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BOREHOLE TO SURFACE ELECTRICAL MONITORING OF A SALT
WATER INJECTION EXPERIMENT
by

Dimitri Beve
ABSTRACT

This thesis describes a field experiment which demonstrates the sensitivity of
borehole to surface resistivity measurements in ground water investigations. A quantity of

saline water was injected into a ffesh water aquifer while the resiétivity was monitored

using a rgulti-channel borehole to surf;ce system. Two experiments were conducted using
different receiver electrode arrays and salt water slugs of different salinity. The data was
interpreted using a three-dimensional resistivity modeling program, and compared to
hydrological measurements taken during the injection. In addition to demonstrating the
sensitivity of subsurface arrays, the measurement of bulk resistivity identified a ground
water flow pattern not detected by hydrological measurements.

Since rock resistivity is a function of pore water resistivity it is not surprising that |
electrical measurements are sensitive to conductive contaminants. However, as shown
here, the measurement array configuration and how the data is presented are essential
components in determining how well the data can be interpreted. The observed data was
superposed to simulate many array configurations and apparent resistivities were
calculated. The best results were obtained by superposing the data to form subsurface
dipole electrode sources. Interpretation is further facilitated by examining the result in

terms of normalized voltage, rather than apparent resistivity.
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Introduction

Today's fast paced, consumption oriented and energy hungry society is placing a
tremendous burden on our planet. Environmental concems, often overlooked in the past,
are becoming increasingly urgent issues. At the forefront is the issue of ground water
management and contamination. This has led to a flourish of activity in hydrology, and the
assessment of geophysical methods for mapping contaminant plumes and monitoring
ground water migration. |

Of all the geophysical techniques, the "'éleqm'cal methods have hag the most

2

widespread use in grouf:d water investigations because many contaminants decrease the
pore water resistivity which in turn reduces the bulk earth resistivity (Saunders and
Stanford, 1984; Rodriguez, 1984). Surface resistivity surveys have been used
successfully to delineate aquifers, locate fresh. brackish, and saline water-bearing zones
(Van Overmeeren, 1989) and to determine thﬁ b.ulk ground water velocity and hydraulic
conductivity (White, 1988). Unfortunately surface methods do not work well for low
resistivity contaminants and areas of conductive overburden if the zone of interest is too
deep. Furthermore, the sensitivity of surface surveys is strongly influenced by the
inhomogeneous near surface layer (Asch and Morrison, 1989).

Many authors have used various numerical examples to demonstrate that subsurface
features are more easily detected if some or all of the electrodes are placed in the subsurface
(Daniels, 1977; Young and Ward, 1985a.b. Beasly and Ward, 1986). Daniels (1983) used
a borehole to surface resistivity array to define geoelectric inhomogeneities in a layered
volcanic sequence. Le Masne and Poirmeur (1988) used a three-dimensional (3-D) integral

equation program to interprete a borehole to surface survey and delineate pyritic conductors



in granite. The same program was also used to interprete a cross-hole survey in a similar
environment (Poirmeur and Vasseur, 1988).

This thesis is concerned with similar geometries, but in more conductive terrains
with anomalies due to changes in pore fluid resistivity. Wilt et al., (1983) used the 3-D
program developed by Dey and Morrison (1979) to model a geothermal reinjection process,
and Wiltv and Tsang (1985) later used the same program to simulate subsurface contaminant
migration. They found that an order of magnitude increase in sensitivity can be achieved
when the current source is placed downhole and within the electrolyuc contaminant zone.
This thesis’ descnbes a borehole to surface elecmcal resistivity field expenmem designed to
confirm these numerlcal results by momtorm g the injection of a salt water slug into a fresh
water aquifer.

In order to predict the field results and subsequently interpret them, a model study
was done in conjunction with the field experiment. The 3-D program developed by Dey
and Morrison was used to simulate the geological setting of the field experiment and the salt
water injection. Two tabular block models were used to simulate a plume of salt water
injected into an aquifer at 30 m depth. Models RFS20 and RFS20c are 1 ohm-m blocks 3
m in the z direction, 13 m in the y direction, and 8 m to 10 m in the x direction,
respectively. Block model RFS20 is centered on a transmitter electrode at 30 m depth, and
model RFS20c is 2 m off-center to the right. This corresponds to the injection of 25,000
gallons into an aquifer of 25 to 30 percent porosity. A second transmitter electrode is
located at a depth of 40 m directly below the 30 m electrode making it possible to simulate a
dipole transmitter. The dipole-pole potential was calculated for an array of receiver
electrodes located along the x direction on the surface.

Curves of potential difference were generated by subtracting the calculated

background potential due to the host rock alone from the calculated potential distribution



due to the host rock and the tabular blocks. Asymmetric current channeling in model
RFS20c causes the potential in the direction of block displacement to fall off more slowly,
* so that the difference curve has a positive lobe in that direction (Figure 1.0). These curves
represent an anomaly of 25 to 30 percent difference relative to the background potential;
this compares to a less than 1 percent difference for surface dipole-dipole results calculated
for the same model (dipole separation of up to ten dipole lengths).
Two separate experiments were conducted at the University of California Richmond
Field Station (RFS) using different receiver electrode arrays and salt water slugs of
'[idxfferent salinity. The first expcnmem utilized a pole-pole data acquisition conﬁguranon
thh transmitter electrodes on the surface and downhole. The second utilized a pole-dipole
arrangement with transmitter electrodes downhole. In both cases, the receiver electrodes
were located on lines radiating from the injection well. The data was interpreted using a 3-
D resistivity modeling program, and compared to hydrologic measurements taken during

the injection. This thesis describes the field experiment, the resistivity monitoring system,

and the results.



Chapter One

Experimental Setting

The experiments took place in February 1988 and February 1989 at the University
of California Richmond Field Station, an industrial area adjacent to San Francisco Bay and
about six miles northwest of the Berkeley Campus. The site was chosen for its
accessibility, suitable geological conditions and the availability of a supply of salt water for
fluid injection. The well field is located in:an open area 400 m north of San Francisco Bay.

Eight wells were drilled to depths f’aihging from 30 to 40 mctc?s (Figure 1.1)
through a section of unconsolidated clay and silt with intermittent lenses of sand and
gravel. Analysis of the driller's logs shows that several of the clay horizons can be traced
throughout the well field but that many sand and gravel bodies are lenticular connecting
three or four of the wells at most (Pouch, 1987). A geologic section at well EXT s
presented in Figure 1.2 (After Asch, 1986) as an illustration of the stratigraphy in the field
area and the well construction. Pouch (1987) described the rocks as predominantiy a
deltaic sequence consisting of deposits from San Pablo and Wildcat Canyon Creeks.

Several geophysical methods have been used to characterize the geology of the field
site. Among these methods are seismic, electrical resistivity (Wilt et al,, 1987), time

| domain electromagnetics (Wilt and Zollinger, 1986) and a borehole induction log survey
(Bevc, 1987). The data from these experiments are adequately interpreted by a four layer
model. The surface layer is two meters thick and has a resistivity of 17 ohm-m when dry,
and 5 ohm-m when saturated. This is underlain by a thin layer with conductivity thickness
product of about 0.5 S and an 11 ohm-m to 13 ohm-m layer extending to a depth of 40

meters and representing the interbedded sequence of deltaic deposits. The whole sequence

lies on top of a S0 ohm-m halfspace.



All the wells are cased with PVC plastic. Two of the wells, INJ and EXT, are
15.24 cm (6 inch) in diameter and were designed for fluid injection and withdrawal
experiments; these wells have steel sections for current injection. As shown in Figure 1.2
there are metal pipe casing segments at 21.3 mto 22.9 m, at 38.7 m to 40.2 m and a metal
screen segment between 30.5 m and 33.5 m. The latter was chosen to allow injection and
withdrawal of fluids in the sand and gravel aquifers that are at this depth. The metal
electrode segments are connected by individual cables to the current transmitter on the
surface. The remaining six holes (OBS1-OBS6) are 10.16 cm (4 inch) diameter wells
drilled to depths ranging from 30:35_15;’16{6?..“ These wells areﬁ open at the bottom and
designed for use in water level measurement, downhole water sampling, and subsurface
electrical potential measurements. |

Piezometric levels were measured in the wells at various dates. These
measurements showed that under undisturbed conditions, flow in the vertically confined
aquifer was from north to south and the average gradient of the piezometric level was about
0.003. Several pumping tests were carried out in different wells to calculate hydrologic
properties of the aquifer. Values of drawdéwn from observation wells 1, 4, 5, and 6 due
to pumping of Well INJ are shown on Figure 1.3 (Javendel, 1987). This figure shows that
there is a distinct difference between transmissivity data obtained from Wells 1 and 6. The
- analysis of this data indicates that the transmissivity of the gravel formation at this location
is largest in the west-east direction. Note that these curves represent a point measurement
and are aliased in azimuth about the injection well so that they do not sample the bulk

ground water flow in all directions.



Salt Water Injection and Extraction Procedure

Salt water for the two injection experiments was obtained from San Francisco Bay
and pumped into a 50,000 gallon holding pond 200 meters south of the injection well. Salt
and fresh water were pumped into the pond to adjust fluid conductivity. After mixing and
settling to remove silt and mud, the water was passed through filters and pumped into the
injection well. A total of 25,000 gallons of salt water was injected at an average flow rate
of six gallons per minute for 72 hours. The conductivity of the native ground water and
the injected salt water were mof;itoggd throughout the expexirr:;ant_,gvith a conductance mcter.m
Condhctivity probes were locatedA in the injection well just above the screen and at the
bottoms of the observation wells.

The conductvity of the native ground water was measured to be 50 to 60 mS/m (20
ohm-m to 17 ohm-m) and the injected salt water was 1.3 S/m and 0.88 S/m (0.76 ohm-m
and 1.13 ohm-m) for the first and second experiment, respectively. Since the injection

zone is below the water table and the ground water resistivity is known, the resistivity of

the intruded formation can be estimated as

Panomalous=Pfonnation(ML)
Pground water

For a ground water resistivity of 17 ohm-m and a formation rcsisﬁvity of 11 ohm-m, the
intruded zone would have a bulk resistivity of 0.5 ohm-m for the first experiment and 0.75
ohm-m for the second experiment.

Assuming an aquifer thickness of 3 m and a porosity of 20 percent, it is easy to

show that a 25,000 gallon (94.5 cubic meter) injection would result in a cylindrical



anomaly of 7 m radius under conditions of isotropic plug flow. No changés in ground
water conductivity were measured at the observation wells 15 meters away.

Three days after injection was stobped, extraction was begun from the same well.
The salt water was extracted at a rate of 20 gallons per minute for seven days until the
outflowing fluid reached the same conductivity as the native ground water. This resulted in

a total extracton of 200,000 gallons, eight times the amount injected.



Chapter Two

Multi-Channel Resistivity System

Conventional resistivity surveys are carried out by measuring potential differences
on the surface of the earth due to a current electrode pair also located on the surface. The
locations of receiver and transmitter electrodes are prescribed by the type of array used,
such as Schlumberger, Wenner, or dipole-dipole. The receiver and/or transmitter pairs are
moved after each measurement and the measurements are normalized by the current and by
the geometry of the ;rra)g to yield apparent resistivities.:

During the first experiment resistivity measurements were made by injecting current
at the surface electrodes and at the downhole metal segments of the casing and measuring
potentials along north-south and east-west profile lines that intersect at well INJ. A small
building at the eastern end of the array was used to house the instrumentation for the
experiment. All electrodes were wired into the building and resistivity measurements were
made from this one location. For the second experiment, more azimuthal informaton was
obtained by adding receiver electrode lines between the north-south and east-west lines.
The receiver electrodes along the north-south and east-west lines were copper sulfate
porous pots, while the electrodes along the other lines were iron stakes. These two
experiments incorporated two different receiver electrode configurations. The first
experiment was conducted with a pole-pole acquisition system and the second a pole-dipole
system. |

The pole-pole configuration utilized a fixed reference transmitter electrode and a
fixed reference receiver electrode. Measurements were made by energizing any one of 40

transmitter electrodes in concert with the reference transmitter electrode to obtain values of

potential relative to the reference potential electrode at 76 surface and subsurface locations.



Transmitter and receiver electrodes were evenly spaced along north-south and east-west
lines so that many array configurations could be simulated by superposing these pole-pole
measurements.

'fhe pole-dipole acquisition system utilized a fixed surface reference transmitter
electrode and a set of 130 receiver dipoles. Measurements were made by energizing the
borehole current electrodes in concert with the reference transmitter electrode and obtaining
values of dipole voltage along eight radial lines on the surface of the earth. These lines
radiate from the injection well and consist of up to 17 measurement dipoles.

In most exploratio; apPlications, survey accurat:y is not of great concern. C:rosg
géologicd structure is inferred from relative measurements taken over short survey periods
(usually one day or less). Although these types of measurements may be precise, they may
not be repeatable over longer periods of time or with different sets of equipment. In this
experiment accuracy was crucial. System repeatability was maintained by using permanent

electrodes and an accurate transmitter-receiver system especially developed for this

application.
Instrumentation

The multi-channel resistivity system can be divided into two major elements; the
tran_smittcr, and the receiver with its atteﬁdant software (Figure 2.1). Precise timing for the
system is provided by a crystal clock which generates two synchronized TTL-output square
waves. The low frequency square wave (0.05 to 0.2 Hz) controls the transmitter
waveform, and the high frequency (10 to 100 Hz) triggers the receiver sampling rate. The
actual setting of the low frequency is chosen so as to reduce the effects of telluric noise and

electromagnetic inductive coupling. Selection of the high frequency sampling rate is
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dependant only on the maximum speed of the scanner and voltmeter and the number of data
channels desired.

The transmitter systern was originally designed for crustal resistivity monitoring in
earthquake prediction studies (Morrison and Fernandez, 1986). It rectifies a three phase
220 or 440 volt input to produce direct current. This input voltage must be isolated in order
to prevent ground-loop coupling of the transmitter with the receiver or other instrument
grounds. The current polarity is switched by the low frequency signal from the crystal
clock to generate an alternating square wave oufput. The amount of current transmitted is
'}nanfually controlled by a var;ac wansformer on the input. The current is monitored by a
precision resistor serially connected in the output current path. The voltage measured
across this resistor is optically isolated in order to prevent coupling between the transmitter
and receiver, and is scanned by the voltmeter. The current is scanned before and after each
set of potential readings and interpolated so that each reading can be accurately normalized. |
The transmitter is capable of switching 140 Amps at 600 volts. A current level of 10 to 20
Amps was used for this experiment.

As shown in Figure 2.1 the receiver is subdivided into four components: low pass
filters, a Hewlett-Packard 3495A scanner, an HP 3456A digital voltmeter, and an HP 330
computer. |

Up to 80 input voltages from the potential electrodes and the serial current resistor
voltage from the transmitter are filtered by the four pole Butterworth low-pass filters
(Figure 2.2). Each filter chasis contains eight filter circuits with a common ground. These
filters are set at 3 Hz to reject 60 Hz noise. For the pole-pole configuration, all the filters
share the same isolated 24 volt power supplyv and the same ground. The power supply
ground is at the potential of the reference elecrode and the filters are completely isolated

from the rest of the system (Figure 2.3). For the pole-dipole configuration each filter
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chasis has its own power supply and only two dipole signals pass through each chasis.
These two signals share the same ground with the filter power supply. This ground
corresponds to the middle electrode of any three consecutive receiver electrodes which
constitute two dipoles (Figure 2.4).
~ The voltmeter measures the filtered signals after they have been sampled
sequentially by the scanner. The sampled voltages are stored in the computer for further
processing. The average of the ratio of voltage to current and the standard deviation are
calculated for every channel and the resulting data is displayed and plotted at the end of
every transmitter sequébhcc? |
By carefully monitoring the transmitter current, avoiding ground-loops, isolating all

the signals, and sampling coherently this system is capable of making measurements to an

accuracy of 0.1 percent.

System Transfer Function

Figure 2.5 shows the timing and sampling sequence of the receiver system for the
pole-pole configuration. Each current cycle is 10 seconds long and 6 samples are taken
every cycle. With a sampling rate of one second, it would be possible to take 10 samples
per cycle, but the 1st, 5th, 6th, and 10th are skipped to avoid sampling when the current
polarity is changing.

For a sample interval 8, 3 samples in the positive half cycle and 3 samples in the
negative half cycle, and a spacing of 30 between the two groups, the frequency domain

transfer function can be written as

‘ ]. -1 . G -1 @ -1 @ 10
H(m)=g[e Jmt2+e Jw‘3+e JQty eJ i1 . e J¥g eJ t9]
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setting 12 = 0 and ta = (n-2)8 |

1 o3 5 o3 2 i ot .
H(m)=g[l +e jo +e jo28 e jo58 - e j068 e-juﬁé]

upon rearranging,

H(w)___é_[l +e-jm8+e.jm28 g +e-jm5 +e.jm25]e-jw58]

=é—[1 - e‘jmsa][l +e‘j°°6 +e‘j(°25]

Ly ot 1o €3
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Factoring out the exponential terms

s
5
2

H(@)=¢ (¢’

or

3
sin(w30) 4
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6 o/
sm(ﬂ)z)

rearranging terms,



. 3 . 5
sin(®598) sin(03d) 7
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If the sampling is done for N cycles and averaged, the transfer function becomes

1 N-1 5 1 [ 1 -e -JmNa']
H'(0)=H(®) — Jen =H(W) —~ ————=
H(@)=H(®) 35 2e 930 (0955
fora cycle length of 10's,
. 10 oy 10
sin(WN57) | -joN=
H(@)=H(®) ;- Z_e 2

30 sin(O)%) e -J'“’%

Inserting expression (1) for H(®),

. 3 . S . 10
sin(®0x9) sin(©506) sin(@WN3) T 10y
sin(wi) sin(wT)

If the sampling is stacked for N = 30 cycles, the transfer function of the system is

.3 .5 |
2j sin(3@ sin(39) gin(150w) 027

H'(w)= 180 sin(%) sin(S®) 2

using the identity: sin(Sw) = 2sin(%0)) cos(%co)

13
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1 sin(%w) sin(150w)

H(®)= 1g0

sm(%) cos(%(ﬂ)

where the phase term has been left out.

Finally, setting w=2%f the transfer function of the system can be written as

e Sin(3xf) sin(300xf)
H (ﬂ; 180 sin(nf) cos(5xf)

where the current square wave frequency is 0.1 Hz and the sampling frequency is 1 Hz.
This is a function with spectral peaks at odd harmonics of the square wave repetition
~ frequency (Figure 2.6).

Figure 2.7 shows the timing and sampling sequence of the pole-dipole receiver
system. Each current cycle is 5 seconds long and 12 samples are taken every cycle.
Sampling at 4 Hz, it would be possible to take 20 samples per cycle, but the first two and

| last two samples in qach half cycle are skipped to avoid sampling when the current polarity
is changing.

For a sample interval , 6 samples in the positive half cycle and 6 samples in the

- negative half cycle, and a spacing of 58 between the two groups, the frequency domain

transfer functon is

H(m)zliz_[ IOl 4 gj0l 4 ejOls 4 e-j0ls 4 ojOlrye-jole

- ejot | erjolia | erj0lis. o)Wl L ejOLT | e-jOUS
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Proceeding as for the pole-pole configuration, the transfer function of the system can be

written as

sin(%nﬂ sin(150xf)

H'(f) =
360 sin(J4-7tf) cos(%nﬂ

where the current square wave frequency is 0.2 Hz and the sampling frequency is4 Hz. A

plot of this transfer function is presented as Figure 2.8.
Measurement Noise and System Repeatability

An estimate of measurement noise can be made by multiplying the spectral density
function of noise at the field site with the transfer function of the system. This
corresponds to a convolution of the telluric noise time series with the filter function of the
system. Figure 2.9 is a plot of a typical telluric spectrum at Richmond for a 5 m
measurement dipole. At the first harmonic spectral window of the pole-dipole transfer
function (0.2 Hz) tﬁis spectrum h.as a value of 300 uVNﬁZ (the noise bandwidth of the
spectrum analyzer is 30 mHz at this range). The half width of the transfer function's first
spectral window is 0.008 Hz. Squaring the amplitude of the spectrum and multiplying by
the width of the spectral window gives a variance of 0.72 nV?, or a standard deviation of
27 pV. If the measurements are made with a transmitter current of 15 A, the standard
deviation due to telluric noise should be 1.8 uV/A.

Figure 2.10 is a plot of normalized voltage for the pole-dipole system. This data
was taken with a current electrode at 30 m depth and 5 m receiver dipoles along the south-

north line. The signal varies from about 2700 pV/A to 5000 pV/A. Comparing this to the
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noise estimate in the preceding paragraph (1.8 pV/A) suggests a standard deviation of
about 0.07 to 0.04 percent.

The actual standard deviation of the data (Figure 2.11) is in the 0.05 to 0.1 percent
range for all but a few isolated data points. This compares reasonably with the average
estimated value. Comparing this noise level to the signal of Figure 2.10 we can interpret
the bumps in the curve to be due to geology, not noise. Isolated noisy data points (such as
receiver dipole 15) were excluded from the data analysis presented in this thesis. This type
of noise usually persisted at a given location and is most likely due to a bad receiver wire or
electrode, or the proximity of a cultural noise source such as a.grounded fence or pipe.

Since this thesis is concerneéd with temporal measurements it is essential to insure
that measurements taken on different days repeat within the calculated standard deviation if
no geological or hydrological change has taken place. Figure 2.12 is a plot of percent
difference for measurements taken on two consecutive days. Most of these readings are
within 0.1 to 0.2 percent of each other, and therefore, within acceptable error tolerance.

It is also interesting to determine what effect rainfall has on repeatability. The
largest amount of rain fell before salt water injection began. According to local
newspapers, this ten hour period resulted in half an inch of precipitation. Measurements
taken before and after the rain show a maximum difference of about 3 percent (Figure
2.13). These changes are due to resaturation of the surface layer and alteration of current
flow paths due to standing water around the electrodes. Only light rain fell occasionally
during the actual injection experiment. A plot of percent difference taken on two
consecutive days with maximum salt water injected (Figure 2.14), shows that the
repeatability of the readings is well within 1 percent. For most dipoles it is within 0.5
percent. This is well within tolerance considering that the expected anomaly is 25 to 30

percent. Even an error of 3 percent would allow for detection.
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Since the pole-dipole data was superposed to create dipole-dipole data and
superposition of noisé propagates error, it is interesting to examine the repeatability of the
superposed data. Figure 2.15 is a plot of the maximum injection dipole-dipole repeatability
for data taken with 30 m and 40 m current electrodes on the same day as the data of Figure
2.14. Most of the dipoles repeat to within 2 percent.

The measurement accuracy of the acquisition system is 0.1 percent. Repeatability is
degraded by changes in surface resistivity caused by rain, but remains within 0.5 percent.

Even in the worst case, when the data taken during a period of light rain is superposed, the

repeatability is better than 2 percent.
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Chapter Three

Electrical Resistivity Monitoring

The two different receiver electrode arrays were used for two separate experiments
at the same field site. The first experiment generated a complete set of surface and borehole
to surface data along two intersecting receiver lines. The second experiment was done as a
follow-up to the first.

For the first injection experiment a complete data set was taken before salt water
injection, at maximum volume injected and after salt water extraction. This.ﬂful_l__-‘,data set
was generated by cné;gizing 40 surface and borch:olc current electrodes and measuring
potential at 76 electrodes for each current source. A partial data set collected with current
sources at the 30 and 40 meter levels of the INJ and EXT wells and potentials measured at
all 76 electrodes was taken every day during the injection and extraction procedure. The
experiment was started during a period of dry weather but heavy rains began on the second
day of injection. This period of rain introduced noise into the measuring system in the
form of short-circuits at some of the electrodes.

During the second injection experiment, data was taken by energizing the 30 m or
40 m transmitter electrodes in well INJ and measuring 17 dipole potentials along any half
of one line at a time. Measurements were taken every day during the injection and
extraction procedure.

Although analysis of the first data set suggested that superposing pole-pole data to
form dipole-pole data was best, the second set was gathered as pole-dipole and transformed
into dipole-dipole. This was done for two reasons: 1) The signal levels and standard
deviations of the pole-pole data are such that the subsurface data cannot be superposed into

pole-dipole or dipole-dipole without introducing an excessive error and analyzing dipole
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voltage may really be the preferred approach since some model studies show it to be more
sensitive to changes than pole voltage (Eloranta, 1985). 2) The pole-dipole configuration
was chosen for convenience because it was desired to make the acquisition system more
portable in order to conduct larger scale surveys. Measuring dipole potentials reduces the
dynamic range requirements of the digital voltmeter and minimizes electromagnetic
coupling effects. Also, the logistic problem of locating a reference receiver electrode in a
noise free and convenient location was eliminated.

Throughout this thesis the measurement results are presented as either apparent
rcsi§tivity or normalized voltage, The normalized voltage is the observed voltage divided
by ihe injected current. In order to facilitate discussion, the normalized voltage is refered to
as potential when the data is gathered with the pole-pole acquisition system and as voltage

when gathered with the pole-dipole system.

Surface Resistivity Monitoring

Figure 3.1 is a surface dipole-dipole apparent resistivity pseudosection along the
south-north line generated by superposing the pole-pole data. Apparent resistivities range
from 10 to 25 ohm-m within the pseudosection and increase with larger n-spacing or
greater depth. The profile does not show any large lateral variations in resistivity although
there are some indications of near surface inhomogeneities.

Figure 3.2 is a dipole-dipole pseudosection along +the same line after salt water was
injected into the aquifer. Some of the electrodes were short-circuited by rain, and that data
has been omitted from the pseudosection. The percent difference of the two data sets
(Figure 3.3) shows that there is no significant change in apparent resistivity for low n-

spacing, and that the rain fall did not have a significant effect on the surface layer
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resistivity. The isolated points of high percent difference can be attributed to short circuit

noise from wet electrode wires and standing water. These variations are of such high

spatial frequency that they cannot possibly be attributed to changes in formation resistivity.
The main reason for this insensitivity to the salt injection is that a relatively small

volume of rock is affected by the salt water compared to the volume of rock sampled by the

measurements.

Borehole to Surface Resistivity Monitoring
Sincé the zone of interest is at deéth, the greatest change in thé measuremenfs is
observed when the transmitter electrodes are located in the sub-surface. To investigate the
sensitivity of various arrays, the measured pole-pole potentials were superposed to create
pole-dipole, dipole-dipole, and dipole-pole potentials for apparent resistivity calculation.
The measured borehole to surface poie-pole potential before and after salt water
injection is presented as Figures 3.4 and 3.5. The potential is negative for electrode
locations beyond electrode number 12 because the reference elecrode is located 60 m east
and 10 m south of the center of the array. Since all potentials are measured relative to this
reference electrode they are positive for locations within about 60 m (around electrode
number 12) of the center of the array, and negative for locations more than about 60 m
from the center.
The time difference of these curves (Figure 3.6) shows a strong asymmetric
anomaly due to the presence of the salt water. Before attempting an interpretation of this
~data it is interesting to calculate apparent resistvities for various superpositions of the data
and try a few temporal and spatial differencing schemes. This data manipulation should

reveal the Optimai way to present and acquire the data.
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Pole-Pole Apparent Resistivity

Since the reference receiver electrode is within the array, the potential is relatively
small at locations near 60 m from the array center. This causes difficulty in calculating
pole-pole apparent resistivities. The spikes in the apparent resistivity curves (Figures 3.7
and 3.8) are due to two related factors: 1) The geometric factor in the apparent resistivity
calculation develops an instability 60 m from the array center and is very sensitive to the

.exact elcctrﬁbde_‘ilocation. .2) The error in the readings becomes a proportionaly larger
percentage of the observed value at these locations.

Noise due to possible near surface lateral heterogeneities can be minimized by
differencing the data from some background level. This may be done by computing the
percent difference of the data taken with the ~:rrent electrode at the 30 m level relative to
data taken with the current electrode at the 40 meter level. Here, the percent difference is

defined as

(930— 940) 1
Pao

00

where P30is the apparent resistivity due to a current source at 30 meters and Paois
the apparent resistivity due to a current source at 40 meters (Asch and Morrison, 1989).
The curves in figures 3.9 and 3.10 were obtained using this scheme for the baseline and
maximum injcction data. Although the data is smoother, this scheme did not remove the
instability around electrode 12. Taking the ume difference of this spatially differenced data

does not eliminate the spikes either (Figure 3.11). This figure does show more asymmetry
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in the north-south direction than in the east-west (as does figure 3.6), but it is difficult to
choose reliable data points near electrode number 12.

The plot of potential difference (Figure 3.6) shows a pronounced asymmetry with
less error and distortion than the plot of temporal percent difference (Figure 3.11). The
potential difference plot seems to be the best way to present this data. However, the
anomaly is only 1 to 2 mV/Amp. This is an anomaly of only about 5 percent. Examining
Figures 3.1, 3.2 and 3.6, one could speculate that subtracting the 30 m potential from the
40 m potential to create a dipole transmitter would create a smaller primary field, and a
larger difference. D;polg receivers would result in“a quantity proportional to thelgrad-ient of
the potential (electric field). Therefore, it seems that some superposition of the data into

dipole transmitter and/or dipole receiver should enhance the anomaly.

Superposition of Borehole to Surface Pole-Pole Data

Figure 3.12 is a plot of the superposed pole-dipole apparent resistivity along the
north-south and east-west lines due to pole sources at the 30 and 40 meter levels of well
INJ before salt water injection. Although the noise level of the pole-pole measurements is
very small (0.1 percent), This superposed data is very noisy. The same effects are evident
after maximum salt water injection (Figure 3.13). Since dipole measurements are
analogous to measuring electric field, and electric field is discontinuous at resistivity
contrasts, the pole-dipole data is expected to be somewhat noisier. However, the
differencing scheme of Asch and Morrison (1989) should remove this type of noise if it is
really due to geological structure.

The curves in figures 3.14 and 3.15 are the spatial percent differences of the

baseline and maximum injection data. The spatial percent difference is defined in the same
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way as for the pole-pole case. Although the data is still noisy, it is an improvement over
the superposed pole-dipole data. Subtracting the baseline percent difference from the
percent difference at maximum injection yields the time differenced data of Figure 3.16.
Here we see a pronounced but very noisy low about the center of the array corresponding
to the effect of the injected salt water.

Figures 3.17 and 3.18 are plots of dipole-dipole apparent resistivity obtained by
superposing data from the 30 m and 40 m level electrodes at well INJ to simulate a
transmitter dipole and receiver dipoles. As in the pole-dipole case, this configuration is
also nqi§y. Figure 3.19 is the te?npp;al percent difference of}‘the, dipole-dipole apparent

resistivity. Temporal percent difference is defined as

(p After pBueline) * 100
pBaseline

The dipole-dipole percent difference (Figure 3.18) is noisier than the pole-dipole
(figure 3.16) because more superposition of noisy data is required to create the dipole-
dipole potentials. Since there is only one subsurface dipole, the dipole-dipole data cannot
be differenced relative to a particular depth.

In both cases the superposed data is so noisy that a precise interpretation is not
possible. All that can be said is that some change took place. Since percent differencing
the data with respect to depth or time did not remove the noise, the noise cannot be solely
due to surface heterogeneities. The noise is due to the fact that the data is gathered as pole-
pole voltages and then superposed to simulate pole-dipole and dipole-dipole voltage. Each
of the pole-pole readings has an associated standard deviation, so that superposition of
these readings in combination with the geometric factor increases the standard deviation.

This can be demonstrated by investigating a simple numerical example.
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For the sake of discussion, assume a model with half-space resistivity 4x ohm-m.
The normalized voltage at a point on the surface directly above (at x = 0 m) a transmitter
electrode at 40 m depth is given by
P

=2 -2 -
5— = 75 = 0.05 V/Amp

similarly, at x = 5 m on the surface, the normalized voltage is 0.049613893 V/A.
Subtracting these two pole voltages the dipole voltage between a 0 m and 5 m receiver
electrodeﬁis Qi38617 mV/A. If the pomlc volt:.ges have a 0.1 percent efror (i.e. standard
deviation of 0.05 mV/A), this is a 12.9 percent error for the dipole voltage. For a
transmitter at 30 m depth, the normalized voltage at x = 0 m is 0.0666 V/A. This can be
combined with the voltage due to the 40 m transmitter to get a dipole-pole normalized
voltage of 0.01666 V/A. For this configuration, a pole-pole error of 0.1 percent translates
into a dipole-pole error of 0.3 percent. From these numerical examples it is evident that the
superposition of pole-pole data to create surface dipoles leads to unacceptable error
propagation, while §uperposition of the data to create subsurface dipole transmiffefs
remains within acceptable error tolerances.
In an attémpt to eliminate the noise problems due to superposition, the data were
- superposed to simulate a dipole-pole configuration. Figures 3.20 and 3.21 are plots of
potential due to a dipole source before and after salt water injection. Subtracting the
baseline potential from the potential at maximum injection gives curves of potential
difference (Figure 3.22). The maximum anomaly of about 2 mV/A represents a change of
approximately 25 percent over the base line value. A notable feature of this data is the
pronounced asymmetry of the curves comparable to the model results presented in the

introduction.
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Figures 3.23 and 3.24 show the apparent resistivity due to a simulated dipole
source with transmitter electrodes at the 30 and 40 meter level of well INJ, and surface
receiver poles. These results are seen to be much cleaner than those for superposed pole-
dipole or dipole-dipole but there is still some noise in-the data. Some data points have been
dropped from the apparent resistivity calculation to avoid noise due to inaccuracies in'fhe
geometric factor and the location of the referenc¢ electrode. Figure 3.25 is a plot of
temporal percent difference for the dipole-pole apparent resistivities. This shows a
substantial improvement over the pole-dipole and dipole-dipole cases.

As found by Eloranta (1985). analyzir'¢ diﬂffcrences in potential rather than apparent
resistivity turns ouiﬁto be best. Although the perE;nt'difference plot (Figure 335) shows a
distinct asymmetric anomaly, the potential difference plot (Figure 3.22) shows a sharper
anomaly with more distinct features. The potential difference curves develop distinct
positive lobes at distant electrode locations and sharp peak amplitudes near the array center.
Also, more data is shown in the potential difference curves because some of the data was
dropped from the apparent resistivity and percent difference calculations.

' The sensitivity of borehole to surface measurements for source locations outside the
anomalous body ma{y be investigated by looking at the data for a dipole source in well
EXT. The current electrodes at the surface and 30 m were used because the 40 m electrode
~at well EXT was short-circuited by rain. The dipole-pole differences are shown in Figure
3.26. This shows a weak but pronounced anomaly consistent with the numerical model
studies of Wilt and Tsang (1985) for current sources outside the injection zone. Note that

the largest change in potential occurs over the transmitter electrode location (receiver

number -12).
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Interpretation of Dipole-Pole Potential Data

Analytical and numerical modeling programs were used to qualitatively interpret the
results of this experiment. An analytical solution was used to model the layering sequence
at RFS and the 3-D finite difference program discussed in the introduction was used to |
model the effects of the conductive salt water slu g. Computer memory limitations
constrained the finite difference mesh size to 55 by 16 by 20 nodes on the IBM 3090. This
makes it difficult to include the layered stratigraphy and to adequately discretize the area
around thgﬁcurrent source while allo;ving: the potential to fall off p;bpqg_ly at the edges of the
mesh. Tl;ese computer size restrictiof;s do not allow a large enough mesh to simulate
spheroidal or cylindrical bodies with this algorithm.

Because of the limited mesh size, the potential gradients are not approximated
correctly by the program and the potential does not fall off properly. This results in a noisy
looking curve. With these modeling limitations the program can give only a crude
qualitative approximation of the field situation for such a small and relatively deep body. A
larger mesh size would allow for better discretisation of the anomalous body. The tabular
models could then be replaced with much more accurate 3-D representations of the saline
intrusion and the complex layering sequence at the site could be better represented.

The layer model used to represent the geology of the field site has a 2 m thick
surface layer of 17 ohm-m underlain by a 38 m thick 11 ohm-m layer, all over a 50 ohm-m
halfspace. The fit of this layer model to the field data can be demonstrated by calculating an
analytical model and varying the middle layer resistivity (Figure 3.27). The model with 11
Ohm-m middle layer fits the field data the best. Figure 3.28 is a schematic diagram of the
model halfspace with salt water block RFS20 in place.
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Figures 3.29 and 3.30 are plots of calculated potential difference due to a dipole
transmitter with electrodes at the 30 m and 40 m levels. The models used to generate these
curves are exactly like those presented in the introduction, except that the tabular blocks for
the RFS10 series models are only 2 m thick. Models RFS10 and RFS20 are blocks
centered on a transmitter electrode at 30 m depth, and models a through ¢ are progressively
off-center to the right (Figure 3.31). A resistivity of 1 ohm-m was assigned to all the
blocks because the size and geometry are so constrained by the mesh that varying the

resistivity by 50 percent does not have as much effect as varying the size and geometry

would.
i{ x o 3
Comparing the RFS10 and RFS20 model series gives an indication of the

sensitvity of these types of measurements to the size and relative position of the anomalous
body. The RFS20 bodies are comparable in volume to that anticipated for the salt water
intruded zone in the aquifer with about 20 percent formation porosity (472.5 cubic meters).
The RFS10 series models would correspond to a porosity of about 30 percent. Mesh size
restrictions do not allow the variation of resistivity, shape and size of the body to define or
constrain these parameters by iterative modeling. Also, the mesh size in the y dimension is
so limited that the body cannot be displaced in that direction. Since run time for these
models is about 20 minutes on the IBM 3090, successive forward modeling or data
inversion is ﬁnpractical and prohibitively expensive. With these modeling constraints, the
best interpretation that can be achieved is to fit the model results to the observed data on a
line by line basis as if the body were off-center in only one direction.

The model curves have a positive lobe on the side corresponding to the direction in
which the body is offset. The position of the curves minima and its amplitude also changes
as the body is moved off-center. Comparing the south-north difference data (Figure 3.25)

to the model curves indicates a fit between models RFS10b and RFS20b. This
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corresponds to a displacement of the body to the north and a porosity of 20 to 30 percent.
The character of the west-east data indicates a displacement to the west consistent with
models RFS10a and RFS20a. Therefore, the resistivity data indicates that the plume is
displaced to the northiwest, and the bulk transmissivity is greatest in this direction. This
differs from the conclusion derived from the drawdown test (Figure 1.3), which indicaics

that the maximum transmissivity is to the east.
Pole-Dipole Electrical Monitoring

The second injectiohicxperiment was done to confirm that the bulk fonnati;n
transmissivity was greatest to the northwest by adding two new lines of receiver electrodes
at 45 degrees to the south-north and west-east lines.

Figure 2.10 is a plot of pole-dipole voltage along the south-north line before salt
injection. This curve is not as smooth as the potential of Figures 3.23 or 3.24 because it is
proportional to electric field, and electric field is discontinuous at resistivity contrasts.

However, it is not as noisy as the superposed pole-dipole apparent resistivity curves

(Figures 3.12 and 3.13).
Dipole-Dipole Potential Monitoring

Figure 3.32 is a plot of pole-dipole data along the south-north line after maximum
salt water injection. On this scale the before and after curves (Figures 2.10 and 3.32) are
difficult to tell apart. The maximum anomaly is only about 0.24 mV/A, or 5 percent. Asin
the pole-pole case, the anomaly can be enhanced by superposing the pole-dipole data from

the 30 m and 40 m transmitter electrodes to create dipole-dipole voltage. This decreases the
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effective amplitude of the observed voltages. A plot of superposed dipole-dipole voltage
for all the lines is presented as Figures 3.33 and 3.34. Figure 3.35 is the difference
between the maximum injection data (Figure 3.34) and the baseline data (Figure 3.33).
This data shows a maximum anomaly of about 40 percent.

The dipole-dipole voltage for model series RFS21 (Figure 3.36) can be used to
interpret the curves of Figure 3.35. The results in Figure 3.36 are for a series of blocks
displaced to the left (Figure 3.37). The models are otherwise identical to the RFS20 series.

There are several salient features to these model curves. The amplitude of the
anomaly increases on the side corresponding to the direction of block displacement and the
zero crossing shifis away from the direction of displacement. Also, the curvcs for the
displaced blocks intersect the curve for the centered block. This intersection occurs at
lower receiver number for greater block displacement.

Analyzing the data of Figure 3.35 in light of these model results confirms the
conclusion that the direction of maximum transmissivity is northwest. The amplitude of the
northwest-southeast curve is maximum to the left, which is the northwest side of the line.
The zero crossing is displaced to the southeast, indicating displacement to the northwest.
For the other three lines, maximum displacements occur to the (in order of magnitude)
west, north, and northeast. Since the northwest-southeast data shows the greatest

amplitude, this must correspond to the direction of maximum bulk ground water flow.
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Conclusion

This thesis demonstrates that the borehole to surface electrical resistivity monitorin g.
system is capable of gathering data accurately enough to map subsurface ground water
flow. The injected plume of salt water moved asymmetrically into the northwest quadrant
from the injection hole. The pressure during drawdown tests indicated major
transmissivity to the east although no test wells are available to measure transmissivity to
the northwest. The resistivity results suggest strong channel flow paths that could not be

determined by a limited number of observation wells, but which are clear in the resistivity
- ] ¥

i3

results.

The choice of how to present electrical data was seen to be dependant on how the
data was gathered. In this case, looking at time differences of potential, instead of apparent
resistivity yields cleaner results that allow for easier interpretation.

The chief limitation to this method lies in the lack of adequate interpretive tools.
The development of a new program with greatly expanded mesh size and much quicker run
time would enable more detailed and accurate interpretation of field data. If the plume
boundary could be accurately modeled, the porosity and transmissivity of the aquifer could
be determined. This method would then move from the realm of reconnaissance and

detection, to precise engineering application.



31

References

Asch, T. and Morrison, H. F., 1989, Mapping and monitoring electrical resistivity with

surface and subsurface electrode arrays. Geophysics, v. 54, pp. 235-244.
Asch, T. 1986, Personal comunication.

Beasley, C. W., and Ward, S. H., 1986, Three-dimensional mise-a-la-masse modeling

_applied to mapping fracture zones. Geophysics, v. 51:pp,.,}98-1 13.

Bevc, D. 1987, Borehole electromagnetic survey of the Engineering Geoscience well field
at the Richmond field station: data presentation. Engineering Geoscience Report,

University of California, Berkeley CA 94720

Daniels, J. J., 1977, Three-dimensional resistvity and induced polarization modeling using
buried electrodes. Geophysics, v. 42, pp. 1006-1019.

Daniels, J. J., 1977, Hole-to-surface resistivity measurements. Geophysics, v. 48, pp.

87-97.

Dey, A. and Morrison, H. F., 1980, Resistivity modeling for arbitrarily shaped three-

dimensional structures. Geophysics, v. 44, p. 753-780.

Eloranta, E.H., 1985, A comparison betw een mise-a-la-masse-anomalies obtained by pole-

pole and pole-dipole electrode configuradons. Geoexploration, v. 23, p. 471-481.



32

Javandel, I. 1988, Personal comunication. Earth Sciences Division, Lawrence Berkeley

Laboratory, University of California, Berkeley, CA 94720.

Le Masne, D., and Poirmeur, C., 1988, Three-dimensional model results for an electrical
hole-to-surface method: Application to the interpretation of a field survey. Geophysics, v.

53, pp. 85-103.

Morrison, H. F. and Fernandez, R., 1986, Temporal variations in electrical resistivity of

the earth's crust. Jour. Geophyé‘.! Res., v. 91, no. Bl1, pp. 11618-11628.

Poirmeur, C., and Vasseur, G., 1988, Three-dimensional modeling of a hole-to-hole

electrical method: Application to the interpretation of a field survey. Geophysics, v. 53,

pp. 402-414.

Pouch, G. W., 1987, Hydrogeologic site assessment of the Engineéring Geoscience well
field at the Richmond field station, Contra Costa County, California. MS Report,

Engineering Geoscience, University of California, Berkeley CA 94720.

Rodriguez, E. B., 1984, Ground water contamination studies in Ontario. Proceedings
from surface and borehole geophysical methods in ground water investigation, February 6-

9, San Antonio, TX.

Saunders, W. R. and Stanford, J. A., 1984, Integration of individual geophysical

techniques as a means to characterize an abandoned hazardous waste site. Proceedings



33

from surface and borehole geophysical methods in ground water investigation, February 6-

9, San Antonio, TX.

Van Overmeeren, R. A. 1989, Aquifer boundaries explored by geolectrical measurements

in the coastal plain of Yemen: A case of equivalence. Geophysics, v. 54, pp. 38-48.

Wilt, M. J. and Tsang, C. F., 1985, Monitoring of subsurface contaminants with
borehole/surface resistivity measurements. Proceedings from surface and borehole

geophysfcal_ methods in ground water inve_;ti gation, February 12-14, Fort Worth, TX.

Wilt, M. J., Pruess, K., Bodvarsson, G. S. and Goldstein N. E., 1983, Geothermal
injection monitoring with dc resistivity methods. Procedings of the Geothermal

Resoources Council annual meeting, October 24-27, Portland, OR.
Wilt, M. J. and Zollinger, R., 1986, personal comunicatiion.

White, P. A., 1988, Measurement of ground water parameters using salt water injection

and surface resistivity. Ground water, v. 26, pp. 179-186.

Yang, F. W., and Ward, S. H., 1985a, Single-borehole and cross-borehole resistivity
anomalies of thin ellipsoids and spheroids. Geophysics, v. 50, pp. 637-655.

Yang, F. W., and Ward, S. H., 1985b, On sensitivity of surface-to-borehole resistivity
measurements to the attitude and the depth to center of a three-dimensional spheroid.

Geophysics, v. 51, pp. 1978-1991.



34

-auwpd UL Io18M 1[ES 9Y) IIM pate[nored [enudtod
Y1 woly Jajem 1[es Ay noyim doedsyrey ayp 10§ [enuslod patenofed sy Sunownqns Aq paleIsudsd A1am I0UIYJIP renuajod

JO SOAIND 3SAY L, "UONBINSIJUOD OBLINS 01 A[OY2I0Q U} JOJ SINSII [SPOUI IIUIIIJJIP NIULJ [EUOISUSWIP-IIY], "('] 231

Y38ANN 300413373 Y3IAIIO3Y

(¢4 Gt (0]} S 0 G- (0] Bod Gi— 0z- [T A
............ L t 1 1 1 1 1 \ -
50Z$34 300N O
70ZS44 1300N W
c'z-
puabae
.IN'
1.n.u.—|
<
—
- C
<
o
o
[so- >
F <
0
0
\~ ln.o
(S Py
-4




North
N
Northwest
0BS 1 &
west INJ
1 1 1 1 1 L 1 1 ' (1 L 9 [ 1 [ ] L 1
3 § 1 T | L] 1 3 L | ] ¥ L) 4 L 4 ) L] ¥ L | ]
]
0BS 2 ®
-0BS 3
0BS 4 @
EXT
Southwest
0BS5S ¢
to remote
transmitter——
electrode South

35

Northeast

East

0BS 6

Southeast

sy
om 20m
O 6" wells
® 4 wells

== electrode locations

Figure 1.1. Plan map of the well field and resistivity array at the Richmond Field Station.
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Figure 2.3. Schematic diagram of the filter set up for the
pole-pole acquisition system
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Figure 3.28. Cross-section of the three-dimensional model used to simulate the salt water

injection experiment.
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Figure 3.31. Relative positions and dimensions of the RFS20 salt water models.
All models are 3 m in the z direction, 13 m in the y direction, and from 8 to 12 m
in the x direction. The point where the center line intersects the blocks represents
the location of the 30 m INJ electrode. The blocks are symetric about the center

line in the y direction.
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Figure 3.37. Relative positions and dimensions

2

of the RFS21 salt water models.

All models are 3 m in the z direction, 13 m in the y direction, and from 8 to 12 m

in the x direction. The point were the center line intersects the blocks represents

the location of the 30 m INJ electrode. The bloc

ks are symetric about the center

line in the y direction. Note that these models are offset to the left.



