	3.59	4.64
MFA	4/11/11	8.23	2.67	5.56
MFA	10/3/11	8.23	4.41	3.82
MFA	4/2/12	8.23	1.98	6.25
MFA	10/1/12	8.23	4.57	3.66
MFA	4/2/13	8.23	3.70	4.53
MFA	10/7/13	8.23	4.85	3.38
MFA	3/28/14	8.23	3.68	4.55
MFA	10/1/14	8.23	3.68	4.55
MFA	4/1/15	8.23	4.71	3.52
MFA	10/5/15	8.23	4.91	3.32
MFA	4/4/16	8.23	3.08	5.15
NRLF	11/1/10	22.62	16.11	6.51
NRLF	2/10/11	22.62	13.45	9.17
NRLF	4/11/11	22.62	11.99	10.63
NRLF	10/3/11	22.62	15.83	6.79
NRLF	4/2/12	22.62	12.96	9.66
NRLF	10/1/12	22.62	16.30	6.32
NRLF	4/1/13	22.62	13.70	8.92
NRLF	10/7/13	22.62	NA	NA
NRLF	3/28/14	22.62	14.16	8.46
NRLF	10/1/14	22.62	17.06	5.56
NRLF	4/1/15	22.62	14.21	8.41
NRLF	10/5/15	22.62	17.42	5.20
NRLF	4/4/16	22.62	12.75	9.87

2016 Groundwater Sampling Results, Technical Memorandum University of California, Berkeley, Richmond Field Station Site

9/21/2016 V:Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\04_Shallow GW Elevation Contours 2010 Nov 1.mxd TtEMI-OAK simon.cardinale

- Piezometer Groundwater Elevation Measured in April 2011
- Piezometer Groundwater Elevation Not Measured in April 2011
- BAPB Piezometers on RFS Property Not Measured in April 2011
- April 2011 Groundwater Contours
- -? Contour Estimated due to Proximity to BAPB Wall, Slurry Wall, or Marsh
- Existing Building
- Asphalt/Concrete Pad
- Surface Water
- Marsh Boundary
- --- Richmond Field Station Site Boundary
- Roads and Other Landscape Features
- Biologically Active Permeable Barrier Wall
- Former Seawall (Approximate)

Slurry Wall

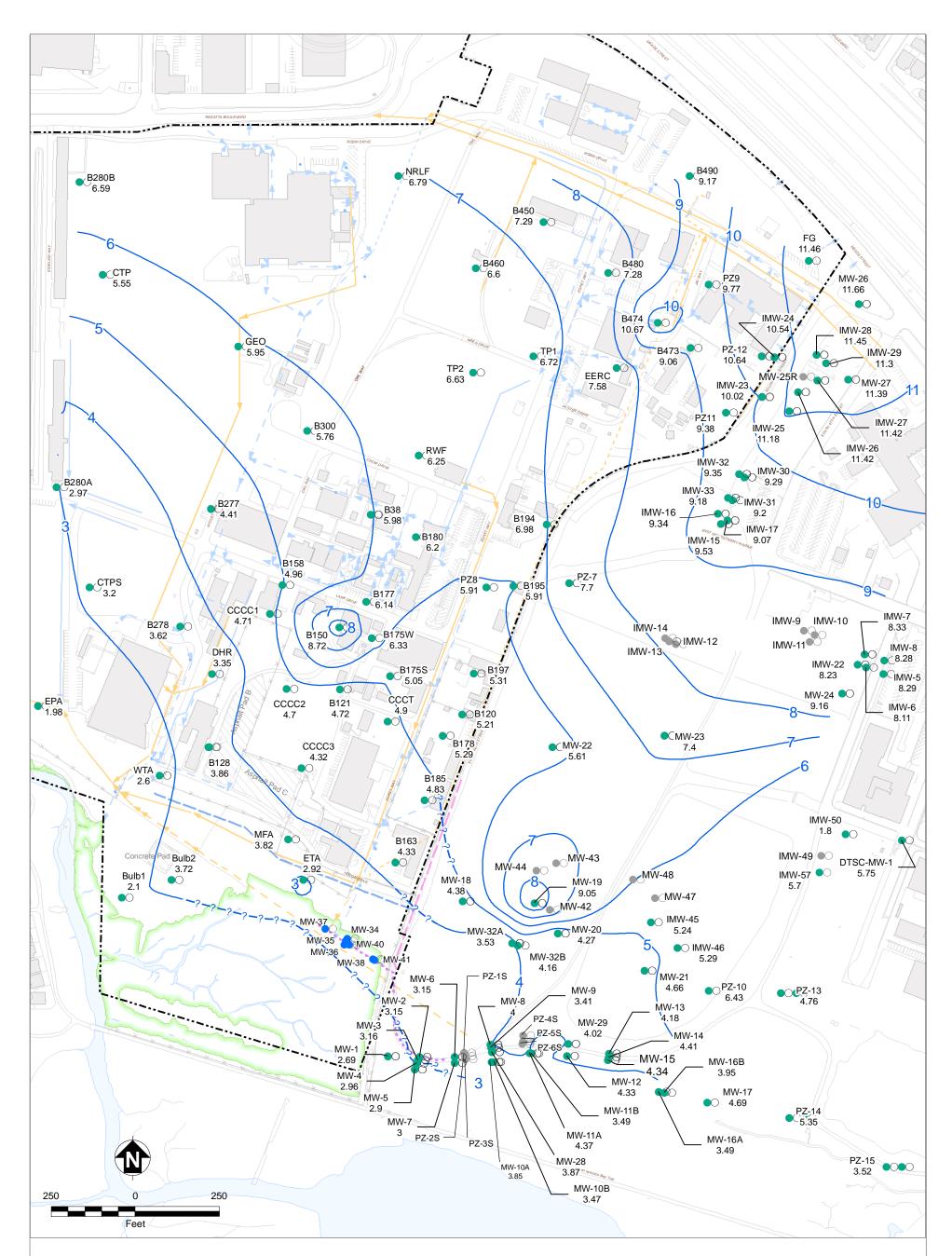

Storm Drain Lines:

- --- Open Swale
- -> Underground Culvert
- - Underground Culvert, Abandoned (Grouted at Manholes)

Sanitary Sewer Lines:

- ---- Removed Sewer Line
- - Abandoned Sewer Line

Note: All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) -0.58 feet NGVD and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.

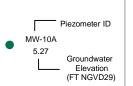


Richmond Field Station Site University of California, Berkeley

FIGURE 5 SHALLOW GROUNDWATER **ELEVATION CONTOURS, APRIL 11, 2011**

2016 Groundwater Sampling Results

9/21/2016 V:\Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\05_Shallow GW Elevation Contours 2011 April 11_rev.mxd TtEMI-OAK

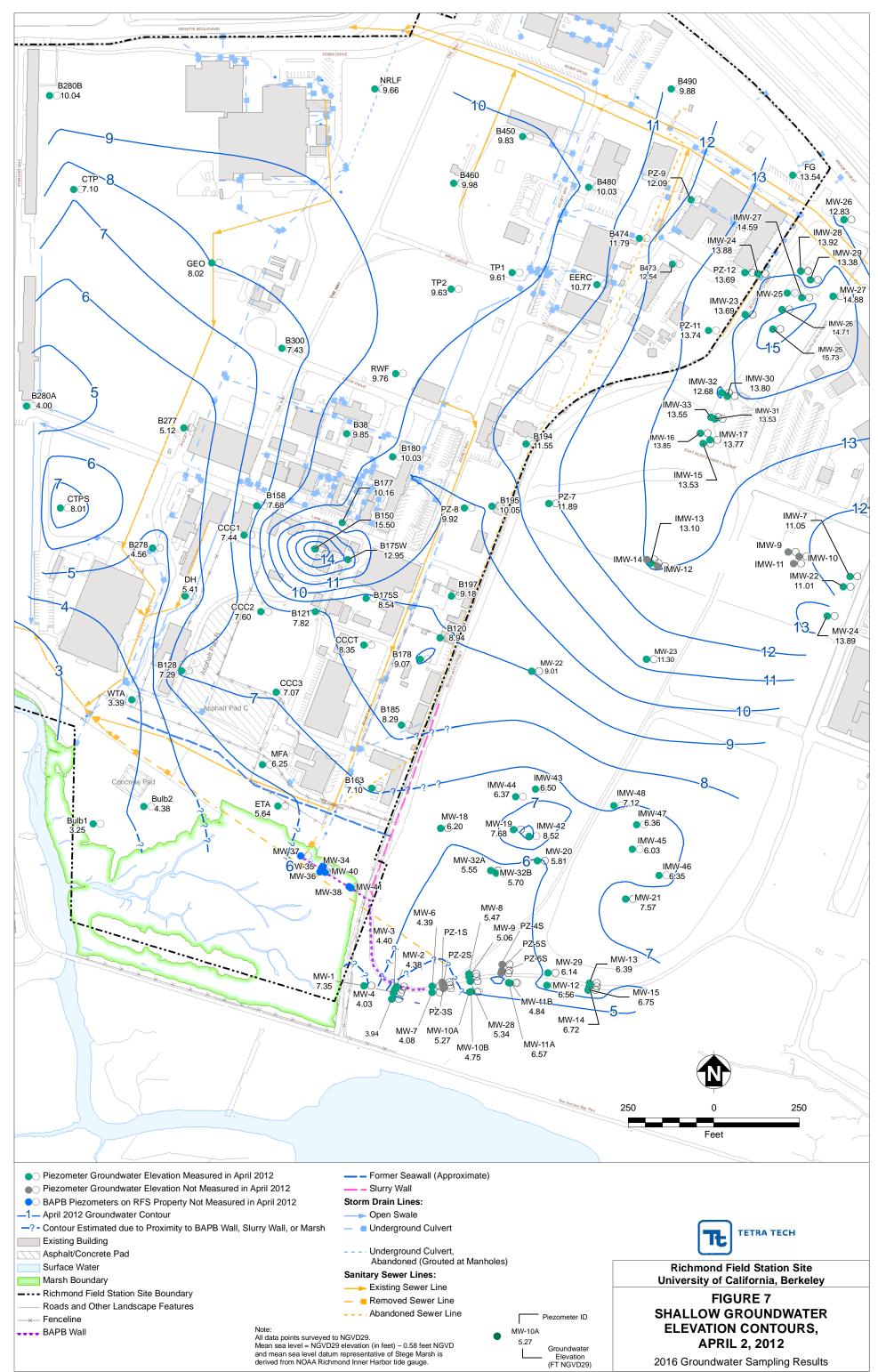


- Piezometer Groundwater Elevation Measured in October 2011
- ●○Piezometer Groundwater Elevation Not Measured in October 2011
- BAPB Piezometers on RFS Property Not Measured in October 2011
- October 2011 Groundwater Contours
- -? Contour Estimated due to Proximity to BAPB Wall, Slurry Wall, or Marsh
- Existing Building
- Asphalt/Concrete Pad
 - Surface Water
- 🔲 Marsh Boundary
- --- Richmond Field Station Site Boundary
- Roads and Other Landscape Features
- ---- BAPB Wall
- Former Seawall (Approximate)

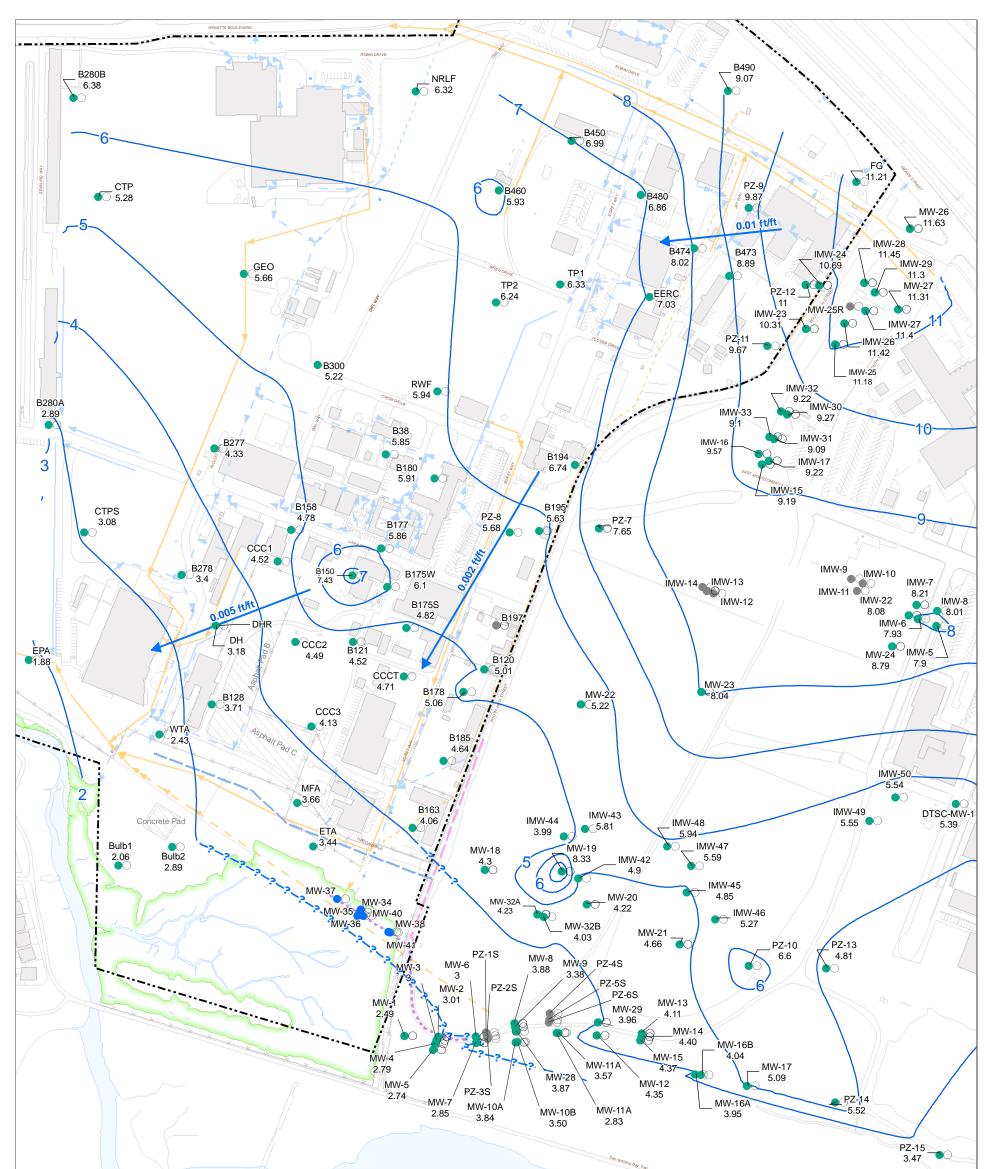
- Slurry Wall
- Storm Drain Lines:
- Open Swale
- Underground Culvert
- Underground Culvert, Abandoned (Grouted at Manholes)

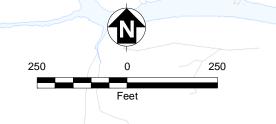
- ---- Existing Sewer Line
- -- -- Removed Sewer Line
- - Abandoned Sewer Line

All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) – 0.58 feet NGVD and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.



Richmond Field Station Site University of California, Berkeley


FIGURE 6 SHALLOW GROUNDWATER **ELEVATION CONTOURS, OCTOBER 3, 2011**


2016 Groundwater Sampling Results

9/21/2016 V:\N ts_2016\06_Shallow GW Elevation Contours 2011 Oct 3.mxd TtEMI-OAK s 09_GW_S

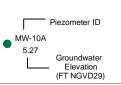
9/21/2016 V:\Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\07_Shallow GW Elevation Contours 2012 April 2.mxd TtEMI-OAK simon.cardinale

- Piezometer Groundwater Elevation Measured in October 2012
- Piezometer Groundwater Elevation Not Measured in October 2012
- BAPB Piezometers on RFS Property Not Measured in October 2012
- October 2012 Groundwater Contours
- -? Contour Estimated due to Proximity to BAPB Wall, Slurry Wall, or Marsh
- Estimated Horizontal Groundwater Gradient Direction (Value)

Existing Building

- Asphalt/Concrete Pad
 - Surface Water

Marsh Boundary

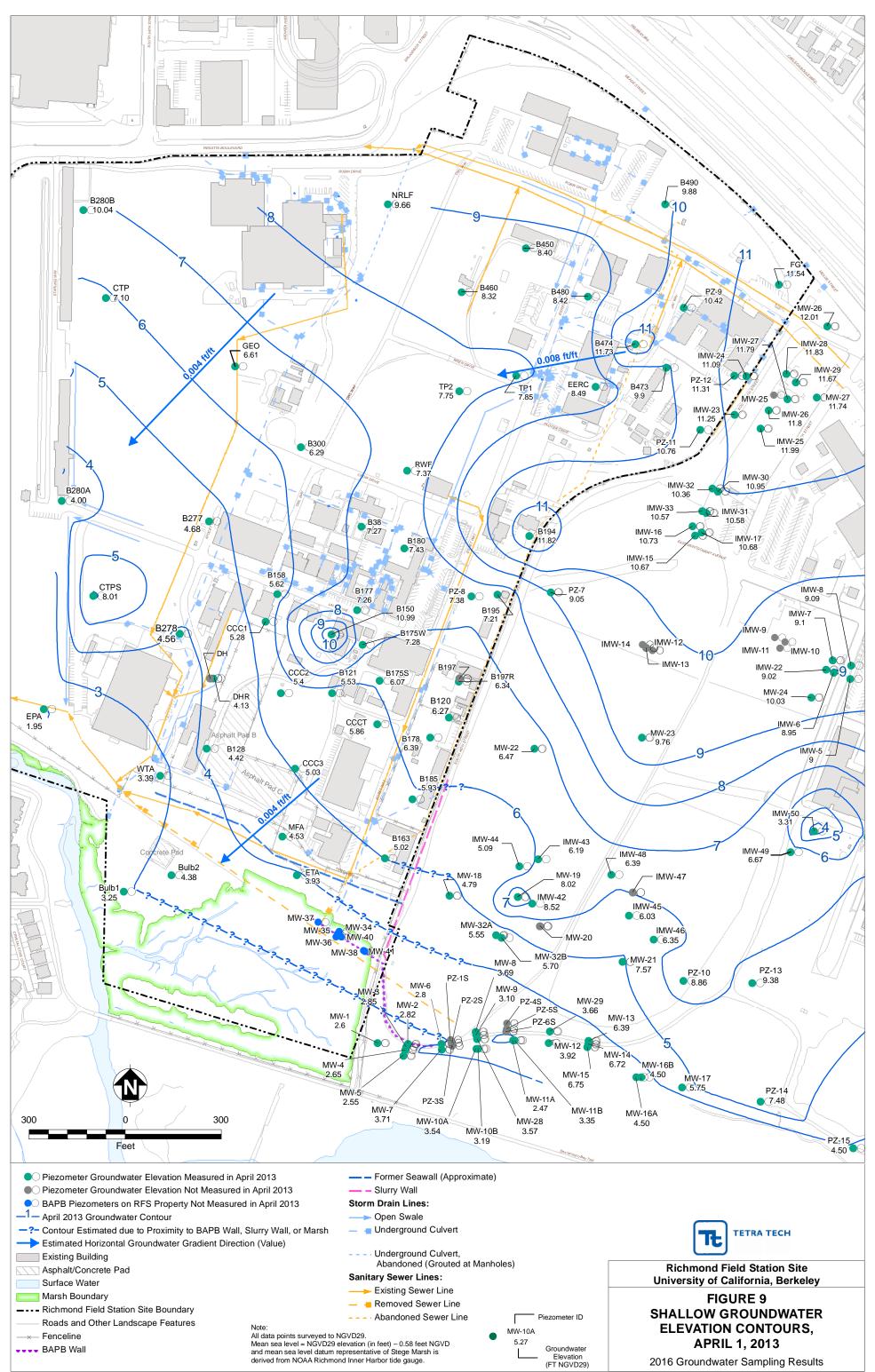

- ---- Richmond Field Station Site Boundary
- Roads and Other Landscape Features
- → Fenceline
- ---- BAPB Wall

- Slurry Wall
- Storm Drain Lines:
- Open Swale
- > Underground Culvert
- Underground Culvert, Abandoned (Grouted at Manholes)

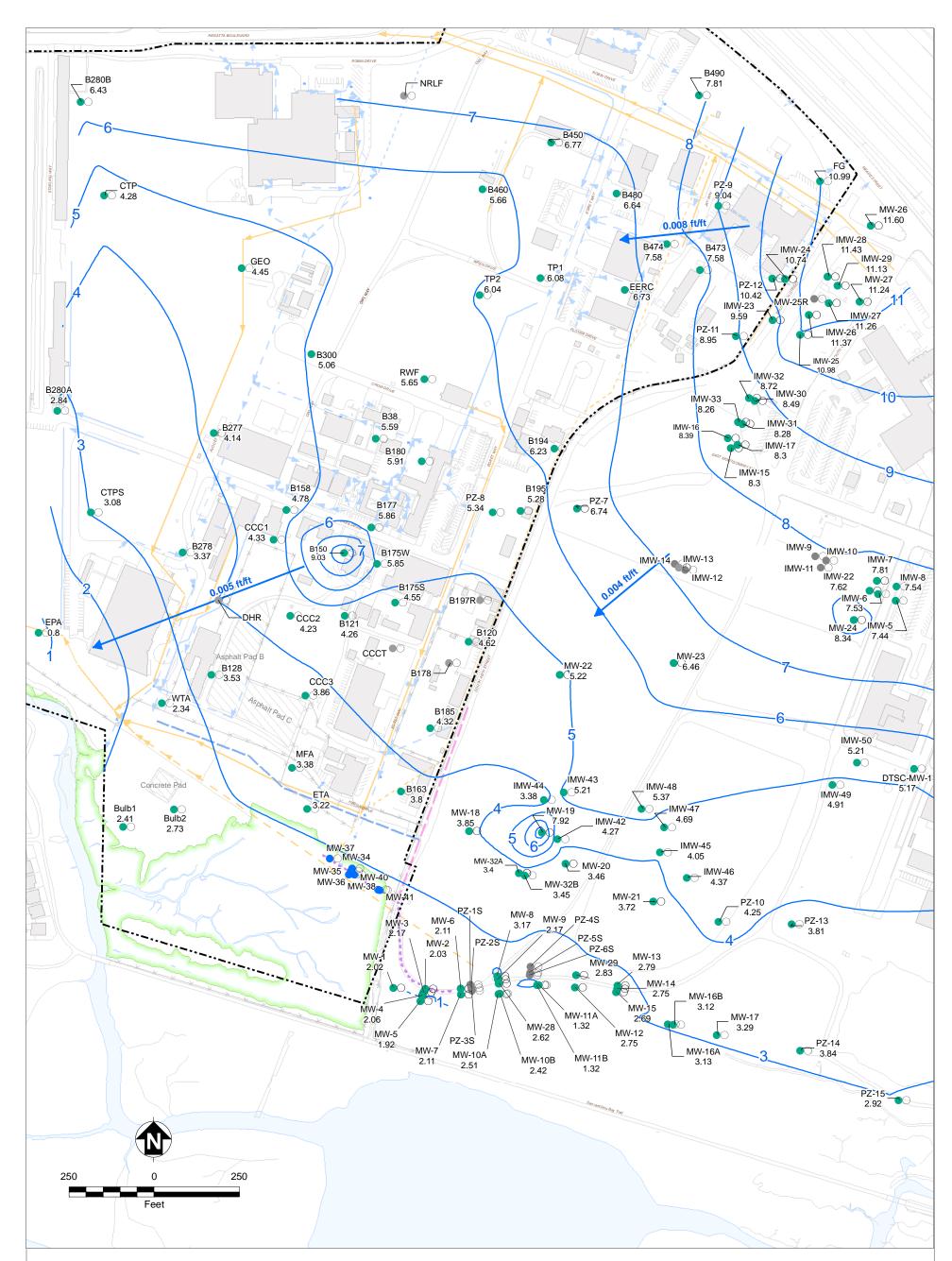
Sanitary Sewer Lines:

- Existing Sewer Line
- - Removed Sewer Line
- --- Abandoned Sewer Line

Note: All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) - 0.58 feet NGVD and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.



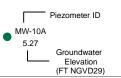
Richmond Field Station Site University of California, Berkeley


FIGURE 8 SHALLOW GROUNDWATER **ELEVATION CONTOURS, OCTOBER 1, 2012**

2016 Groundwater Sampling Results

9/21/2016 V:\Misc_GIS\Rid tion\Projects\009_GW_Sampling_Results_2016\08_Shallow GW Elevation Contours 2012 Oct 1.mxd TtEMI-OAK si nond_Field_Sta

9/21/2016 V:Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\09_Shallow GW Elevation Contours 2013 April 1.mxd TtEMI-OAK simon.cardinale

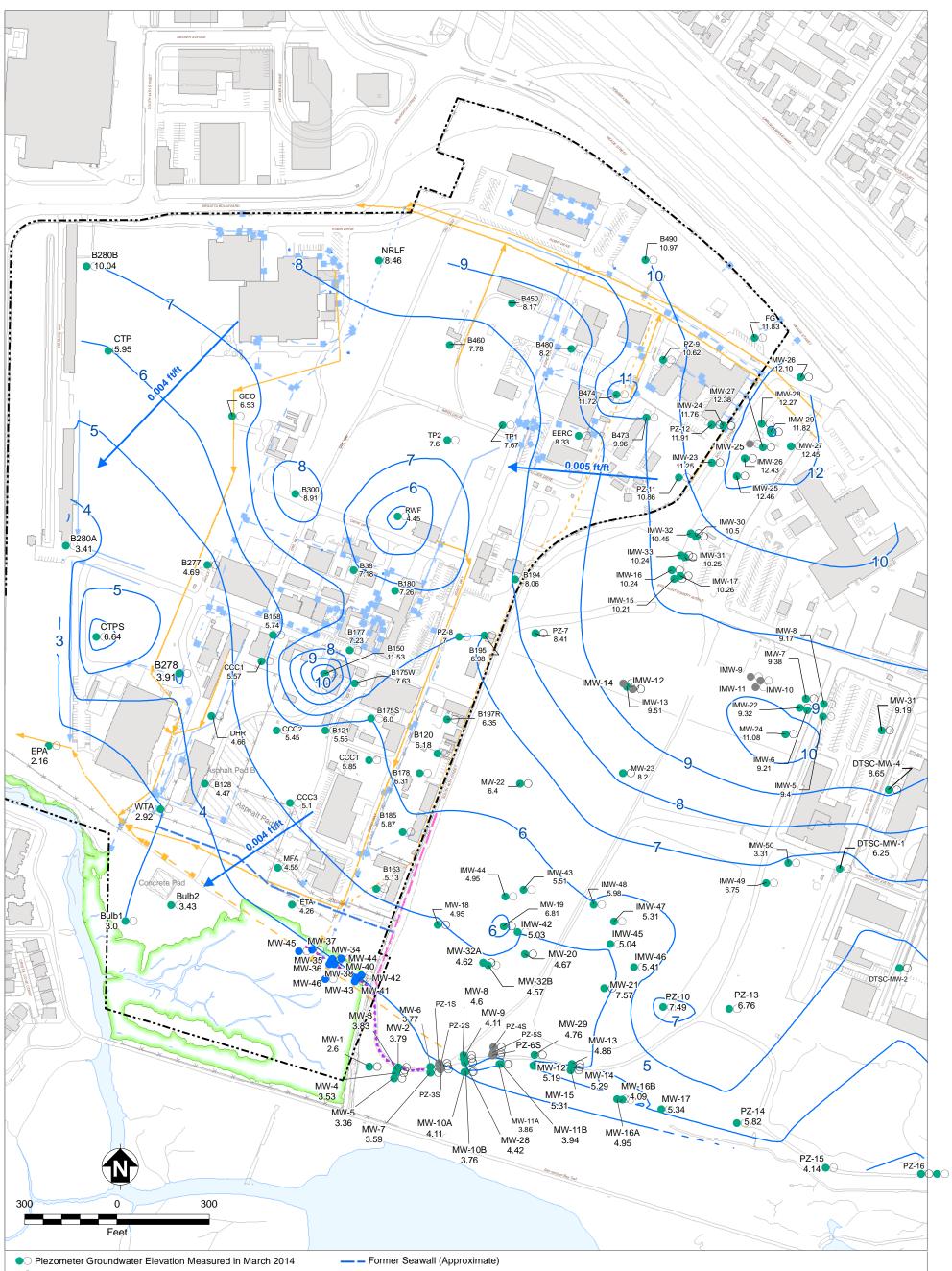

- Piezometer Groundwater Elevation Measured in October 2013
- Piezometer Groundwater Elevation Not Measured in October 2013
- BAPB Piezometers on RFS Property Not Measured in October 2013
- Estimated Horizontal Groundwater Gradient Direction (Value)
- Existing Building
- Asphalt/Concrete Pad
 - Surface Water
- Marsh Boundary
- ---- Richmond Field Station Site Boundary
- Roads and Other Landscape Features
- BAPB Wall

- -- Former Seawall (Approximate)
- Slurry Wall
- Storm Drain Lines:
- > Underground Culvert
- Underground Culvert, Abandoned (Grouted at Manholes)

- ---- Existing Sewer Line
- > Removed Sewer Line
- - Abandoned Sewer Line

Note:

Note: All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) – 0.58 feet NGVD and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.



Richmond Field Station Site University of California, Berkeley

FIGURE 10 SHALLOW GROUNDWATER **ELEVATION CONTOURS, OCTOBER 7, 2013**

2016 Groundwater Sampling Results

9/23/2016 V:\Misc_GIS\Rid Projects\009_GW_Sampling_Results_2016\10_SH nd_Field_St

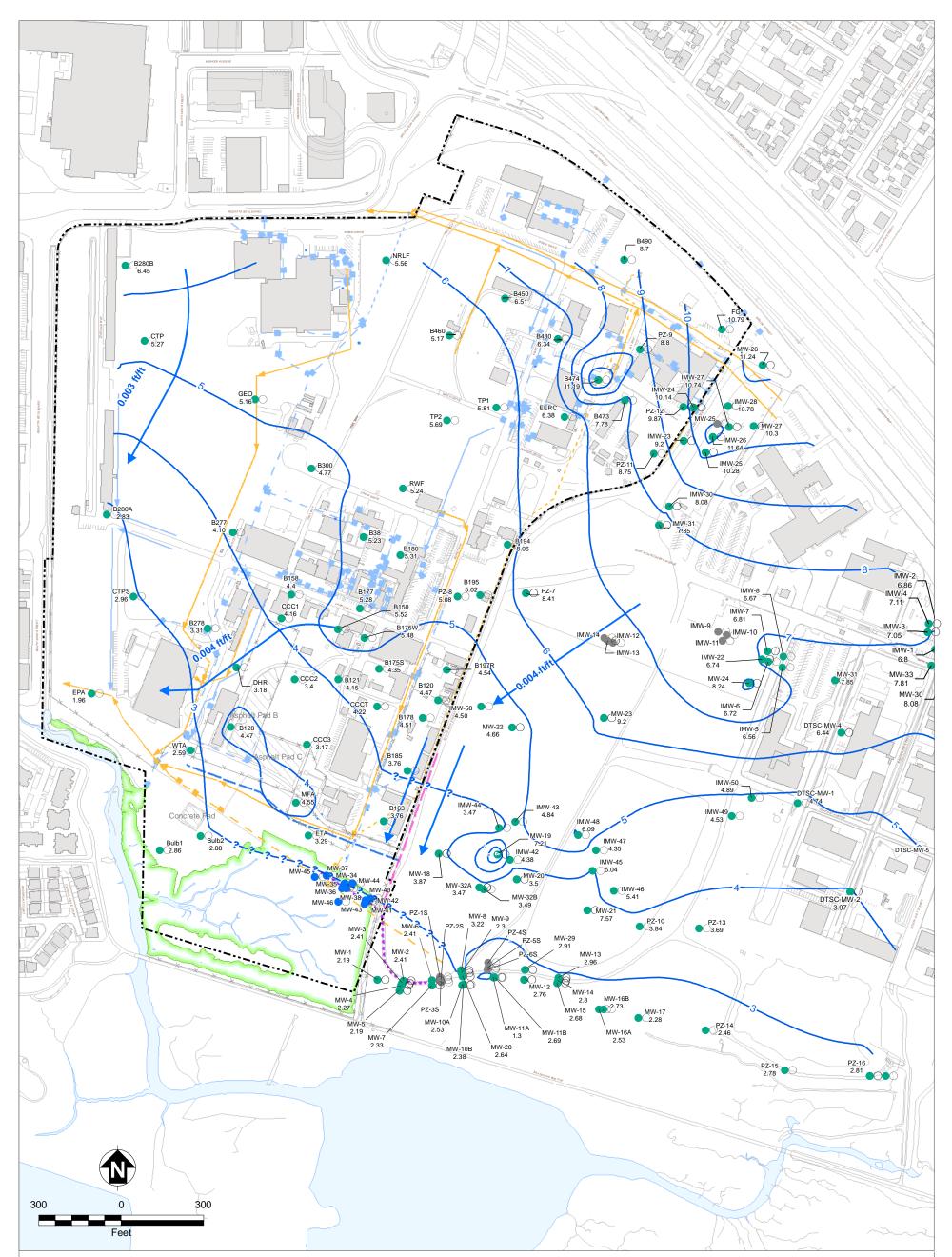
- Piezometer Groundwater Elevation Not Measured in March 2014
- BAPB Piezometers on RFS Property Not Measured in March 2014
- -1- April 2014 Groundwater Contour
- Estimated Horizontal Groundwater Gradient Direction (Value)
- Existing Building
- Asphalt/Concrete Pad
 - Surface Water
- Marsh Boundary
- ---- Richmond Field Station Site Boundary
- —— Roads and Other Landscape Features
- BAPB Wall

- Slurry Wall
- Storm Drain Lines:
- Underground Culvert
- --- Underground Culvert, Abandoned (Grouted at Manholes)

- Existing Sewer Line
- - Removed Sewer Line
- - · Abandoned Sewer Line

Piezometer ID

Groundwater Elevation (FT NGVD29)


MW-10A 5.27 FIGURE 11 SHALLOW GROUNDWATER ELEVATION CONTOURS, MARCH 28, 2014

TETRA TECH

2016 Groundwater Sampling Results

Note: All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) – 0.58 feet NGVD and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.

9/21/2016 V:Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\11_Shallow GW Elevation Contours 2014 March 28.mxd TtEMI-OAK simon.cardinale

- Former Seawall (Approximate)
 - – Slurry Wall
 - Storm Drain Lines:

— – Removed Sewer Line

- - - · Abandoned Sewer Line

— Inderground Culvert

Underground Culvert,

Abandoned (Grouted at Manholes)

Note: All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) – 0.58 feet NGVD and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge. Contours do not include data from Phase IV piezometers completed in January 2015.

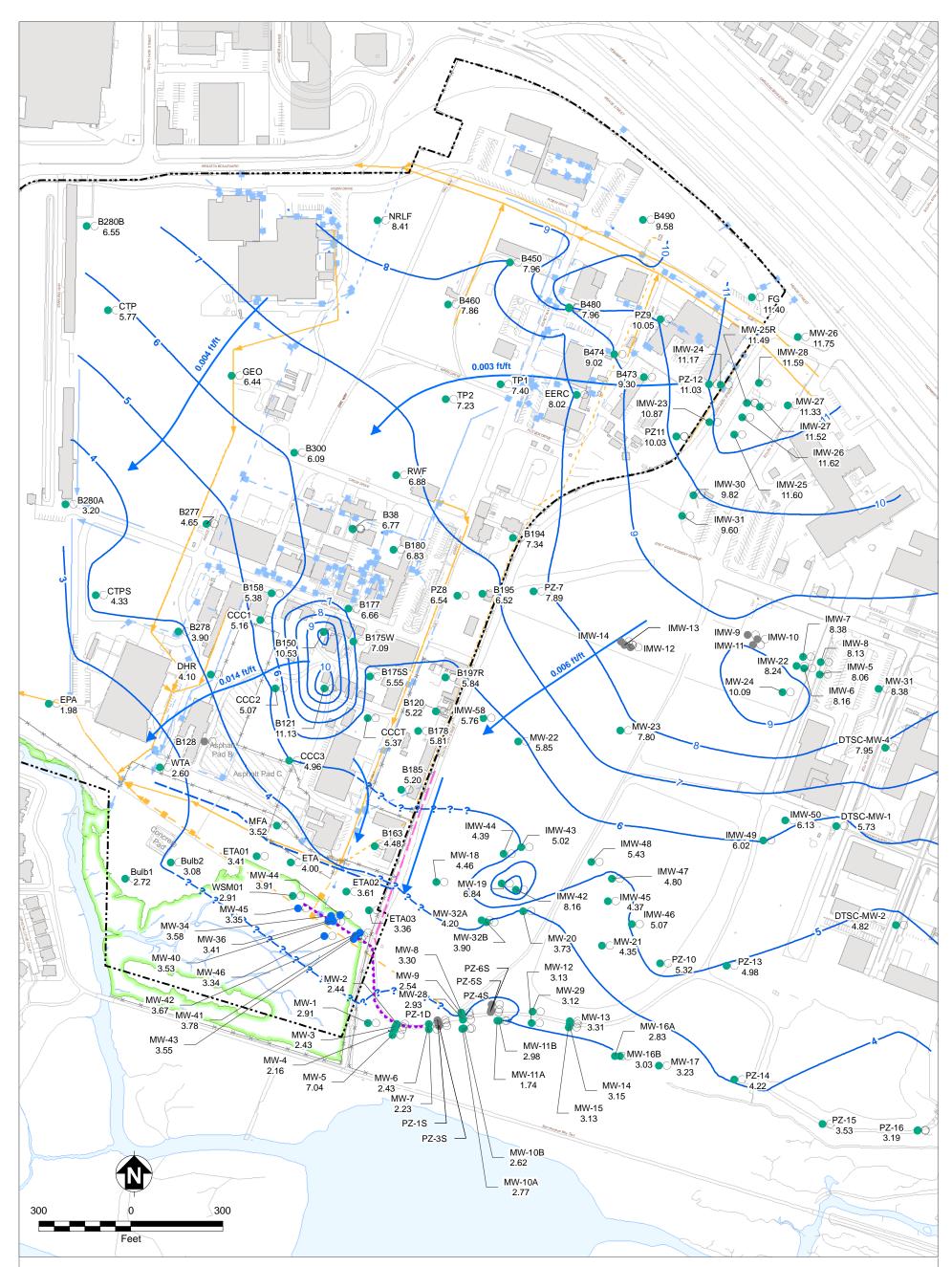
Piezometer ID

Groundwater Elevation (FT NGVD29)

MW-10A

5.27

Richmond Field Station Site University of California, Berkeley


FIGURE 12 SHALLOW GROUNDWATER ELEVATION CONTOURS, OCTOBER 1, 2014

2016 Groundwater Sampling Results

• Piezometer Groundwater Elevation Measured in October 2014

- ●○ Piezometer Groundwater Elevation Not Measured in October 2014
- OBAPB Piezometers on RFS Property Not Measured in October 2014
- —1— Estimated October 2014 Groundwater Contour
- -?- Contour Estimated due to Proximity to BAPB Wall, Slurry Wall, or Marsh
- ---> Estimated Horizontal Groundwater Gradient Direction (Value)
- Existing Building
- Asphalt/Concrete Pad
 - Surface Water
- Marsh Boundary
- ---- Richmond Field Station Site Boundary
- —×— Fenceline
- ---- BAPB Wall

9/21/2016 V:Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\12_Shallow GW Elevation Contours 2014 OctoberREV.mxd TtEMI-OAK simon.cardinale

- Piezometer Groundwater Elevation Measured in April 2015
- Piezometer Groundwater Elevation Not Measured in April 2015
- BAPB Piezometers on RFS Property Measured in April 2015

Estimated April 2015 Groundwater Contour

- -1- Horizontal Groundwater Gradient
- -?- Proximity to BAPB Wall
- ----> Estimated Horizontal Groundwater Gradient Direction (Value)
- Existing Building
- Asphalt/Concrete Pad
 - Surface Water
- Marsh Boundary
- ---- Richmond Field Station Site Boundary
- —— Roads and Other Landscape Features

- ---- BAPB Wall
- – Former Seawall (Approximate)
- Slurry Wall

Storm Drain Lines:

- Dpen Swale
- — Underground Culvert
- - Underground Culvert, Abandoned (Grouted at Manholes)

Sanitary Sewer Lines:

- - Removed Sewer Line
- - - Abandoned Sewer Line

Note:

MW-10A

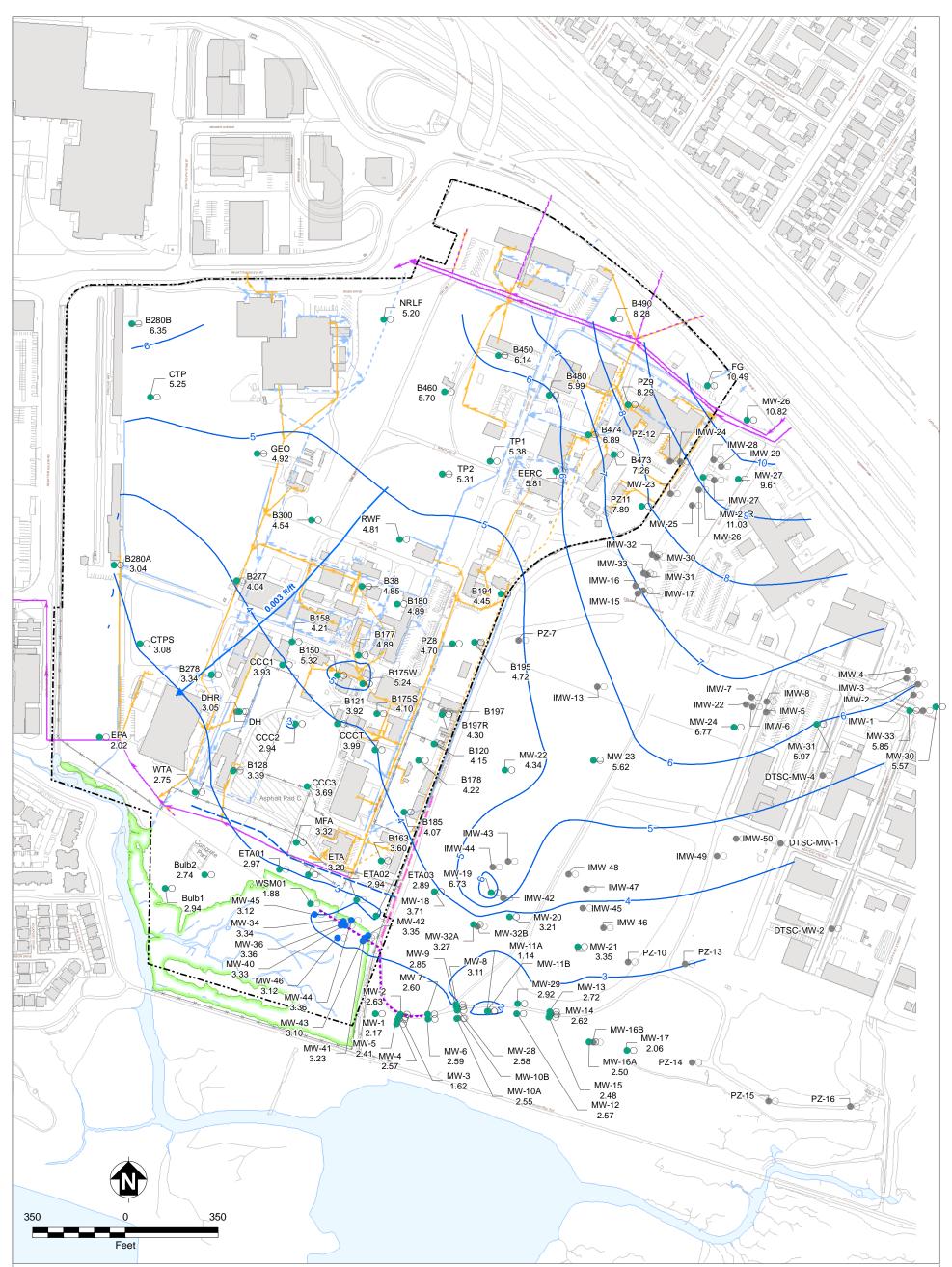
5.27

Piezometer ID

Groundwater

Elevation (FT NGVD29)

All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) - 0.58 feet and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.



Richmond Field Station Site University of California, Berkeley

FIGURE 13 SHALLOW GROUNDWATER ELEVATION CONTOURS, APRIL 1, 2015

2016 Groundwater Sampling Results

921/2016 V:Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\13_Shallow_GW_Elevation_Contours 2015 April 1.mxd TiEMI-OAK simon.cardinale

- Piezometer Groundwater Elevation Measured in October 2015
- Piezometer Groundwater Elevation Not Measured in October 2015
- BAPB Piezometers on RFS Property Measured in October 2015
- -1- Estimated October 2015 Groundwater Contour
- Estimated Horizontal Groundwater Gradient Direction (Value)
- Existing Building
- Asphalt/Concrete Pad
- Surface Water
- Marsh Boundary
- ---- Richmond Field Station Site Boundary
- —— Roads and Other Landscape Features
- —×— Fenceline
- **BAPB Wall**
- Slurry Wall

- Existing City of Richmond Sewer
- --- Abandoned City of Richmond Sewer
- -----> Existing RFS Sewer
- - · Abandoned RFS Sewer

Storm Drain Lines:

- ----> Open Swale
- Underground Culvert
- ---- Gutters
- --- Underground Culvert, Abandoned (Grouted at Manholes)

Note:

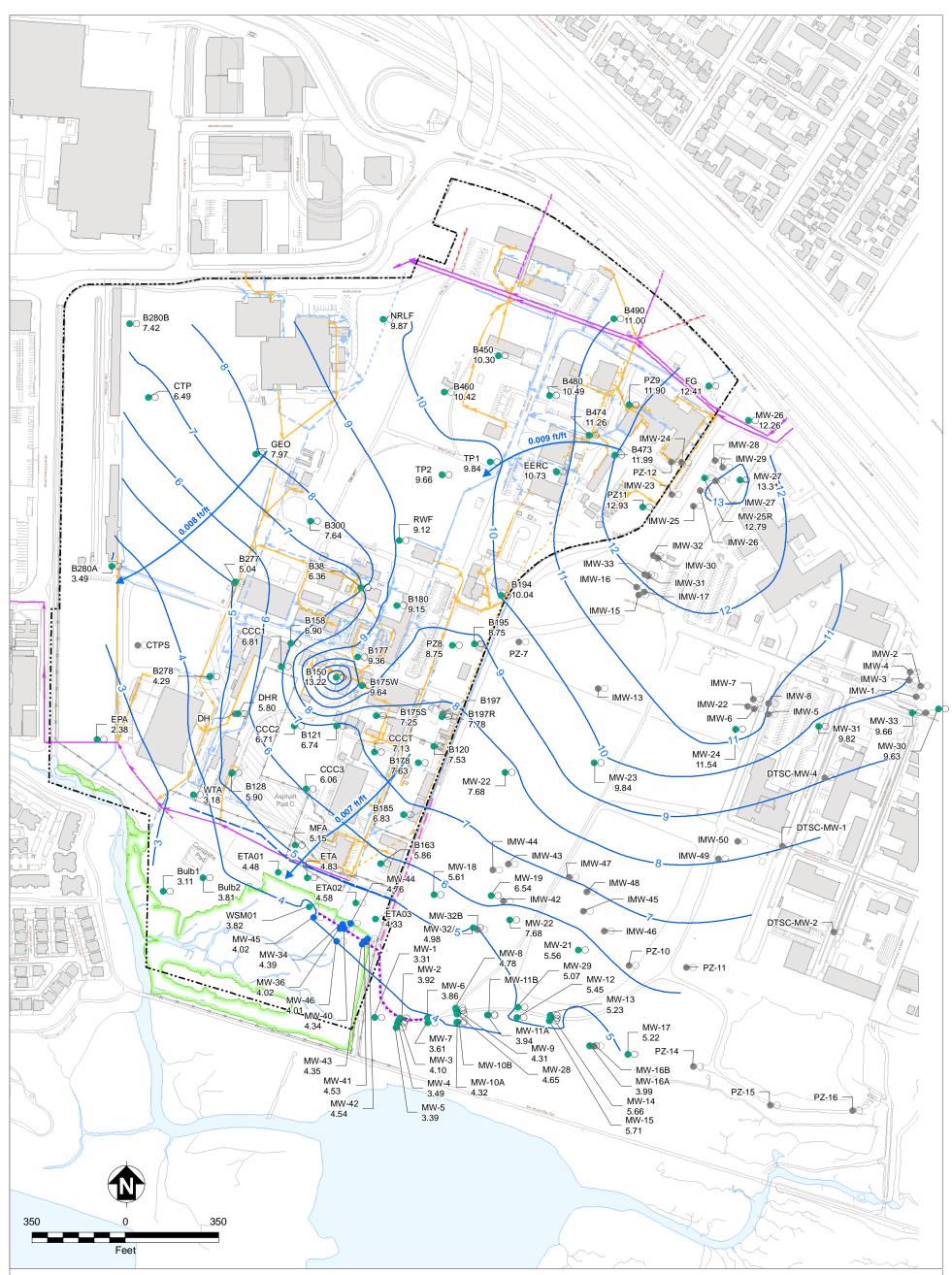
•___ MW-10A

5.27

Piezometer ID

Groundwater Elevation (FT NGVD29)

All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) - 0.58 feet and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.



Richmond Field Station Site University of California, Berkeley

FIGURE 14 SHALLOW GROUNDWATER ELEVATION CONTOURS, OCTOBER 5, 2015

2016 Groundwater Sampling Results

- y21/2016 V:Misc_GIS\Richmond_Field_Station\Projects\009_GW_Sampling_Results_2016\14_Shallow_GW_Elevation_Contours 2015 October 5.mxd TiEMI-OAK simon.cardinale.

- Piezometer Groundwater Elevation Measured in April 2016
- Piezometer Groundwater Elevation Not Measured in April 2016
- BAPB Piezometers on RFS Property Measured in April 2016
- Estimated April 2016 Groundwater Contour
- Estimated Horizontal Groundwater Gradient Direction (Value) Existing Building
- Asphalt/Concrete Pad
- Surface Water
- Marsh Boundary
- ---- Richmond Field Station Site Boundary
- Roads and Other Landscape Features
- Fenceline
- BAPB Wall
- Former Seawall (Approximate)
- — Slurry Wall

- Existing City of Richmond Sewer
- Abandoned City of Richmond Sewer - - - -
- Existing RFS Sewer
- --- Abandoned RFS Sewer

Storm Drain Lines:

- Open Swale
- Underground Culvert
- Gutters
- Underground Culvert, Abandoned (Grouted at Manholes)

• MW-10A

5.27

Piezometer ID

Groundwater

Elevation (FT NGVD29)

All data points surveyed to NGVD29. Mean sea level = NGVD29 elevation (in feet) – 0.58 feet and mean sea level datum representative of Stege Marsh is derived from NOAA Richmond Inner Harbor tide gauge.

Richmond Field Station Site University of California, Berkeley

FIGURE 15 SHALLOW GROUNDWATER **ELEVATION CONTOURS, APRIL 4, 2016**

2016 Groundwater Sampling Results

ojects\009_GW_Sampling_Results_2016\15_Shallow_GW_Elevation_Contours 2016 April 4.mxd TtEMI-OAK

APPENDIX H

3D Settlement Analysis

Appendix H – Summary of Settle 3D Analysis

OBJECTIVE

The objectives of the settlement analysis were to:

- Evaluate total settlement of the mat under various loading scenarios¹ and configurations;
- Evaluate differential settlement of the mat in both the longitudinal and transverse direction, under various loading scenarios and configurations.
- Compare the results of the differential settlement analysis to the ultra-flat slab performance criteria to determine whether a mat slab is a feasible foundation system for the proposed structure given the performance requirements; and
- Optimize the amount of over-excavation and replacement below the mat, and the type of backfill
 material, considering future building settlement performance, constructability, cost, and other factors.

APPROACH AND EVALUATION CRITERIA

A3GEO performed a three-dimensional settlement analysis for the proposed mat using the computer software program Settle3D, a three-dimensional program for the analysis of vertical consolidation and settlement under foundations by Rocscience, Inc. The program allows the user to model soil settlement response under three dimensional loading, but does not take into account the stiffness of the mat or hardened cellular concrete fill (soil-structure interaction effects), and thus presents a simplified model of soil response. In our simplified analyses, we assumed that the stiffness of the mat would be sufficient to distribute the load of the closely-spaced shelving units such that an average distributed bearing pressure could be used to model sustained live loads.

Analysis Steps

Generally, the analysis consisted of the following steps:

- Communicating with the Project design team to understand the magnitude and timing of the proposed loads;
- Developing three, parametric over-excavation and replacement scenarios, corresponding to varying depths of over-excavation and replacement and varying types of backfill;
- Developing representative subsurface stratigraphy based on the conditions observed in boreholes A3-17-1 and A3-17-2;
- Developing representative soil properties for the model using the results of geotechnical laboratory testing and visual observations from test borings A3-17-1 and A3-17-2;
- Calibrating the soil properties and model for NRLF Phase 4 based on data from NRLF Phase 3;
- Performing the Settle 3D analysis first assuming uniform post-construction book/shelf loading over 100% of the mat area, and subsequently with uniform post-construction book/shelf loading over limited (less than 50%) portions of the mat area;
- Preparing a set of output graphs showing the total settlement and instantaneous slope on the mat at transects across the mat in the transverse and longitudinal directions, for each of the scenarios.

¹ The loading scenarios analyzed included full-weight earth fill below the mat as well as two alternate scenarios utilizing lightweight cellular concrete fill. Cellular concrete is an engineered flowable fill material that, when set, is lighter, stronger and more rigid than soil.

Evaluation Criteria

Based on discussions with the project team, we understand that the ultra-flat slab performance requirement is tied to differential settlement across the wheel axles in both the longitudinal and transverse directions. Specifically, the criteria are as follows:

- Longitudinal Criterion: +/- 0.084 inch over 60 inches (0.0168 inch/foot)
- Transverse Criterion: +/- 0.071 inch over 45 inches (0.01893 inch/foot)

To observe visually where the slope of the mat slab exceeds the ultra-flat slab criteria based on the model, A3GEO plotted both the total settlement along longitudinal and transverse transects for various scenarios, and instantaneous slope along each transect, and compared this to the relevant criterion.

Parametric Loading Scenarios

A3GEO developed three loading scenarios for the parametric settlement analysis. A description of each of the three scenarios is as follows:

Scenario 1 – Scenario 1 involves the over-excavation and replacement of the top six (6) feet below the building footprint, and replacement with Non-Expansive Fill. Non-Expansive Fill is assumed to have a unit weight of 135 pounds per cubic foot (pcf), while the in-situ (excavated) material is assumed to have a unit weight of 120 pcf. In addition to the over-excavation and replacement, a uniform 3-foot grade raise, constructed from Non-Expansive Fill, is assumed across the building footprint.

Scenario 2 – Scenario 2 involves the over-excavation and replacement of the top three (3) feet below the building footprint, and replacement with lightweight cellular concrete. Cellular concrete is assumed to have a unit weight of 35 pcf, while the in-situ (excavated) material is assumed to have a unit weight of 120 pcf. In addition to the over-excavation and replacement, a uniform 3-foot grade raise, constructed from cellular concrete, is assumed across the building footprint.

Scenario 3 – Scenario 3 involves the over-excavation and replacement of the top six (6) feet below the building footprint, and replacement with lightweight cellular concrete. Cellular concrete is assumed to have a unit weight of 35 pcf, while the in-situ (excavated) material is assumed to have a unit weight of 120 pcf. In addition to the over-excavation and replacement, a uniform 3-foot grade raise, constructed from cellular concrete, is assumed across the building footprint.

Loading

Based on conversations with the structural engineer and an analysis of loads generated from loading/unloading associated with Scenarios 1 through 3 outlined above, the following loading sources were identified, with magnitudes and anticipated timing of load application:

	Initial Load			Post- Construction Load				
Loading Scenario	Building Slabs	Building Dead Load	Grade Raise	Excavation and Replacement	Books and Shelving	Total Initial Load	Total Post- Construction Load	Total Load
	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
Scenario 1	325	80	405	90	675	900	675	1575
Scenario 2	325	80	105	-255	675	255	675	930
Scenario 3	325	80	105	-510	675	0	675	675

Loading Configuration Cases

Each of the loading scenarios outlined above was analyzed for each of the loading configuration cases described below, and shown on Figure 2:

Scenarios 1A, 2A, 3A – Scenarios 1A, 2A, and 3A modeled 100% of the uniform initial load (900 psf, 255 psf, and 0 psf, respectively) over the entire mat footprint, followed by 100% of the post-construction load (675 psf) over the entire mat footprint. The purpose of the "A" scenarios was to understand settlement/slope behavior assuming post-construction book loads were applied uniformly. "A" scenarios were used to generate both transverse and longitudinal cross sections across the mat.

Scenarios 1X, 2X, 3X – Scenarios 1X, 2X, and 3X modeled 100% of the uniform initial load over the entire mat footprint, followed by 100% of the post-construction load (675 psf) over the south portion of the proposed stack area. The purpose of the "X" scenarios was to understand settlement/slope behavior assuming post-construction book loads are distributed over a limited portion of the mat. "X" scenarios were used to generate longitudinal cross sections across the mat.

Scenarios 1Y, 2Y, 3Y – Scenarios 1Y, 2Y, and 3Y modeled 100% of the uniform initial load over the entire mat footprint, followed by 100% of the post-construction load (675) over the west portion of the proposed stack area. The purpose of the "Y" scenarios was to understand settlement/slope behavior assuming post-construction book loads are distributed over a limited portion of the mat. "Y" scenarios were used to generate transverse cross sections across the mat.

Loading was applied in the Settle3D model using the Boussinesq stress computation method.

Subsurface Stratigraphic Model

Each scenario, 1A through 3Y, was analyzed twice – once using idealized stratigraphic conditions based on geology observed in test boring A3-17-1, and once using geology observed in A3-17-2. The geologic assumptions incorporated into the model are described further in the section below.

SITE AND SUBSURFACE CONDITIONS

Recent A3GEO test borings A3-17-1 and A3-17-2 were used to model subsurface conditions. Where determined necessary, information from historic test borings by others from previous NRLF investigations was incorporated into the model. Observed conditions were generalized into "idealized" stratigraphic layers, each assigned soil properties as described in the table below.

Soil Properties

Soil properties were estimated based primarily on laboratory test results while considering the soil descriptions and Standard Penetration Test (SPT) N-values. Consolidation indices were estimated based on the results of recent consolidation testing performed on samples from borings A3-17-1 and A3-17-2, and historic samples performed on borings from earlier phases from the NRLF development.

Settle3D allows the designer to analyze various types of settlement for each soil layer, including immediate settlement and primary consolidation settlement. Immediate settlement, or distortion, is the "*rearrangement of grains due to changing stress, resulting in a reduction in void ratio and instant settlement*" (RocScience, 2018). Immediately settlement is estimated using elastic theory. Primary consolidation occurs as the soil particles respond to loading by rearranging into a tighter packing configuration, which leads a decrease in soil void ratio as water is expelled (Coduto, 1999; Rocscience, 2018).

In accordance with guidance documents provided by the developers of Settle3D (RocScience, 2018), our model utilized the following methods:

Material Name	Immediate	Primary Consolidation
Granular Materials	х	
Unsaturated Clays	х	
Saturated Clays		Х

Material properties used in the Settle3D analysis are summarized in the table below:

			Immediate Settlement	Primary Consolidation			
Material	Unit Weight (pcf)	Poisson's Ratio	Equivalent Modulus of Elasticity (ksf)	Compression Ratio, C _{ce}	Recompression Ratio, C _{re}	OCR, top of stratum	OCR, bottom of stratum
Non-Expansive Fill	135	0.4	2820				
Cellular Concrete	120	0.12					
Clay 1 – Unsat.	120	0.3	600				
Clay 2 – Unsat.	120	0.3	730				
Clay 2 – Sat.	125	0.49		0.54	0.015	4	2
Clay 3 – Sat.	125	0.49		0.54	0.02	2	2
Clay 4 – Sat.	125	0.49		0.54	0.02	2	2
Sand/Gravel 1	135	0.3	1200				
Sand/Gravel 2	135	0.35	1600				

NOTES:

1. Unsat. = Unsaturated; Sat. = Saturated

2. Cellular concrete was modeled as 120 pcf to match the unit weight of the existing soil to be excavated. The unload due to switching to the 35 pcf cellular concrete as backfill was accounted for in the applied initial load instead. The cellular concrete was modeled as vertically incompressible.

3. OCR = overconsolidation ratio.

4. All clays were modeled as overconsolidated and with new loading, remained in recompression. As such, the compression ratio was not actually used in model computations.

Groundwater

Groundwater was assumed at 13 feet below ground surface.

SETTLEMENT ANALYSIS RESULTS

A3GEO analyzed settlement for each of the loading cases described above, each at borehole location A3-17-1 and A3-17-2. For initial loading, only primary consolidation settlement was considered. Immediate settlement was ignored for initial loading because any immediate settlement caused by load application due to grade raise, slab placement, and building dead load, will presumably be complete by the time the final topping slab is prepared. Minor differential settlement present in the mat surface can be corrected during topping slab construction. For post-construction loading (book loads and shelves), both immediate and primary consolidation settlements were considered.

A summary of settlement for various loading scenarios is provided on Table H1. Data in the table is broken down into the following types of settlement:

- Settlement due to initial loading primary consolidation settlement;
- Settlement due to post-construction loading immediate settlement; and
- Settlement due to post-construction loading primary consolidation settlement.

The table also presents the total settlement for both the initial loading and post-construction loading phases, which is assumed to be the sum of the three sources of settlement shown above. This is a conservative assumption, as some of the consolidation settlement caused by initial loading will have been complete by the time the topping slab is constructed, and the book loads are added. However, because we do not know how quickly consolidation settlement due to the initial load will have taken place before completion of building construction.

Uniform Book Loading Over 100% of Mat Footprint

Uniform book loading over the entire mat footprint was modeled in Scenarios 1A through 3A. Total settlement was at a maximum in the center of the mat footprint, and ranged from approximately 1.6 to 2 inches for Scenario 1A, 1.15 to 1.4 inches for Scenario 2A, and 0.9 to 1.05 inches for Scenario 3A.

Plots of instantaneous slope for Scenarios 1A through 3A indicate the slope exceeds the transverse and longitudinal slope criteria on the edges of the mat for each of the three loading scenarios.

- Scenario 1A exceeds the transverse and longitudinal slope criteria for a distance of up to approximately 15 and 18 feet from the edge of the wall, respectively.
- Scenario 2A exceeds the transverse and longitudinal slope criteria for a distance of approximately 10 feet and 11 ft from the inside edge of the wall, respectively.
- Scenario 3A exceeds the transverse and longitudinal slope criteria for a distance of approximately 5 and 7 ft from the inside edge of the wall, respectively.

Uniform Book Loading Over Partial Mat Footprint

X Scenarios

Uniform book loading over the partial mat area (split in the north-south direction) was modeled in Scenarios 1X, 2X, and 3X. Total settlement was at a maximum below the south portion of the mat and ranged from approximately 1.5 to 1.9 inches for Scenario 1X, 1.05 to 1.2 inches for Scenario 2X, and 0.8 to 0.9 inches for Scenario 3X.

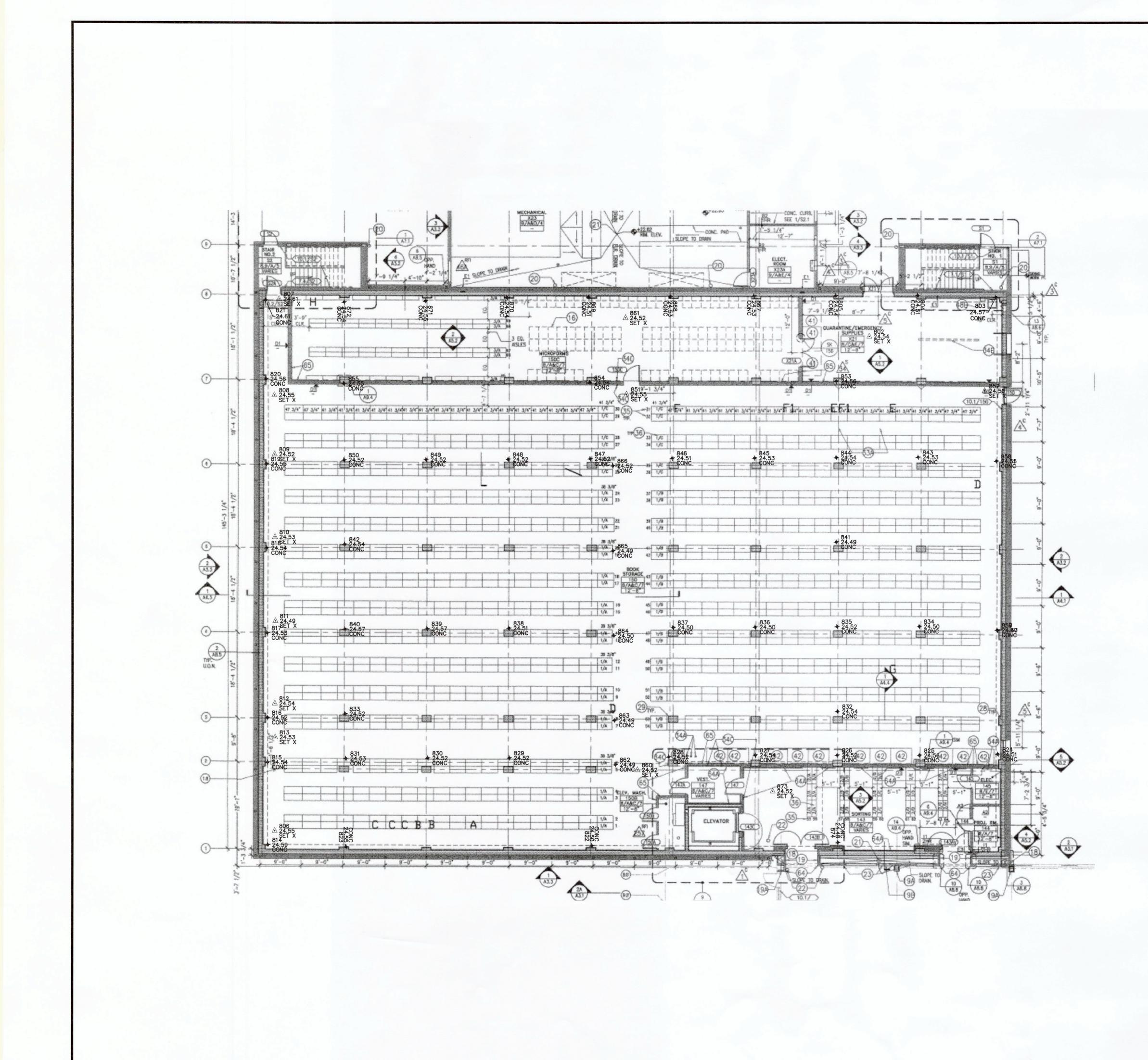
Plots of instantaneous slope for Scenarios 1X through 3X indicate the slope exceeds the longitudinal slope criterion for the south edge of the mat at each of the three loading scenarios.

- Scenario 1X exceeds the longitudinal slope criterion at a distance of up to approximately 17 feet from the edge of the wall.
- Scenario 2X exceeds the longitudinal slope criterion at a distance of up to approximately 10 feet from the edge of the wall.
- Scenario 3X exceeds the longitudinal slope criterion at a distance of up to approximately 7 feet from the edge of the wall.

Additionally, Scenarios 1X through 3X exceed the longitudinal criterion in the center portion of the mat, at the transition from 100% book loading to no book loading. Scenario 1X also exceeds the longitudinal criterion at the north edge of the mat.

Y Scenarios

Uniform book loading over the partial mat area (split in the east-west direction) was modeled in Scenarios 1Y, 2Y, and 3Y. Total settlement was at a maximum in the west portion of the mat and ranged from approximately 1.4 to 2 inches for Scenario 1Y, 0.95 to 1.1 inches for Scenario 2Y, and 0.7 to 0.8 inches for Scenario 3Y.


Plots of instantaneous slope for Scenarios 1Y through 3Y indicate the slope exceeds the transverse slope criterion for the west edge of the mat at each of the three loading scenarios.

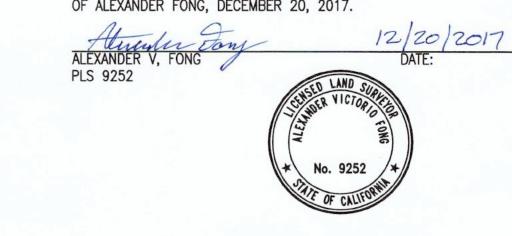
- Scenario 1Y exceeds the transverse slope criterion at a distance of up to approximately 11 feet from the edge of the wall.
- Scenario 2Y exceeds the transverse slope criterion at a distance of up to approximately 6 feet from the edge of the wall.
- Scenario 3Y exceeds the transverse slope criterion at a distance of up to approximately 3 feet from the edge of the wall.

Additionally, Scenarios 1Y through 3Y exceed the transverse criterion at the center portion of the mat, at the transition from 100% book loading to no book loading. Scenario 1Y also exceeds the transverse criterion at the east edge of the mat.

NRLF Phase 3: Floor Level Survey & Transect Plots

TOPOGRAPHIC SURVEY UNIVERSITY OF CALIFORNIA, BERKELEY NORTHERN REGIONAL LIBRARY FACILITY PHASE 3 LEVEL 1 FLOOR ELEVATIONS CITY OF RICHMOND, COUNTY OF CONTRA COSTA, STATE OF CALIFORNIA DECEMBER - 2017

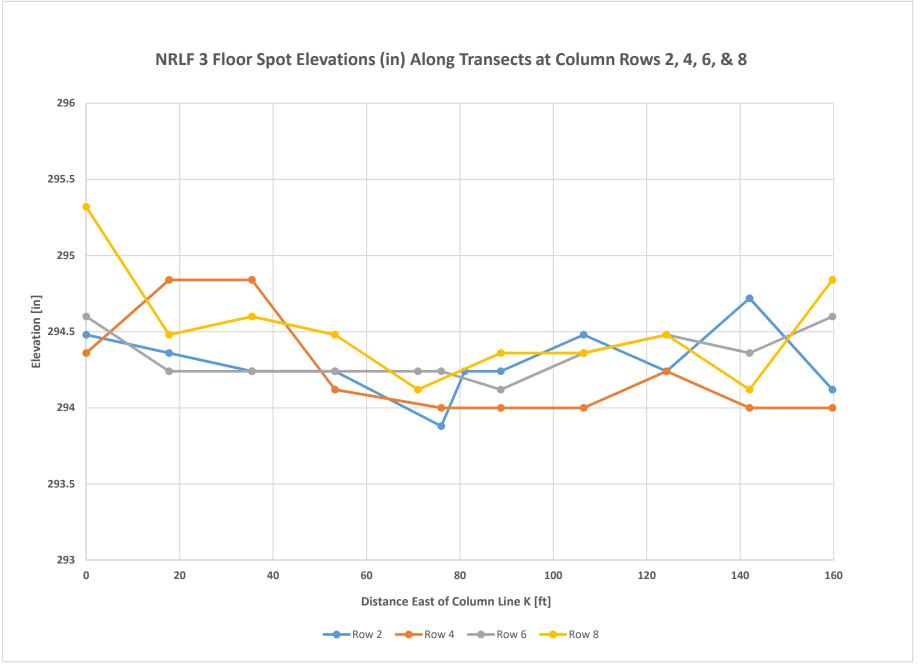
> 40 20 0 40 80 120 SCALE IN FEET

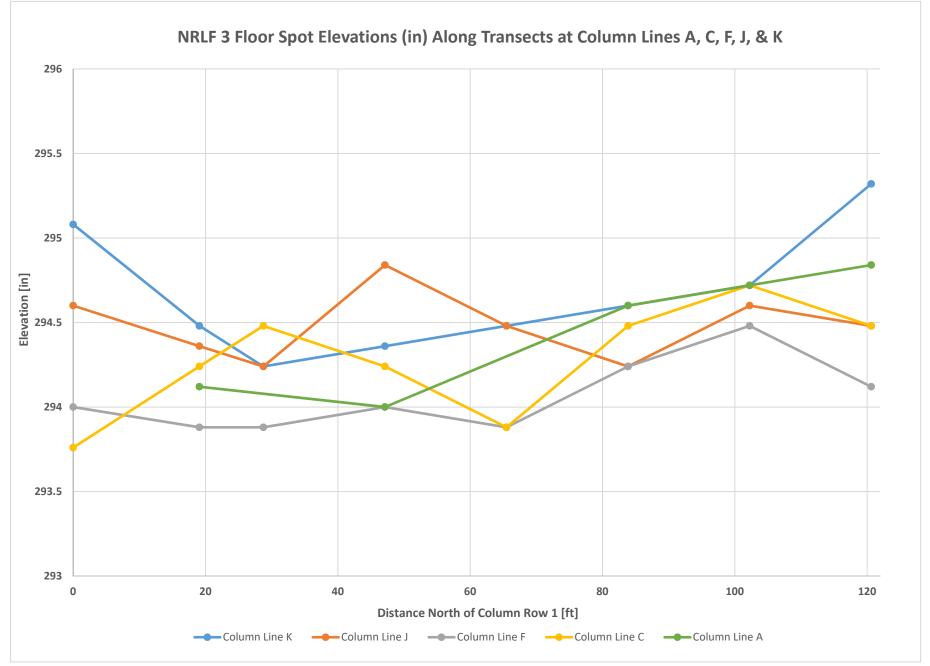

	P	DINT TAE	BLE		POINT TABLE					
POINT #	NORTHING	EASTING	ELEVATION	DESC.		POINT #	NORTHING	EASTING	ELEVATION	DESC.
800	2161935.23	6032068.40	21.93	SET MAG		838	2161814.36	6032119.20	24.51	CNC
801	2161936.35	6032199.52	22.89	SET MAG		839	2161814.26	6032101.43	24.57	CNC
802	2161877.65	6032197.27	24.54	SET X		840	2161814.18	6032083.61	24.57	CNC
803	2161886.15	6032224.73	24.57	CNC		841	2161833.06	6032190.16	24.49	CNC
804	2161886.53	6032207.81	24.51	CNC		842	2161832.55	6032083.54	24.54	CNC
805	2161886.44	6032190.00	24.54	CNC		843	2161851.53	6032207.90	24.53	CNC
806	2161770.32	6032068.36	24.55	SET X		844	2161851.45	6032190.13	24.54	CNC
807	2161885.74	6032069.29	24.61	SET X		845	2161851.33	6032172.41	24.53	CNC
808	2161864.97	6032068.27	24.55	SET X		846	2161851.30	6032154.56	24.51	CNC
809	2161852.13	6032068.32	24.52	SET X		847	2161851.19	6032136.79	24.52	CNC
810	2161834.11	6032068.39	24.53	SET X		848	2161851.06	6032119.04	24.52	CNC
811	2161815.90	6032068.50	24.49	SET X		849	2161851.02	6032101.21	24.52	CNC
812	2161798.04	6032068.36	24.54	SET X		850	2161850.92	6032083.41	24.52	CNC
813	2161790.67	6032068.45	24.53	SET X		851	2161865.19	6032144.67	24.55	SET X
814	2161767.27	6032066.86	24.59	CNC		852	2161865.94	6032222.30	24.56	SET X
815	2161785.21	6032066.82	24.54	CNC		853	2161867.96	6032190.15	24.56	CNC
816	2161794.95	6032066.78	24.52	CNC		854	2161867.72	6032136.70	24.54	CNC
817	2161813.28	6032066.71	24.53	CNC		855	2161867.48	6032083.35	24.55	CNC
818	2161831.71	6032066.60	24.54	CNC		856	2161850.71	6032224.84	24.55	CNC
819	2161850.04	6032066.53	24.55	CNC		857	2161814.00	6032225.03	24.50	CNC
820	2161868.44	6032066.42	24.56	CNC		858	2161850.70	6032224.84	24.51	CNC
821	2161885.46	6032066.34	24.61	CNC		859	2161813.99	6032225.03	24.47	CNC
822	2161767.12	6032137.21	24.50	CNC		860	2161783.66	6032147.07	24.52	SET X
823	2161766.87	6032083.86	24.55	CNC		861	2161881.67	6032144.48	24.52	SET X
824	2161787.08	6032225.18	24.51	CNC		862	2161784.80	6032142.28	24.49	CNC
825	2161786.81	6032208.24	24.56	CNC		863	2161794.41	6032142.10	24.49	CNC
826	2161786.81	6032190.40	24.52	CNC		864	2161812.77	6032141.89	24.50	CNC
827	2161786.84	6032172.62	24.54	CNC		865	2161831.15	6032141.73	24.49	CNC
828	2161786.43	6032153.84	24.52	CNC		866	2161849.68	6032141.69	24.52	CNC
829	2161786.22	6032119.30	24.52	CNC		867	2161886.39	6032172.30	24.53	CNC
830	2161786.17	6032101.60	24.52	CNC		868	2161886.26	6032154.15	24.53	CNC
831	2161786.08	6032083.82	24.53	CNC		869	2161886.15	6032136.50	24.51	CNC
832	2161796.35	6032190.44	24.54	CNC		870	2161886.10	6032118.73	24.54	CNC
833	2161795.82	6032083.64	24.52	CNC		871	2161885.30	6032101.10	24.55	CNC
834	2161814.76	6032208.18	24.50	CNC		872	2161885.09	6032083.44	24.54	CNC
835	2161814.71	6032190.31	24.52	CNC		873	2161778.99	6032176.37	24.52	SET X
836	2161814.59	6032172.56	24.50	CNC		874	2161767.81	6032190.51	24.48	CNC
837	2161814.50	6032154.77	24.50	CNC				I		

DATUM NOTE:

ELEVATIONS SHOWN HEREON ARE AS SHOWN ON THE PLAN FOR THE NORTHERN REGIONAL LIBRARY FACILITY PHASE 3, SHEET NO. C2. ENTITLED UTILITIES: PHASE IV AND EXISTING, AS DESCRIBED BELOW;

ELEVATION BASED ON TBM AT TOP OF FIRE HYDRANT AT ELEVATION = 25.58', AS SHOWN ON THE SURVEY BY DAVID J. RUSSELL, L.S. DATED JUNE 1988.


THIS TOPOGRAPHIC SURVEY WAS DONE BY A FIELD CREW UNDER THE SUPERVISION OF ALEXANDER FONG, DECEMBER 20, 2017.

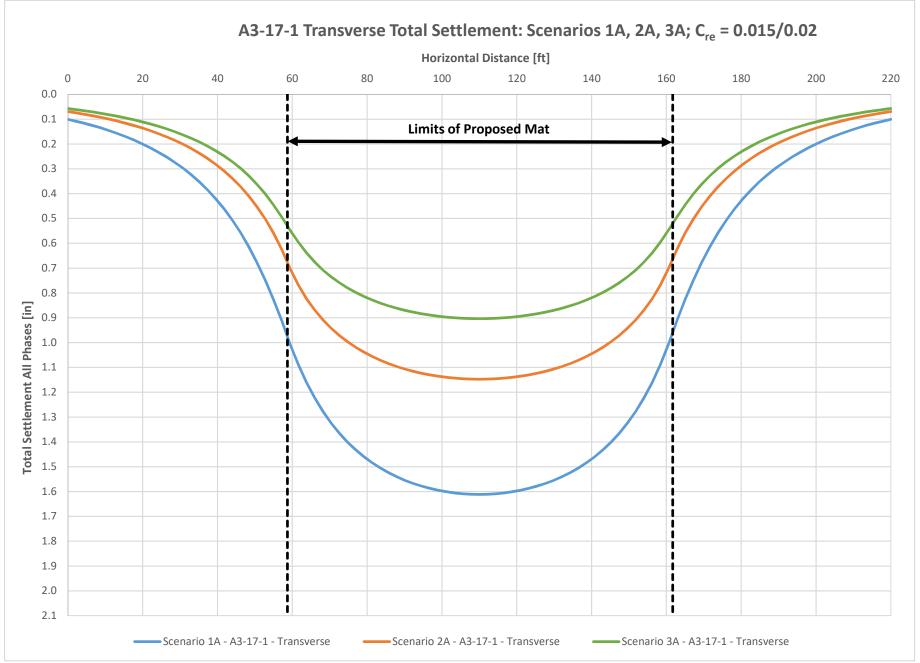


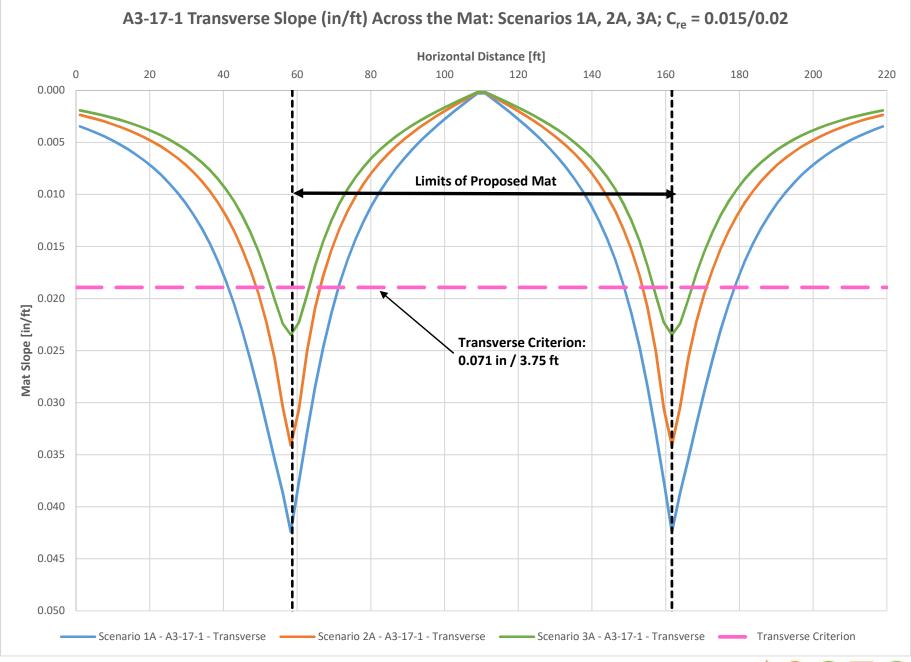
Bellecci & Associates, inc.

Civil Engineering • Land Surveying

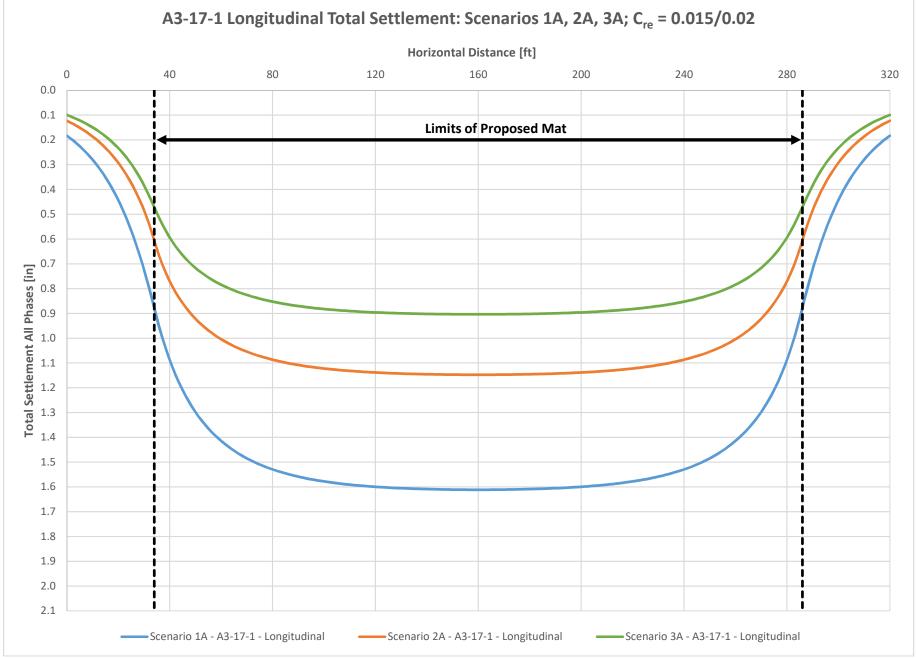
2290 Diamond Boulevard, Suite 100 Concord, CA 94520 Phone (925) 685-4569 Fax (925) 685-4838 SHEET OF JOB NO. 17160

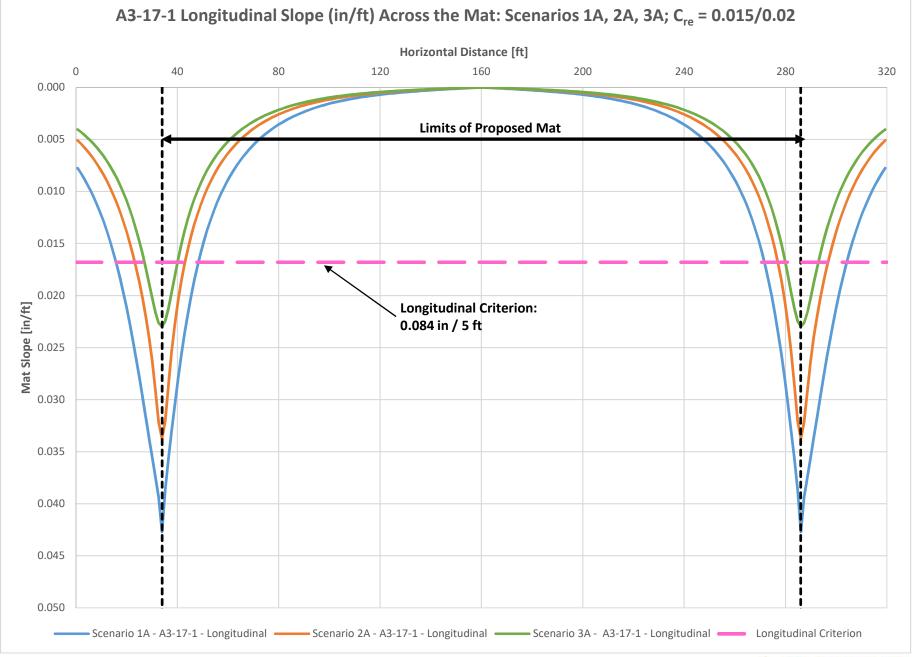
Table H1 – Summary of Settle 3D Analysis

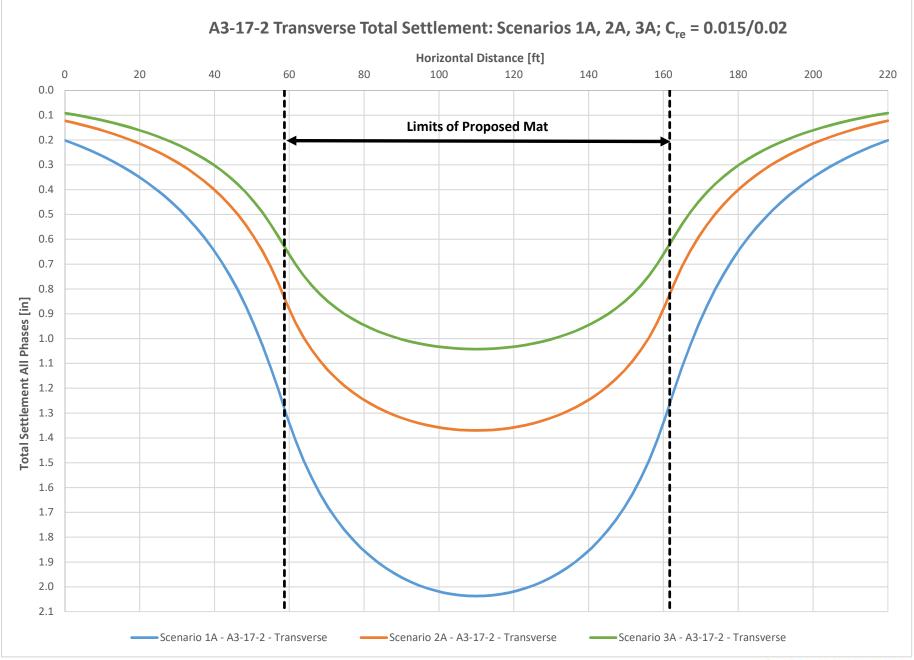

TABLE H1: SUMMARY OF SETTLE 3D ANALYSIS

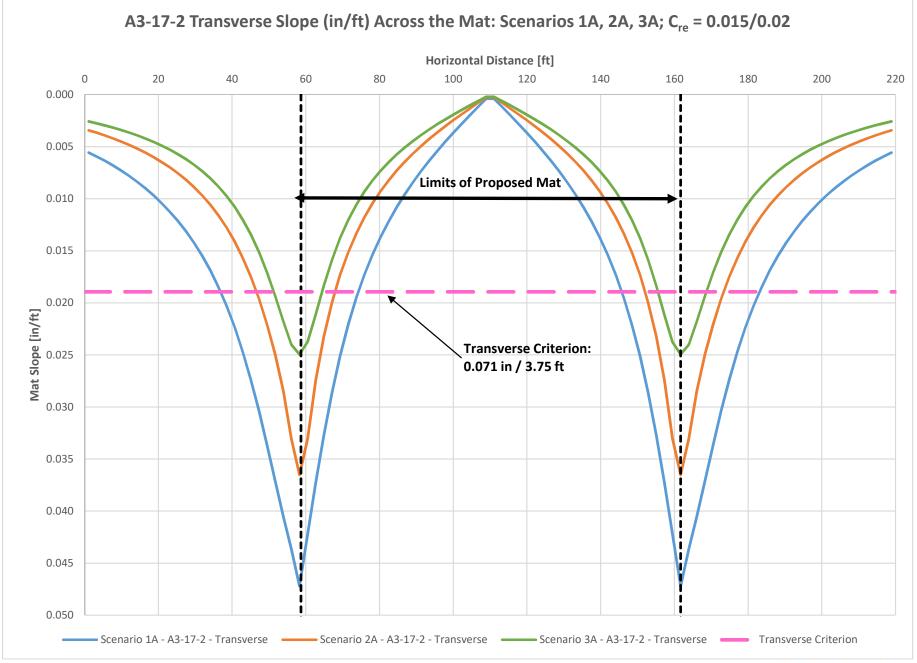

GEOTECHNICAL INVESTIGATION - NRLF PHASE 4 EXPANSION UNIVERSITY OF CALIFORNIA - BERKELEY RICHMOND, CALIFORNIA 1101-17A

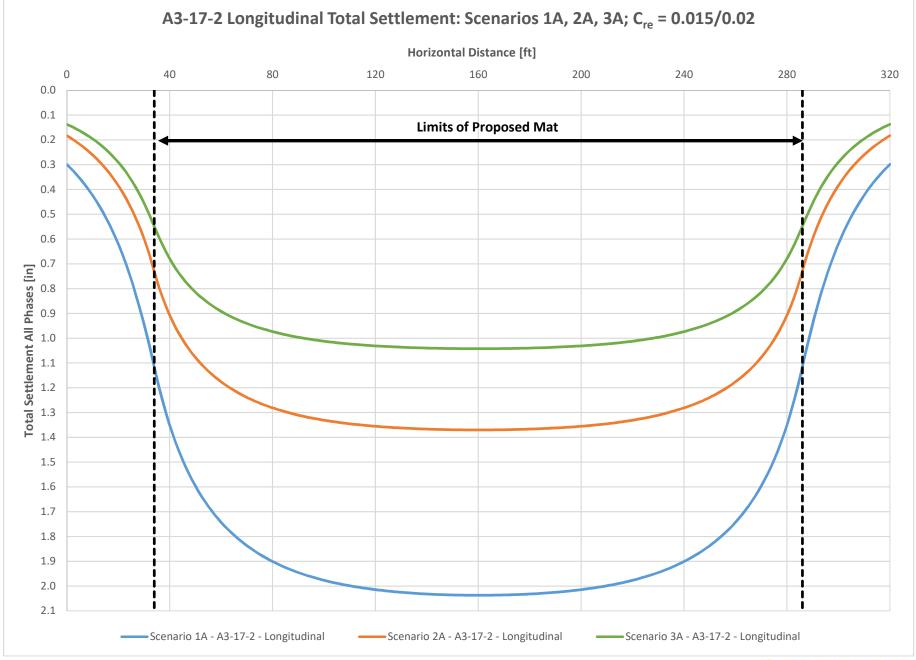
						A3-17-1					A3-17-2		
Scenario ID	Initial Load (psf)	Post- Construction Load (psf)	Total Load (psf)	Initial Load - Consol Settlement (in)	Post-Construction Load - Immediate Settlement (in)	Post- Construction Load - Consol. Settlement (in)	Total Post- Construction Settlement (in)	Total Settlement - All Phases (in)	Sottlomont	Post-Construction Load - Immediate Settlement (in)	Post-Construction Load - Consol. Settlement (in)	Total Post- Construction Settlement (in)	Total Settlement - All Phases (in)
Scenario 1A	900	675	1575	0.82	0.28	0.51	0.79	1.61	1.13	0.18	0.72	0.90	2.03
Scenario 2A	255	675	930	0.25	0.30	0.60	0.90	1.15	0.35	0.20	0.82	1.02	1.37
Scenario 3A	0	675	675	0	0.27	0.64	0.91	0.91	0	0.17	0.87	1.04	1.04
Scenario 1X	900	675	900 / 1575	0.82	0.23	0.45	0.68	1.50	1.13	0.16	0.58	0.74	1.87
Scenario 2X	255	675	255 / 930	0.25	0.26	0.54	0.80	1.05	0.35	0.19	0.69	0.88	1.23
Scenario 3X	0	675	0 / 675	0	0.23	0.59	0.82	0.82	0	0.16	0.76	0.92	0.92
Scenario 1Y	900	675	900 / 1575	0.82	0.20	0.36	0.56	1.38	1.13	0.39	0.47	0.86	1.99
Scenario 2Y	255	675	255 / 930	0.25	0.23	0.46	0.69	0.94	0.34	0.17	0.59	0.76	1.10
Scenario 3Y	0	675	0 / 675	0	0.20	0.50	0.70	0.70	0	0.14	0.64	0.78	0.78

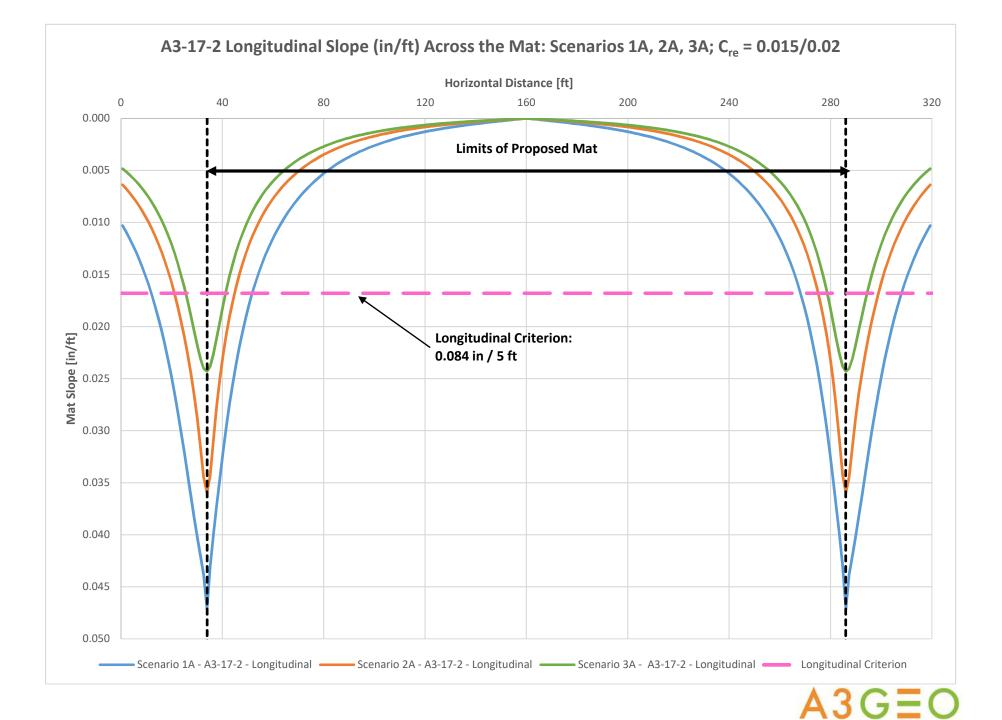

Settlement Plots: Scenarios 1A, 2A, 3A – A3-17-1

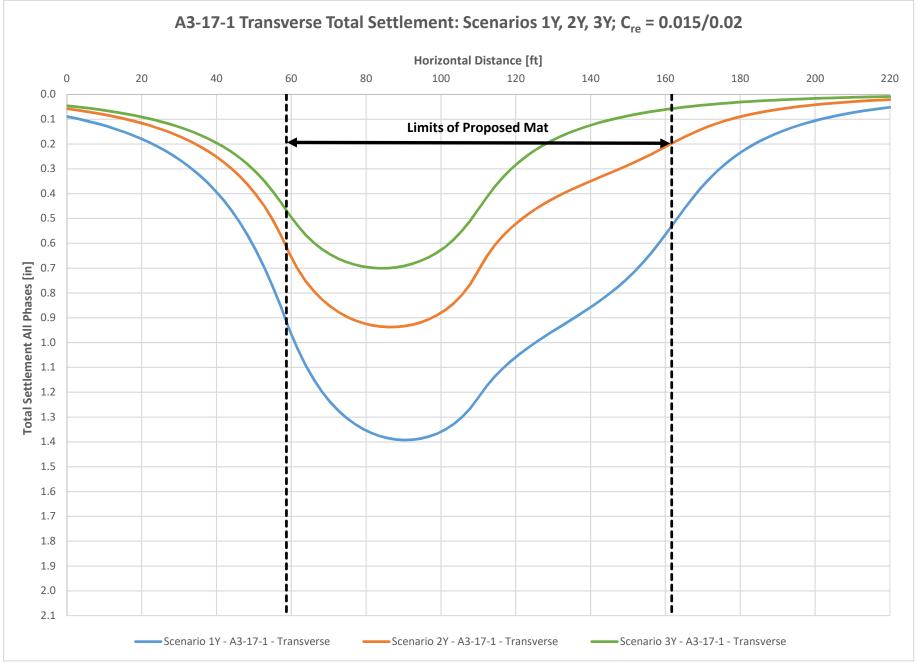


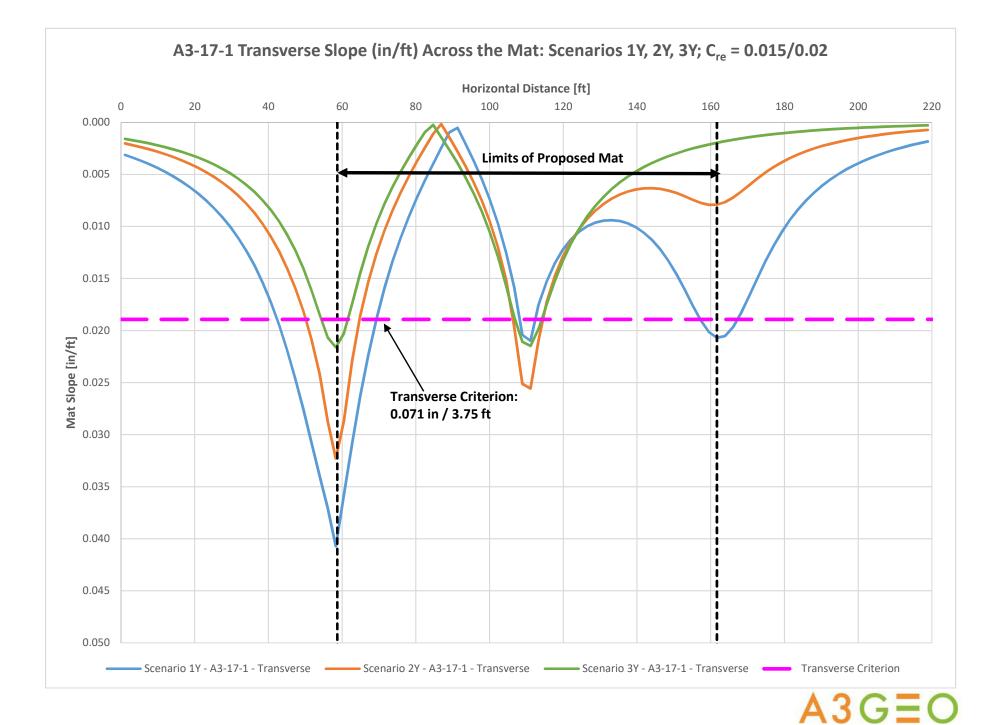


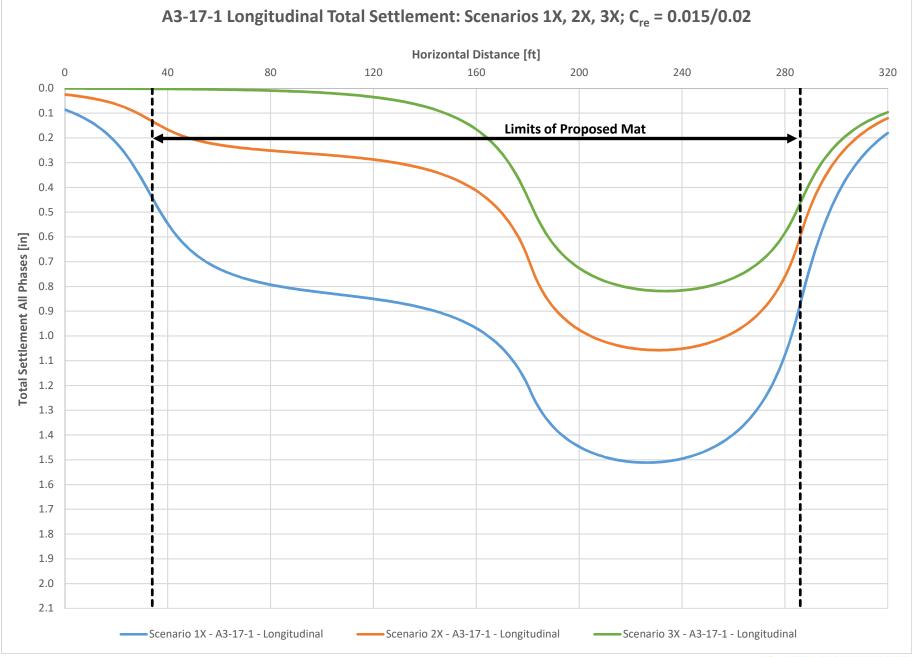


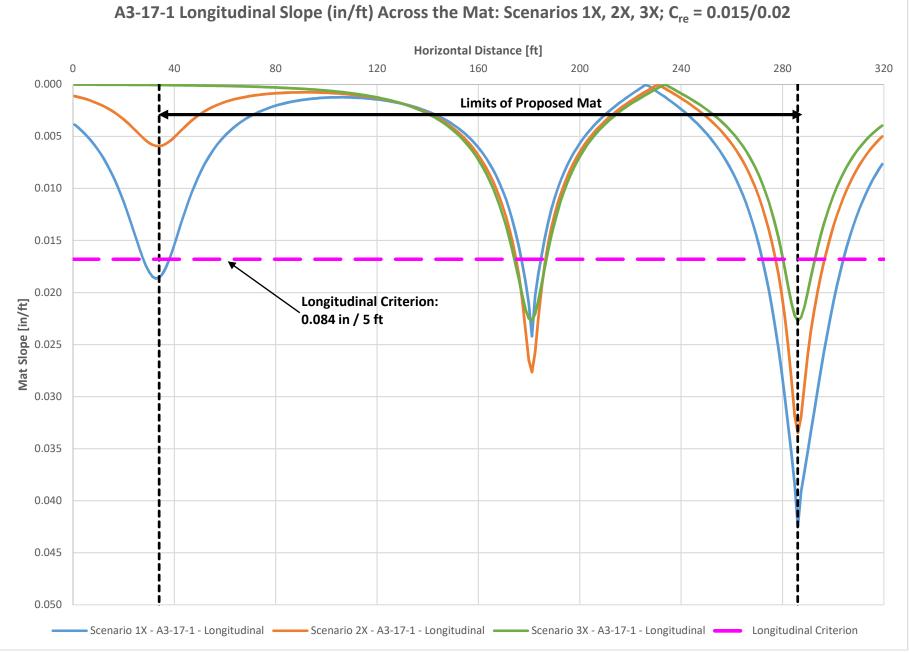

Settlement Plots: Scenarios 1A, 2A, 3A – A3-17-2

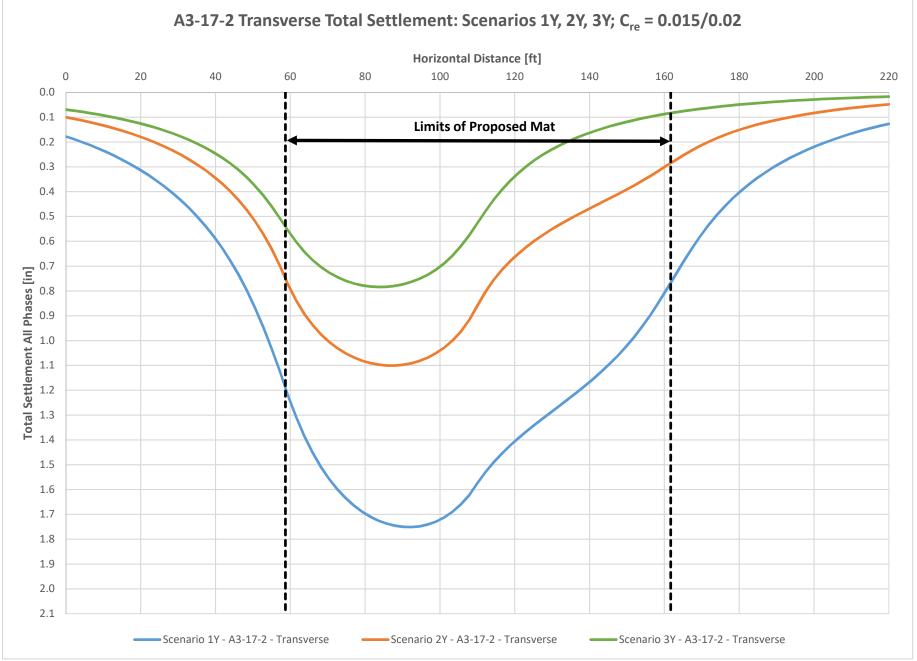


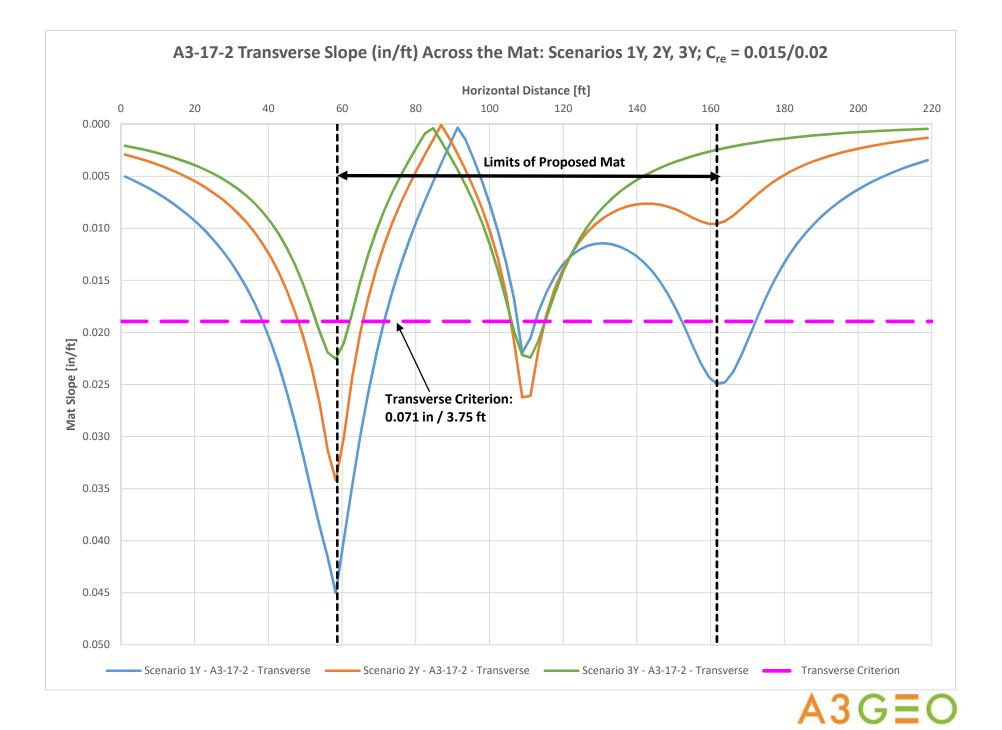


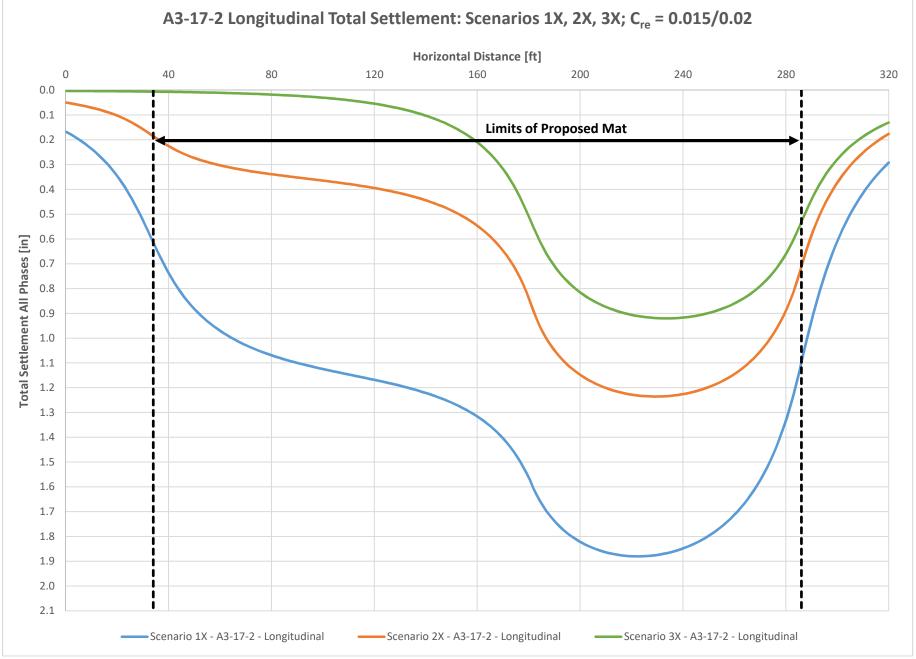


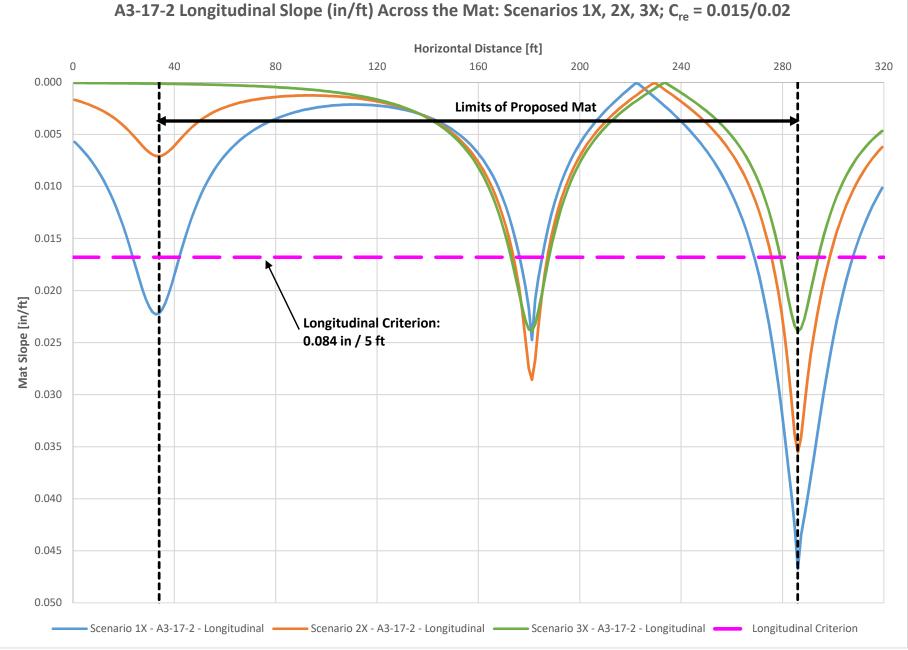

Settlement Plots: Scenarios 1X, 1Y, 2X, 2Y, 3X, 3Y – A3-17-1







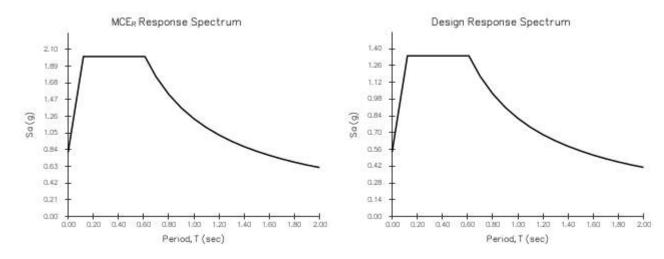

Settlement Plots: Scenarios 1X, 1Y, 2X, 2Y, 3X, 3Y – A3-17-2



APPENDIX I

USGS Ground Motion Reports

USGS Design Maps Summary Report


User–Specified Input	
Report Title	NRLF Phase 4
	Fri February 9, 2018 20:23:36 UTC
Building Code Reference Document	ASCE 7-10 Standard
	(which utilizes USGS hazard data available in 2008)
Site Coordinates	37.91738°N, 122.33597°W
Site Soil Classification	Site Class D – "Stiff Soil"
Risk Category	I/II/III
	nercutes

USGS-Provided Output

s _s =	2.012 g	S _{MS} =	2.012 g	S _{DS} =	1.341 g
S ₁ =	0.820 g	S _{м1} =	1.230 g	S _{D1} =	0.820 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGA_M, T_L , C_{RS} , and C_{R1} values, please <u>view the detailed report</u>.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

EUSGS Design Maps Detailed Report

ASCE 7-10 Standard (37.91738°N, 122.33597°W)

Site Class D – "Stiff Soil", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^[1]	S _s = 2.012 g
From <u>Figure 22-2</u> ^[2]	S ₁ = 0.820 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3–1 Site Classification

Site Class	v _s	\overline{N} or \overline{N}_{ch}	σ _u	
A. Hard Rock	>5,000 ft/s	N/A	N/A	
B. Rock	2,500 to 5,000 ft/s	N/A	N/A	
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf	
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf	
E. Soft clay soil	<600 ft/s	<15	<1,000 psf	
	Any profile with more than 10 ft of soil having the characteristics: • Plasticity index $PI > 20$, • Moisture content $w \ge 40\%$, and • Undrained shear strength $\overline{s}_u < 500$ psf			
F. Soils requiring site response analysis in accordance with Section 21.1	See	e Section 20.3.1	L	

For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

Section 11.4.3 — Site Coefficients and Risk–Targeted Maximum Considered Earthquake (\underline{MCE}_{B}) Spectral Response Acceleration Parameters

Site Class	Mapped MCE $_{\rm R}$ Spectral Response Acceleration Parameter at Short Period					
	S _s ≤ 0.25	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25	
A	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.2	1.2	1.1	1.0	1.0	
D	1.6	1.4	1.2	1.1	1.0	
E	2.5	1.7	1.2	0.9	0.9	
F		See Se	ection 11.4.7 of	ASCE 7		

Table 11.4–1: Site Coefficient F_a

Note: Use straight-line interpolation for intermediate values of S_s

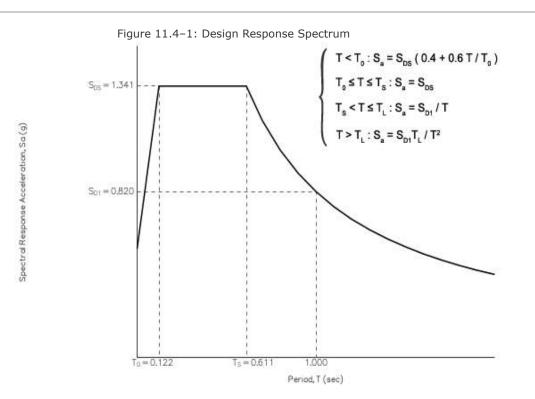
For Site Class = D and S_s = 2.012 g, F_a = 1.000

Table 11.4–2: Site Coefficient $\mathrm{F_v}$

Site Class	Mapped MCE $_{\rm R}$ Spectral Response Acceleration Parameter at 1–s Period					
	$S_1 \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$	
A	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.7	1.6	1.5	1.4	1.3	
D	2.4	2.0	1.8	1.6	1.5	
E	3.5	3.2	2.8	2.4	2.4	
F	See Section 11.4.7 of ASCE 7					

Note: Use straight-line interpolation for intermediate values of S_1

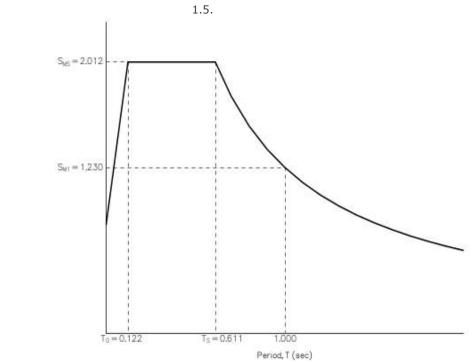
For Site Class = D and $S_1 = 0.820 \text{ g}$, $F_v = 1.500$


Design Maps Detailed Report

Equation (11.4–1):	$S_{MS} = F_a S_S = 1.000 \times 2.012 = 2.012 g$				
Equation (11.4–2):	$S_{M1} = F_v S_1 = 1.500 \times 0.820 = 1.230 g$				
Section 11.4.4 — Design Spectral Acceleration Parameters					
Equation (11.4–3):	$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 2.012 = 1.341 \text{ g}$				
Equation (11.4–4):	$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 1.230 = 0.820 \text{ g}$				

Section 11.4.5 — Design Response Spectrum

From <u>Figure 22-12</u>^[3]


 $T_L = 8$ seconds

Spectral Response Acceleration, Sa(g)

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

The MCE_{R} Response Spectrum is determined by multiplying the design response spectrum above by

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From <u>Figure 22-7</u> ^[4]	From	Figure	22-7	[4]
--	------	---------------	------	-----

PGA = 0.774

Equation (11.8–1):

 $PGA_{M} = F_{PGA}PGA = 1.000 \times 0.774 = 0.774 g$

		Table 11.8–1: S	Site Coefficient F_{PG}	A		
Site	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA					
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50	
А	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.2	1.2	1.1	1.0	1.0	
D	1.6	1.4	1.2	1.1	1.0	
E	2.5	1.7	1.2	0.9	0.9	
F	See Section 11.4.7 of ASCE 7					

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.774 g, F_{PGA} = 1.000

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From <u>Figure 22-17</u> ^[5]	$C_{RS} = 1.010$
From Figure 22-18 ^[6]	$C_{R1} = 0.990$

Section 11.6 — Seismic Design Category

VALUE OF S _{DS}	RISK CATEGORY		
	I or II	III	IV
S _{DS} < 0.167g	А	А	А
$0.167g \le S_{DS} < 0.33g$	В	В	С
$0.33g \le S_{DS} < 0.50g$	С	С	D
0.50g ≤ S _{DS}	D	D	D

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

For Risk Category = I and S_{DS} = 1.341 g, Seismic Design Category = D

Table 11.6-2 Seismic Design Category Based on 1-S Period Respons	Acceleration Parameter
--	------------------------

VALUE OF S _{D1}	RISK CATEGORY		
	I or II	III	IV
S _{D1} < 0.067g	А	А	А
$0.067g \le S_{D1} < 0.133g$	В	В	С
$0.133g \le S_{D1} < 0.20g$	С	С	D
0.20g ≤ S _{D1}	D	D	D

For Risk Category = I and S_{D1} = 0.820 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = E

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

- 1. *Figure 22-1*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. *Figure 22-2*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. *Figure 22-7*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. *Figure 22-17*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. *Figure 22-18*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf