Indoor Air Monitoring Report

University of California, Berkeley Richmond Field Station, Richmond, California

Prepared for
Office of Environment, Health and Safety
University of California, Berkeley
317 University Hall #1150
Berkeley, California 94720

August 22, 2008

Prepared by

135 Main Street, Suite 1800 San Francisco, California 94105

Richard Ecord, CIH, CSP

Jason Brodersen, P.G.

TABLE OF CONTENTS

ACR	ONYMS AND ABBREVIATIONSiii
1.0	INTRODUCTION1
2.0	SITE DESCRIPTION AND SAMPLING LOCATIONS
	2.1 SITE DESCRIPTION
	2.2 SAMPLING LOCATIONS
3.0	SAMPLE EQUIPTMENT AND METHODS5
4.0	DATA SUMMARY AND DEVIATIONS7
5.0	DATA EVALUATION 8
6.0	CONCLUSIONS
7.0	REFERENCES
APPI	ENDIX
A	Photographs of Sampling Locations
В	Wind Roses for Sampling Events
C	Field Data Summary Sheets
D	Analytical Results

FIGURES

Figure 1	Site Location Map
Figure 2	Sampling Locations
Figure 3	Building 155
Figure 4	Building 163
Figure 5	Building 175
Figure 6	Building 177
Figure 7	Building 478
Figure 8	DHS Building

TABLES

Table 1 Data Results

Table 2 Data Averages with Comparison Data

ACRONYMS AND ABBREVIATIONS

ARB Air Resources Board

ATSDR Agency for Toxic Substances and Disease Registry

BASE Study Building Assessment and Evaluation Study

CDHS California Department of Health Services

CDPH California Department of Public Health

CVS Cherokee Simeon Ventures

DCA Dichloroethane

DCE Dichloroethylene

DL Detection Limit

EHIB Environmental Health Investigations Branch

EPA Federal Environmental Protection Agency

LOQ Limits of Quantification

μg/m³ Micrograms per cubic meter

NIOSH National Institute of Occupational Safety and Health

OSHA Occupational Safety and Health Administration

PCE Tetrachloroethylene

PEL Permissible Exposure Limit

PHA Public Health Assessment

ppm Parts Per Million

RFS Richmond Field Station

SIM Selective ion monitoring

TCE Trichloroethylene

Tetra Tech Tetra Tech EM Inc.

UC Berkeley University of California, Berkeley

VOC Volatile Organic Compound

1.0 INTRODUCTION

This indoor air monitoring report has been prepared by Tetra Tech EM Inc. (Tetra Tech) on behalf of The Regents of the University of California. The air monitoring effort was completed based on recommendations from the California Department of Public Health (CDPH) August 2007 Draft Public Health Assessment (PHA) for Evaluation of Exposure to Contaminants at the University of California, Berkeley (UC Berkeley), Richmond Field Station (RFS). (This Draft PHA was finalized in March 2008 by the Agency for Toxic Substances and Disease Registry with equivalent recommendations.) In the PHA, the CDPH commented on previous sampling events performed at RFS and recommended further evaluation of indoor air quality for formaldehyde and arsenic (CDPH 2007). Rather than limit the study to these compounds, UC Berkeley decided to perform a more comprehensive evaluation. Twelve sampling locations were selected and the samples were analyzed for the following constituents of concern, many of which are not historical chemicals of concern at RFS but may be present in soil and/or groundwater at nearby sites:

- Formaldehyde
- Trichloroethylene (TCE)
- Tetrachloroethylene (PCE)
- Dichloroethylene (DCE)
- Vinyl chloride
- Benzene
- Methylene chloride
- 1,2-Dichloroethane (1,2-DCA)
- Chloroform
- Arsenic

Air monitoring was performed between October 2007 and February 2008, and consisted of eight separate 24-hour events. The air monitoring was completed using stationary air collection equipment for indoor and outdoor locations. The scope of work for this project included comparison of results to indoor air quality studies performed by state and federal agencies at other sites in California and across the United States, to determine if they were values typical of indoor air. Studies used for these comparisons are listed in Section 5.0.

This report is presented in seven sections and includes appendices comprised of a photo log of the sampling locations, field data summary sheets, laboratory analytical results, and wind roses for the sampling events. Section 1 provides the introduction. Section 2 provides a site background and description of sampling locations. Section 3 provides a detailed description of sample collection, equipment, and methods. Section 4 presents the air monitoring data summary and deviations. Section 5 reviews the results and provides data interpretation. Section 6 provides a conclusion. Section 7 provides references.

2.0 SITE DESCRIPTION AND SAMPLING LOCATIONS

2.1 Site Description

The RFS is owned by The Regents of the University of California and is located at 1301 South 46th Street in Richmond, California, in western Contra Costa County. The RFS is situated south and west of Highway 580; approximately five miles northwest of UC Berkeley's central campus (see Figure 1).

The RFS property is 152 acres, consisting of approximately 100 acres of uplands, with the remainder of the property consisting of tidal marsh or bay lands (offshore areas). The climate is characterized as Mediterranean. The average annual precipitation in the area is 22 inches. The precipitation occurs mostly in the winter, with the most rain typically falling in January. Residences, public areas, and facilities exist within a 1-mile radius of RFS. The upland portion of the RFS property is adjacent to vulnerable or sensitive animal populations and habitats and natural resources, including a tidal salt marsh and coastal terrace prairie. Several industrial sites border the RFS property to the north, west, and east. Bio-Rad Laboratories is located to the west of the RFS. The adjacent property to the east of RFS is the location of former chemical production operations previously owned by several entities, including Stauffer Chemical and Zeneca, and is currently owned by Cherokee Simeon Ventures (CSV). The former Liquid Gold Corporation site is located east of the former Zeneca site. Hoffman Marsh and Point Isabel are also located slightly farther to the east, approximately 1.5 miles from RFS. The City of Richmond has a population of approximately 100,000 and surrounds the property to the north, west, and east

2.2 Sampling Locations

The sampling locations at RFS were located in the uplands portion of the property, as shown on Figure 2. Some sample collection locations were selected based on the locations of previous sampling events, and others were selected as new locations to get a comprehensive representation of indoor and outdoor air on site. Each location is discussed below. Photographs were taken at each of the sampling locations, see Appendix A.

Building 155

Building 155 is occupied by the Technology Transfer department; part of the Institute for Transportation Studies that trains engineers and planners hired by Caltrans. The sample 155-01 was a new location, chosen because of reports of historic occupant complaints of odors and poor indoor air quality. The sample collection equipment was placed on top of a filing cabinet in the main room of the building, where copying, packing, and shipping activities occurred.

Building 163

Building 163 is occupied by the Ergonomics Program affiliated with the UC Center for Occupational and Environmental Health. Their research consists of testing subjects for

chronic musculoskeletal disorders primarily focusing on subjects during computer use. Most research in this area does not involve hazardous materials; however, formaldehyde-preserved specimens may be used for research on occasion. Samples were collected at three locations in Building 163. The location of 163-01 was chosen based on a previous sampling event. The sample collection equipment was placed on a small tray table in a hallway for offices, next to a door to the outside hallway. Across the hall is a mechanical room, which houses two gas furnaces. The location of 163-02, an office similar in size and configuration to those near it, was chosen as a space representative of all office space in the building. During the time of the sample collection, the office was unoccupied and used for storage and a place for guests to access the internet while waiting for experiments to finish. The outdoor location 163-03 was chosen as a replicate of previous sampling locations. This location was on the property boundary with the CSV site and monitored outdoor ambient air in the vicinity of Building 163.

Building 175

Building 175 was previously occupied by RFS administrative and facilities maintenance staff. These staff members were in the process of moving into Building 478 during the sample collection period. Two locations were sampled at Building 175; both were resample locations based on previous sampling activities. Equipment for location 175-01 was placed on a small tray table in the lobby of the administrative offices. There are double doors on either end of the lobby that lead outside, and on the other end, to an unused carpentry shop. The outdoor location, 175-02, was located on the roof of the building, and represented ambient air in a centrally located area of the RFS property.

Building 177

Building 177 is occupied by administrative activities for the Institute for Transportation Studies. Sample location 177-01 was chosen because of reports of historic occupant complaints of odors and poor indoor air quality. The location chosen for sample collection was a centrally located, unoccupied office in a hallway of occupied offices.

Building 478

Building 478 was historically used as the Forest Products Research Laboratory. Currently, the primary occupants are RFS administrative and facilities maintenance personnel. One of the former labs is still in use and old carpentry and machine shops are currently being used by RFS facilities staff. Three locations were sampled at Building 478. The location 478-01 was a representative common space located in a previously unoccupied room. This room was being renovated to become a staff break room during the air monitoring. The renovations included activities such as framing an interior wall, sheet rock installation, rough plumbing, electrical work, installing kitchen cabinets, counter top, and commercial vinyl installation. Sample location 478-02 was chosen as a re-sample location from previous sampling events. This location is the lobby area for the administrative offices in the building. Sample location 478-03, an office similar in configuration to others near it, was chosen to represent office space in the building. This office has been unoccupied for three years, and has some library materials stored in it.

Fence Line

The fence line location was chosen based on projected regional predominant wind directions for each sample collection event; however, actual wind directions at RFS varied (see Appendix B). For most events, the forecasted wind direction was primarily southerly (from the Bay) and the location south of Building 110 was used. For the 4th sampling event, the wind was forecasted to originate predominantly from the north/northeast, and a location to the east of Building 478 was selected. For the 8th sampling event, the wind was forecasted to originate from the north/northwest, and a location to the west of Building 280 was used.

Former California Department of Health Services Building, Downtown Berkeley

The California Department of Health Services (CDHS) building located in downtown Berkeley at the northwest corner of UC Berkeley's main campus on Berkeley Way was chosen as a comparative baseline for Bay Area urban ambient air. The building is currently unoccupied and awaiting demolition. For purposes of security, the sample collection equipment was placed inside an indoor window nook of a room on the north side of this building and samples collected outdoor through the adjacent open window.

3.0 SAMPLE EQUIPTMENT AND METHODS

Tetra Tech conducted eight sample collection events from 12 locations between October 25, 2007 and February 5, 2008, following the sampling strategy developed in the 2007 Sampling and Analysis Plan (Tetra Tech 2007). Each of the 12 sampling locations was configured with the following air sampling equipment and sample media:

- One Airmetrics Inc. Mini-Vol air sampler configured with omni-directional inlet, particulate matter less than 10 microns (PM₁₀) impactor, and 47-millimeter Teflon filter media to collect dust and other particulate matter for metals analysis
- One selective ion monitoring (SIM)-certified Summa canister VOC sampler and SIM-certified 24-hour flow controller for VOC analysis
- One SKC Inc. low-volume pump with 2,4-dinitrophenylhydrazine (DNPH)-coated silica gel adsorbent (formaldehyde) cartridge for formaldehyde analysis

All sample collection equipment was operated according to Federal Environmental Protection Agency (EPA) guidance, National Institute of Occupational Safety and Health (NIOSH) standards, or Occupational Safety and Health Administration (OSHA) methods. All sampling devices were equipped with timers, flow controllers, and pressure gauges to document sample time, as well as flow and vacuum pressure during sample collection.

Each sample was collected, handled, stored, and analyzed using the following EPA Compendium Methods:

- EPA Compendium Methods TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (Active Sampling Method)
- EPA Compendium Methods TO-15: Determination of Volatile Organic Compounds in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatograph and Mass Spectrometry
- EPA Compendium Methods IO-3.3: Determination of Metals in Ambient Particulate Matter Using X-Ray Fluorescence Spectroscopy

Typically, indoor air samples are collected using NIOSH- or OSHA-approved sampling methods; however, the requirement to obtain lower detection limits recommended by CDPH necessitated using the methods listed above. The following NIOSH methods were cross-referenced to ensure sample collection methods met or exceeded the corresponding NIOSH sample requirements:

- NIOSH Method 7900 Arsenic and compounds, as arsenic
- *NIOSH Method 2016 Formaldehyde*

• NIOSH Method 1501 – Aromatic Hydrocarbons

At each air sampling location, equipment was secured either to existing furniture or on a portable tray table. Sampler inlets were positioned at breathing height, approximately five feet above the ground or floor surface. All equipment was started and stopped manually, and the start-stop times and timer readings were recorded on field data summary sheets (see Appendix C). Sample start times varied based on sample location. In general, sample events were started between 10 a.m. and 2 p.m. and ran continuously for a minimum of 24 hours. Samplers were stopped and samples retrieved after the 24-hour sample period. Sampling equipment was then returned to Building 102 as a temporary storage location, and samples were prepared for shipment to the laboratories. The Summa canisters were packed into boxes provided by Air Toxics. The arsenic and formaldehyde samples were packaged with bubble wrap and placed in coolers containing ice to keep the samples below 4 degrees Celsius.

Summa canisters and formaldehyde samples were shipped to Air Toxics Ltd. Arsenic samples were shipped to Desert Research Institute. Analytical results from the respective laboratories were sent to Tetra Tech electronically and in hard copy (see Appendix D).

For data quality purposes, a duplicate and field blank sample was collected for each of the eight sample events. For the duplicate sample, two samples were collected at location 163-02, using duplicate samplers (the Mini-Vol air samplers) or co-located sample media using one sample pump or orifice (the Summa canisters and SKC pump). One sample served as the primary sample, and one served as the duplicate. Field blank samples were collected at a rate of one per sample event and consist of transporting sampling media or apparatus to a designated location, opening the media, then immediately closing and removing. The blank sample was then removed, preserved, and shipped to respective laboratories to be analyzed with routine samples.

4.0 DATA SUMMARY AND DEVIATIONS

The air monitoring data is presented in Tables 1 and 2, following the report. For the scope of this report, data were compared to two indoor air quality studies performed by CDHS and one indoor air quality study performed by the Federal EPA.

All of the data collected during this air monitoring effort were comparable with the ranges found in comparable indoor air quality studies referenced above. A statistical summary of the data collected during the eight sampling events performed at RFS is presented in the table below.

Data Summary Table

Analyte	Percent Detect Indoor	Mean Indoor Value ^a (µg/m³)	Percent Detect Outdoor	Mean Outdoor Value ^a (µg/m³)
Benzene	100.00%	1.073	94.12%	0.914
Formaldehyde	100.00%	16.468	100.00%	1.116
Tetrachloroethylene	93.65%	0.202	88.24%	0.100
Trichloroethylene	88.89%	0.166	64.71%	0.062
Chloroform	74.60%	0.246	46.07%	0.123
Methylene Chloride	41.27%	0.942	17.65%	0.196
Vinyl Chloride	7.94%	0.024	0.00%	< DL
1,2-Dichloroethane	4.76%	0.069	0.00%	< DL
cis-1,2-Dichloroethylene	3.17%	0.077	0.00%	< DL
1,1-Dichloroethylene	0.00%	< DL	0.00%	< DL
trans-1,2- Dichloroethylene	0.00%	< DL	0.00%	< DL
Arsenic	0.00%	< DL	0.00%	< DL

Notes:

a: All values less than the detection limit (DL) were assigned ½ the median DL prior to computation. $\mu g/m^3$ – micrograms per cubic meter.

A comprehensive data set was collected from the large number of sampling events and sampling locations. Eight sampling events were conducted at 12 locations and one duplicate location. Samples were submitted for analysis for 12 analytes for a possible 1,248 total results. Results from 56 analyses were not reported due equipment malfunctions. Most notably, many of the Summa canisters did not achieve the target difference in atmospheric pressure required to produce accurate readings during the 5th sampling event. Air Toxics, the analytical laboratory, indicated that high humidity as the result of rainy weather had likely clogged the intake valves during the 5th sampling event.

The sample collection set is 96 percent complete (1,192 out of 1,248 results were successfully reported) and considered usable for this assessment.

5.0 DATA EVALUATION

The data collected during the eight rounds of air monitoring were compared with the following three indoor air monitoring reports. These air reports established chemical concentration values commonly found in indoor air in California and across the United States.

Building Assessment Survey and Evaluation (BASE, EPA 1998)

This study was conducted by the EPA over a five-year period from 1994 to 1998, to characterize determinants of indoor air quality and occupant perceptions in representative public and commercial office buildings across the United States. The study collected data from 100 randomly selected public and commercial office buildings in 37 cities and 25 states (EPA 1998). This study tested for most of the analytes tested for at RFS.

Environmental Health Consultation: Review of Environmental and Clinical Laboratory Information, Saugus Unified School District (Saugus, CDHS, Kreutzer, R., 1999)

This study was published in 1999 by the Environmental Health Investigations Branch (EHIB) branch of the CDHS for the Saugus Unified School District. The study was performed because of complaints about indoor air quality in the schools. The testing targeted arsenic, benzene, carbon monoxide, formaldehyde, phenol, and 40 volatile organic compounds (VOCs) lumped into a 'Total VOC' category. The study concluded all chemicals were found to be within local background levels (CDHS 1999).

Long-term Building Air Measurements for Volatile Organic Compounds Including Aldehydes at a California Five-Building Sustainable Office Complex (CDHS 2006)

This study was a 2006 report by the CDHS, which tested indoor air in a five-building sustainable office complex. The study investigated indoor air quality pre- and post-occupancy, and compared their results to the BASE study for reference values (CDHS 2006). Concentrations of the analytes measured in the five building study were comparable to those reported in the BASE study with only a few analytes being higher (CDHS 2006).

Arsenic

Arsenic is a heavy metal not commonly found in indoor air. Because arsenic was detected during an initial 2005 sampling event, the PHA recommended further testing for the presence of arsenic in indoor air. During the eight sampling events, no arsenic was detected in the indoor or outdoor air at any of the sampling locations. The detection limit was 0.002 micrograms per cubic meter ($\mu g/m^3$). As a comparison, the Saugus study tested classrooms and reported all results to be non-detect, with detection limits between 0.05 and 0.1 $\mu g/m^3$ (CDHS 1999).

Benzene

Benzene is a common indoor and outdoor air contaminant due to its ubiquitous sources associated with petroleum combustion, particularly vehicle exhaust.

Benzene was detected in all indoor air samples, and the mean concentration of benzene for the eight sampling events was 1.073 µg/m³. The mean outdoor concentration measured at the RFS was $0.914 \,\mu\text{g/m}^3$. There was a positive correlation between the benzene concentrations in indoor and outdoor air. For example, during the 2nd sampling event, the average indoor concentration was 0.547 µg/m³ and the average outdoor concentration was 0.383 µg/m³. These values can be compared to the 5th sampling event, when the average indoor benzene concentration was measured to be 1.825 μg/m³ and the average outdoor concentration was 1.25 µg/m³. It should also be noted that results for the 3rd and 4th sampling events reported higher average outdoor concentrations than average indoor concentrations (the 3rd event's average indoor concentration was 1.289 µg/m³ and the average outdoor concentration was 1.467 µg/m³; and the 4th event's average indoor concentration was 1.044 μ g/m³ and the average outdoor concentration was 1.2 μ g/m³). Still, the concentrations seen at RFS are less than values seen in comparative studies. In the CDHS Saugus study, indoor air concentrations were seen in a range of 1.5 µg/m³ to 2.0 μ g/m³ and outdoor air concentrations in a range of 1.5 μ g/m³ to 1.8 μ g/m³. The BASE study reported benzene in 100 percent of samples, with an average concentration of 4.20 µg/m³. The CDHS's Five-Building study reported benzene concentrations ranging between $0.8 \mu g/m^3$ and $5.6 \mu g/m^3$.

Chloroform

Chloroform was detected in 75 percent of the samples collected, and the mean indoor air concentration was $0.246~\mu g/m3$. The sampling location in Building 177 had the highest detections of chloroform, with an average detected concentration of $0.515~\mu g/m3$. These levels are comparable to those seen in the BASE study, where the average detected concentration was $0.59~\mu g/m3$ (EPA 1998). Chloroform was only detected in one percent of samples in the CDHS's Five-Building study; however, the average detection limit was $3.0~\mu g/m3$ (CDHS 2006), significantly higher than the average detected value found at RFS. The highest detected values at multiple sampling locations were recorded during the 3^{rd} and 8^{th} sampling events. During these events, the outdoor samples, which during other rounds were non-detects, detected chloroform in the ambient air, perhaps contributing to the higher indoor levels.

1,2-Dichloroethane

There were three detected results for 1,2-dichloroethane which occurred in the 8^{th} sampling event. The detections were at locations 478-03, 163-01, and 163-02, with concentrations of 0.15 $\mu g/m^3$, 0.17 $\mu g/m^3$, and 0.14 $\mu g/m^3$, respectively. These values were less than the BASE study's mean value, 1.10 $\mu g/m^3$ (EPA 1998), and well less than the detection limit for the Five-Building Study, which was 2.0 $\mu g/m^3$ (CDHS 2006).

1,1-Dichloroethlyene

All sampling results for 1,1-DCE were less than the method detection limit. In the Five-Building study results, 1,1-DCE was detected in 61 percent of the samples analyzed and

concentrations ranged from 0.8 to 9.9 $\mu g/m^3$ (CDHS 2006). The BASE study also tested indoor air for 1,1-DCE. All results were non-detect, with a median limit of quantification (LOQ) of 2 $\mu g/m^3$ (EPA 1998). The median detection limit for 1,1-dichloroethylene for the eight sampling events at RFS was 0.065 $\mu g/m^3$, less than the concentrations found in either of the comparison studies.

cis-1,2-Dichloroethylene

There were two detected results for cis-1,2-DCE: concentration of 0.71 μ g/m³ reported in the sample collected at location 163-02 during the 1st sampling event and 0.2 μ g/m³ reported in the sample collected a measured at location 478-01 during the 6th sampling event. None of the studies being used for comparative data tested for this analyte.

trans-1,2-Dichlorothylene

All sampling results for trans-1,2-DCE were less than the method detection limits, which ranged from $0.10 \,\mu\text{g/m}^3$ to $0.46 \,\mu\text{g/m}^3$, with an average detection limit of $0.14 \,\mu\text{g/m}^3$. None of the studies being used for comparative data tested for this analyte.

Formaldehyde

Formaldehyde is a common indoor air contaminant, with many possible sources including particle board, ceiling tiles, treated wood, upholstery, and carpet. Formaldehyde was detected in all indoor and outdoor samples, with a mean indoor air concentration of $16.5 \, \mu g/m^3$, and a mean outdoor concentration of $1.116 \, \mu g/m^3$. The CDHS's Saugus study reported results in the range of 22 to 32 $\, \mu g/m^3$, and cited a 1991 California Air Resources Board (ARB) report which stated that indoor air concentrations of formaldehyde in California homes are often noted around 50 parts per million (ppm), or $61.4 \, \mu g/m^3$ (ARB 1991). The BASE study reported an average value of $16 \, \mu g/m^3$ and a maximum value of $51 \, \mu g/m^3$, and the CDHS's 5 Building study reported a median concentration of $19 \, \mu g/m^3$ and a maximum concentration of $81 \, \mu g/m^3$.

The concentrations of formaldehyde detected in the samples collected at location 478-03 are noticeably higher than at other RFS locations. The average concentration of the formaldehyde samples collected at 478-03 was 37.6 μ g/m³, while the average for the remainder of the indoor locations (excluding 478-03) was 13.4 μ g/m³. This unoccupied office is constructed nearly entirely of wood (the walls, shelving, ceiling, and furniture) and is heated through a base heater, not central air. Three years ago, the carpet was replaced in this office. Because this office is unoccupied, the door and windows are predominantly closed and the room is not ventilated. Based on all these factors, this location may not accurately represent the conditions in nearby occupied offices where doors and windows are opened and any off gases from furniture and other sources have ventilated pathways and are not trapped. Although the concentrations at 478-03 are higher than the rest of the locations at RFS, all results are within levels seen in the three comparative indoor air quality studies.

Methylene Chloride

Methylene chloride was detected in 41 percent of the samples taken, and the mean indoor air concentration was $0.924 \, \mu g/m^3$. The highest detected concentration of $4.0 \, \mu g/m^3$ was

detected at location 478-02 during the 8^{th} sampling event. During this event, results from other sampling locations were higher than average, and two of the three outdoor locations which previously had all concentrations less than detection limits, reported methylene chloride concentrations in the ambient air. The concentrations detected at RFS are consistent with the ranges presented in the three comparison studies. The CDHS Saugus Study reported detections in the range of 1.1 to 1.3 $\mu g/m^3$; the CDHS Five-Building study reported methylene chloride concentrations between 0.3 and 1.0 $\mu g/m^3$; and the BASE study had a 95th percentile concentration of 16 $\mu g/m^3$ (EPA 1998). (Note: the mean is not used here from the BASE study because it is skewed by one data point of 1,500 $\mu g/m^3$; the 95th percentile represents the value in the data set where 95% of the data is lower than the value and 5% of the data is higher.)

Tetrachloroethylene

PCE was detected in 94 percent of the samples collected and the mean indoor air concentration was $0.202~\mu g/m^3$. The mean outdoor concentration was $0.1~\mu g/m^3$. These values are significantly less than the values presented in reference indoor air quality studies. The CDHS's Saugus study reported indoor concentrations between 1.4 and 2.3 $\mu g/m^3$, and outdoor concentrations between 1.0 and 4.1 $\mu g/m^3$ (CDHS 1999). The BASE study had a 100 percent detection rate for PCE, and reported an average concentration of 3.8 $\mu g/m^3$ (EPA 1998). The EPA Five-Building study detected PCE concentrations range from $0.2~\mu g/m^3$ to $16.2~\mu g/m^3$ (CDHS 2006).

Trichloroethylene

TCE was detected in 89 percent of the samples collected and the mean indoor air concentration was $0.166~\mu g/m^3$. The mean outdoor concentration for RFS was $0.062~\mu g/m^3$. There is a positive correlation between the indoor and outdoor sample values. During the 2^{nd} sampling event, almost all TCE concentrations reported in indoor and outdoor samples were less than the method detection limit and during the 7^{th} sampling event, the outdoor average concentration was $0.031~\mu g/m^3$ and the indoor concentration was $0.108~\mu g/m^3$. The concentrations in the 2^{nd} and 7^{th} events can be compared to the concentration of TCE detected in the 6^{th} sampling event, when the outdoor average TCE concentration was $0.193~\mu g/m^3$ and the indoor average concentration was $0.279~\mu g/m^3$. The sampling location 478-01 had the highest detected TCE concentrations, with an average detected concentration of $0.781~\mu g/m^3$. Although these results are elevated in comparison with other values found at RFS, the reported concentrations are less than or comparable to the results found in the BASE study, which presented an average concentration of $0.76~\mu g/m^3$ (EPA 1998).

Vinyl Chloride

Vinyl chloride was non-detect in all locations with the exception of 175-01. There were five detections at this location ranging in concentrations from 0.052 $\mu g/m^3$ to 0.064 $\mu g/m^3$. These detections are significantly less than the values found in the BASE study, where the mean concentration was found to be 0.78 $\mu g/m^3$ (EPA 1994). Neither the EPA Five-Building study nor the CDHS's Saugus study tested for vinyl chloride.

6.0 CONCLUSIONS

The comprehensive monitoring efforts undertaken between October 2007 and February 2008 demonstrate that the indoor air at RFS is within levels typical of indoor air. All sampling results were comparable to the ranges found in indoor air quality studies from California and across the country.

7.0 REFERENCES

California Air Resources Board (ARB). 1991. "Indoor Air Quality Guideline: Formaldehyde in the Home." State of California Air Resources Board, Research Division. 1-6.

California Department of Health Services (CDHS). 1999. "Environmental Health Consultation: Review of Environmental and Clinical Laboratory Information, Saugus Unified School District." California Department of Health Services, Environmental Health Investigations Branch. August.

CDHS. 2006. "Long-Term Building Air Measurements for Volatile Organic Compounds Including Aldehydes at a California Five-Building Sustainable Office Complex." California Department of Health Services, Environmental Health Laboratory Branch, Indoor Air Quality Section. August 31.

California Department of Public Health (CDPH). 2007. "Draft Evaluation of Exposure to Contaminates at the University of California, Berkeley, Richmond Field Station, 1301 South 46th Street." California Department of Public Health under Cooperative Agreement with the U.S. Department of Health and Human Services Agency for Toxic Substances and Disease Registry.

Federal Environmental Protection Agency (EPA). 1998. "The Building Assessment Survey and Evaluation." Environmental Protection Agency, Office of Radiation and Indoor Air, BASE Workgroup.

Tetra Tech EM Inc. (Tetra Tech). 2007. "Richmond Field Station Air Quality Sampling and Analysis Plan." December 12.

Air sampling location

Richmond Field Station University of California, Berkeley

> FIGURE 3 BUILDING 163

Source: UC Berkeley Engineering Office, Revised October 17, 2000

Richmond Field Station University of California, Berkeley

> FIGURE 4 **BUILDING 175**

Source: UC Berkeley Engineering Office, Revised October 17, 2000

SECOND FLOOR

Richmond Field Station University of California, Berkeley

> FIGURE 5 BUILDING 177

Source: UC Berkeley Engineering Office, Revised November 9, 2000

Table 1: Indoor Air Monitoring Data ResultsIndoor Air Monitoring Report, University of California, Berkeley, Richmond Field Station, Richmond, California

				/	′ /	/	/ 。 /	′ /	/	/		′ /	haragetylere garageth	/ /	•
					10He	.36	itrylette			- AS		The /	nethyle		
			/ ;	ide /	ethyle	Chlorie	Margett			sethati .	whene /	ethyle.	Hore	de /	
			Chief	diore	lette	3. Dies	de de la contra	, Ke	.chlor	larneth .	ithoro	13:101	ildeh	,,,	
Station ID	Event Number	Units	Vingl Chief	ye Litheline	ntethiere nethiere	iss.1.th	gardestripene Calardioria	Bertene	1,2,7riether	gettage Trichlargett	nglede Tetraditoria	(rans.	Kortestedi	Arsenic	
	1	μg/m3	< 0.046	< 0.071	< 1.2	< 0.14	0.47	0.55	< 0.14	0.40	0.072	< 0.14	13.0	< 0.002	
	2	μg/m3	< 0.041	< 0.064	< 1.1	< 0.13	0.18	0.81	< 0.13	0.38	1.1	< 0.13	2.9	< 0.002	
	3	μg/m3	< 0.043	< 0.067	< 1.2	< 0.13	0.45	2.2	< 0.14	1.1	0.1	< 0.13	16.0	< 0.002	
	4	μg/m3	< 0.046	< 0.071	< 1.2	< 0.14	0.33	1.4	< 0.14	0.86	0.11	< 0.14	13.0	< 0.002	
RFS-478-01	5	μg/m3	< 0.048	< 0.074	< 1.3	< 0.15	0.3	1.6	< 0.15	0.94	0.19	< 0.15	20.0	< 0.002	
	6	μg/m3	< 0.042	< 0.065	< 1.1	0.2	0.29	4.0	< 0.13	1.1	0.16	< 0.13	13.0	< 0.002	
	7	μg/m3	< 0.034	< 0.053	< 0.93	< 0.11	0.21	0.82	< 0.11	0.48	0.36	< 0.11	11.0	< 0.002	
	8	μg/m3	< 0.044	< 0.068	1.4	< 0.14	0.58	1.6	< 0.14	0.99	0.16	< 0.14	14.0	< 0.002	
	1	μg/m3	< 0.034	< 0.053	<0.93	< 0.11	< 0.13	0.47	< 0.11	0.16	0.098	< 0.11	9.1	< 0.002	
	2		< 0.034	< 0.053	2.8	< 0.11	< 0.13	0.47	< 0.11	< 0.021	0.098	< 0.11	7.0	< 0.002	
	3	μg/m3	< 0.033	< 0.060	3.3	< 0.10	0.12	1.4	< 0.10	0.021	0.24	< 0.10	9.6	< 0.002	
	4	μg/m3	< 0.039	< 0.060	2.7	< 0.12	0.21	1.4	< 0.12	0.071	0.092	< 0.12	8.6	< 0.002	
RFS-478-02	5	μg/m3	< 0.039	< 0.068	2.7	< 0.12	0.17	1.4	< 0.12	0.046	0.11	< 0.12	16.0	< 0.002	
	6	μg/m3	< 0.044	< 0.068	2.8	< 0.14	0.24	1.4	< 0.14	0.14	1.2	< 0.14	12.0	< 0.002	
	7	μg/m3	< 0.041	< 0.064	2.8 1.7	< 0.13		0.78	< 0.13	0.32	0.27	< 0.13	13.0	< 0.002	
	8	μg/m3 μg/m3	< 0.038	< 0.039	4.0	< 0.12	0.16 0.27	1.7	< 0.12	0.084	0.45	< 0.12	14.0	< 0.002	
	1	μg/m3	< 0.043	< 0.067	< 1.2	< 0.13	< 0.16	0.42	< 0.14	0.035	0.074	< 0.13	33.0	< 0.002	
	2	μg/m3	< 0.042	< 0.065	< 1.1	< 0.13	< 0.16	0.5	< 0.13	< 0.026	0.084	< 0.13	38.0	< 0.002	
	3	μg/m3	< 0.040	< 0.061	1.5	< 0.12	0.16	1.3	< 0.12	0.052	0.088	< 0.12	41.0	< 0.002	
RFS-478-03	4	μg/m3	< 0.059	< 0.091	< 1.6	< 0.18	< 0.22	1.1	< 0.19	0.054	0.15	< 0.18	30.0	< 0.002	
	5	μg/m3	-	-	-	-	-	-	-	-	-	-	43.0	< 0.002	
	6	μg/m3	< 0.045	< 0.069	2.2	< 0.14	< 0.17	1.2	< 0.14	0.12	0.11	< 0.14	35.0	< 0.002	
	7	μg/m3	< 0.044	< 0.068	< 1.2	< 0.14	< 0.17	0.65	< 0.14	0.045	0.092	< 0.14	39.0	< 0.002	
	8	μg/m3	< 0.041	< 0.064	< 1.1	< 0.13	0.46	1.3	0.15	0.041	0.17	< 0.13	42.0	< 0.002	
	1	μg/m3	< 0.041	< 0.064	< 1.1	< 0.13	0.22	0.5	< 0.13	0.034	0.062	< 0.13	14	< 0.002	
	2	μg/m3	< 0.04	< 0.061	2.5	< 0.12	0.29	0.48	< 0.12	< 0.025	< 0.032	< 0.12	21.0	< 0.002	
	3	μg/m3	< 0.041	< 0.064	2.3	< 0.13	0.25	1.1	< 0.13	0.074	0.088	<0.13	18.0	< 0.002	
RFS-163-01	4	μg/m3	< 0.045	< 0.069	1.6	< 0.14	0.2	0.86	< 0.14	0.029	0.078	< 0.14	12.0	< 0.002	
	5	μg/m3	< 0.061	< 0.095	2.8	< 0.19	0.33	1.1	< 0.19	0.084	0.53	< 0.19	19.0	< 0.002	
	6	μg/m3	< 0.048	< 0.074	2.2	< 0.15	0.2	1.2	< 0.15	0.13	0.17	< 0.15	16.0	< 0.003	
	7	μg/m3	< 0.041	< 0.064	1.3	< 0.13	0.25	0.62	< 0.13	0.046	0.062	< 0.13	15.0	< 0.002	
	8	μg/m3	< 0.049	< 0.076	3.3	< 0.15	0.41	1.2	0.17	0.058	0.13	< 0.15	16.0	< 0.002	
	1	μg/m2	< 0.046	< 0.071	< 1.2	0.71	< 0.17	0.41	< 0.14	0.22	0.2	< 0.14	-	< 0.002	
	2	μg/m3	< 0.043	< 0.067	1.7	< 0.13	0.17	0.45	< 0.14	< 0.027	0.2	< 0.13	18.0	< 0.002	
	3	μg/m3	< 0.042	< 0.065	1.9	< 0.13	0.21	1.0	< 0.13	0.056	0.099	< 0.13	14.0	< 0.002	
	4	μg/m3	< 0.042	< 0.065	1.4	< 0.13	0.17	0.92	< 0.13	0.038	0.088	< 0.13	11.0	< 0.002	
RFS-163-02	5	μg/m3	< 0.044	< 0.068	2.3	< 0.14	0.25	1.0	< 0.14	0.074	0.18	< 0.14	16.0	-	
	6	μg/m3	< 0.044	< 0.068	2.4	< 0.14	0.19	1.3	< 0.14	0.19	0.2	< 0.14	14.0	-	
	7	μg/m3	< 0.040	< 0.063	1.4	< 0.12	0.16	0.67	< 0.13	0.041	0.091	< 0.12	14.0	< 0.002	
	8	μg/m3	< 0.045	< 0.069	2.9	< 0.14	0.31	1.2	0.14	0.064	0.15	< 0.14	14.0	< 0.002	
	1D	μg/m3	< 0.038	< 0.059	< 1.0	< 0.12	< 0.14	0.37	< 0.12	< 0.024	0.058	< 0.12	-	< 0.002	
	2D	μg/m3	< 0.043	< 0.067	1.7	< 0.13	0.17	0.68	< 0.14	< 0.027	0.06	< 0.13	13.0	< 0.002	

Table 1: Indoor Air Monitoring Data Results (Continued)Indoor Air Monitoring Report, University of California, Berkeley, Richmond Field Station, Richmond, California

					_									
				/ ,	/	/ .	/ ,	/	/ ,	/ ,	/ ,	/ ,	/ .	
					ne /	, /	garden berger (Thorogona)			. /		~ /	Margathytere Formalder	
				de l	Ethyler /	Hidrid	horoett.			nethane .	nylene	ethyleir	hlorov	ide /
			Troy Churi	de 1.1.Thethore	the this party to the state of	1,2.Trice	Chardorn	Bertene	1,2,7tiettoer	gettage Trictlyroed	ng Terreditori	3 / 35.12.17	Fortunden.	Arsenie
Station ID	Event Number	Units			Metr				134	Trit			Fort	
	3D	μg/m3	< 0.041	< 0.064	1.9	< 0.13	0.21	1.0	< 0.13	0.051	0.09	< 0.13	13.0	< 0.002
	4D 5D	μg/m3 μg/m3	< 0.044 < 0.043	< 0.068 < 0.067	1.4 2.4	< 0.14 < 0.13	0.16 0.24	0.88 5.6	< 0.14 < 0.14	0.033 0.13	0.08 0.18	< 0.14 < 0.13	10.0 14.0	< 0.002 < 0.002
RFS-163-02	6D	μg/m3 μg/m3	< 0.042	< 0.065	2.3	< 0.13	0.18	1.2	< 0.13	0.13	0.14	< 0.13	16.0	< 0.002
	7D	μg/m3	< 0.042	< 0.065	1.4	< 0.13	< 0.16	0.68	< 0.13	0.042	0.071	< 0.13	10.0	< 0.002
	8D	μg/m3	-	-	-	-	-	-	-	-	-	-	14.0	< 0.002
	1	μg/m3	< 0.047	< 0.072	< 1.3	< 0.14	< 0.18	0.38	< 0.15	0.032	0.068	< 0.14	0.34	< 0.002
	2	μg/m3	< 0.032	< 0.05	< 0.88	< 0.10	< 0.12	0.36	< 0.10	< 0.020	0.062	< 0.10	0.85	< 0.002
	3	μg/m3	< 0.037	< 0,058	< 1.0	< 0.12	0.15	1.3	< 0.12	0.15	0.11	< 0.12	2.4	< 0.002
RFS-163-03	4	μg/m3	< 0.037	< 0.058	< 1.0	< 0.12	< 0.14	1.2	< 0.12	0.049	0.11	< 0.12	1.8	< 0.002
	5	μg/m3	-	-	-	-	-	-	-	-	-	-	-	< 0.002
	6	μg/m3	< 0.066	< 0.10	< 1.8	< 0.20	< 0.25	1.1	< 0.21	0.15	0.12	< 0.20	0.84	< 0.002
	7 8	μg/m3	< 0.043	< 0.067	< 1.2	< 0.13	< 0.16	0.6	< 0.14	0.041	0.077	< 0.13	0.48	< 0.002
	0	μg/m3	< 0.040	< 0.061	1.3	< 0.12	0.17	1.0	< 0.12	0.054	0.14	< 0.12	0.76	< 0.002
	2	μg/m3	< 0.045	< 0.069	< 1.2	< 0.14	0.36	0.74	< 0.14	0.045	0.092	< 0.14	19	< 0.002
	3	μg/m3 μg/m3	< 0.033 < 0.041	< 0.052 < 0.064	< 0.90 < 1.1	< 0.10 < 0.13	0.64 0.53	0.44 1.2	< 0.10 < 0.13	< 0.021 0.035	< 0.026 0.2	< 0.10 < 0.13	17.0 11.0	< 0.002 < 0.002
	4	μg/m3 μg/m3	< 0.041	< 0.065	< 1.1	< 0.13	0.63	0.94	< 0.13	0.033	0.27	< 0.13	15.0	< 0.002
FS-177-01	5	μg/m3 μg/m3	< 0.047	< 0.072	< 1.3	< 0.14	0.7	1.0	< 0.15	0.17	0.3	< 0.13	21.0	< 0.002
	6	μg/m3	< 0.039	< 0.060	< 1.0	< 0.12	0.27	1.1	< 0.12	0.25	0.27	< 0.12	19.0	< 0.002
	7	μg/m3	< 0.043	< 0.067	< 1.2	< 0.13	0.32	0.59	< 0.14	0.15	0.16	< 0.13	15.0	< 0.002
	8	μg/m3	< 0.042	< 0.065	< 1.1	< 0.13	0.67	1.0	< 0.13	0.19	0.19	< 0.13	17.0	< 0.002
	1	μg/m3	< 0.040	< 0.061	< 1.1	< 0.12	0.16	0.85	< 0.12	0.045	0.11	< 0.12	1.1	< 0.002
	2	μg/m3	< 0.033	< 0.051	0.97	< 0.10	< 0.12	0.81	< 0.10	< 0.021	< 0.026	< 0.10	1.7	< 0.002
	3	μg/m3	-	-	-	-	-	-	-	-	-	-	1.1	< 0.002
RFS-UCB-01	4	μg/m3	< 0.046	< 0.071	1.4	< 0.14	< 0.17	1.2	< 0.14	0.029	0.14	< 0.14	2.0	< 0.002
	5	μg/m3	-	-	-	-	-	-	-	-	-	-	1.7	< 0.002
	6	μg/m3	< 0.040	< 0.061	< 1.1	< 0.12	< 0.15	1.5	< 0.12	0.15	0.19	< 0.12	4.4	< 0.002
	7	μg/m3	< 0.041	< 0.064	< 1.1	< 0.13	< 0.16	0.78	< 0.13	0.028	0.068	<0.13	0.77	< 0.002
	8	μg/m3	< 0.039	< 0.06	< 1.0	< 0.12	0.15	1.2	< 0.12	0.046	0.12	< 0.12	0.63	< 0.002
	1	μg/m3	< 0.041	< 0.064	1.1	< 0.13	< 0.16	0.5	< 0.13	0.034	0.1	< 0.13	9.6	< 0.002
	2 3	μg/m3	< 0.044 < 0.045	< 0.068 < 0.069	< 1.2 < 1.2	< 0.14 < 0.14	< 0.17	0.47	< 0.14 < 0.14	< 0.028 0.038	< 0.035	< 0.14 < 0.14	14.0 11.0	< 0.002 < 0.002
	4	μg/m3 μg/m3	< 0.045 < 0.045	< 0.069 < 0.069	< 1.2	< 0.14 < 0.14	< 0.17 < 0.17	1.1 1.1	< 0.14 < 0.14	< 0.038	0.2 0.16	< 0.14 < 0.14	8.8	< 0.002 < 0.002
RFS-155-01	5	μg/m3	< 0.043	< 0.069	< 4.0	< 0.14	< 0.17	1.6	< 0.14	0.028	0.16	< 0.14	15.0	< 0.002
	6	μg/m3 μg/m3	< 0.13	< 0.23	< 1.3	< 0.46	< 0.18	2.5	< 0.15	0.092	0.26	< 0.15	16.0	< 0.002
	7	μg/m3 μg/m3	< 0.039	< 0.060	< 1.0	< 0.12	< 0.15	0.72	< 0.12	0.044	0.12	< 0.13	16.0	< 0.002
	8	μg/m3	< 0.040	< 0.061	1.0 J	< 0.12	0.18	1.2	< 0.12	0.056	0.2	< 0.12	13.0	< 0.002
	1	μg/m3	0.052	< 0.065	< 1.1	< 0.13	0.18	1.5	< 0.13	0.036	0.15	< 0.13	10.0	< 0.002
RFS-175-01	2	μg/m3	0.053	< 0.067	< 1.2	< 0.13	0.35	0.65	< 0.14	0.036	0.15	< 0.13	15.0	< 0.002
	3	μg/m3	0.059	< 0.063	< 1.1	< 0.12	0.3	1.3	< 0.13	0.037	0.22	< 0.12	11.0	< 0.002

Table 1: Indoor Air Monitoring Data Results (Continued)Indoor Air Monitoring Report, University of California, Berkeley, Richmond Field Station, Richmond, California

					detre	ide	percent state (therefore			, de	, /	lette	ethroughytere Englisher	
			Tiny Chiris	ge 1,1,11pthort	ntertribute.	Chlor. Tiel	idirot	, / .	1,2,Thichlor	Tridhordel (Tridhordel)	Turus	og this ?	Englished.	yde /
Station ID	Event Number	Units	Wingle,	1,1.Dict.	Methyle	itschild	the Charden	Benjene	1,2.Trett	Tricklor	Tetracity	Trans-1.	Formate	Arsenic
	4	μg/m3	< 0.044	< 0.068	< 1.2	< 0.14	0.2	1.0	< 0.14	0.038	0.2	< 0.14	7.4	< 0.002
	5	$\mu g/m3$	< 0.076	< 0.12	< 2.1	< 0.24	0.31	1.3	< 0.24	0.074	0.3	< 0.24	11.0	< 0.002
RFS-175-01	6	$\mu g/m3$	0.064	< 0.067	< 1.2	< 0.13	0.21	1.3	< 0.14	0.13	0.31	< 0.13	7.7	< 0.002
	7	$\mu g/m3$	< 0.039	< 0.060	< 1.0	< 0.12	< 0.15	0.68	< 0.12	0.04	0.16	< 0.12	6.4	< 0.002
	8	μg/m3	0.052	< 0.057	< 1.0	< 0.11	0.3	1.4	< 0.12	0.049	< 0.029	< 0.11	6.4	< 0.002
	1	$\mu g/m3$	< 0.040	< 0.061	< 1.1	< 0.12	0.4	< 0.12	< 0.025	< 0.032	0.051	< 0.12	0.55	< 0.002
	2	$\mu g/m3$	< 0.040	< 0.061	< 1.1	< 0.12	< 0.15	0.41	< 0.12	< 0.025	< 0.032	< 0.12	1.6	< 0.002
	3	$\mu g/m3$	< 0.037	< 0.058	< 1.0	< 0.12	0.15	1.3	< 0.12	0.034	0.1	< 0.12	2.3	< 0.002
RFS-175-02	4	μg/m3	< 0.043	< 0.067	< 1.2	< 0.13	< 0.16	1.2	< 0.14	0.046	0.1	< 0.13	1.9	< 0.002
	5	μg/m3	< 0.079	< 0.12	< 2.1	< 0.24	< 0.30	1.3	< 0.25	0.09	0.2	< 0.24	1.4	< 0.002
	6	μg/m3	< 0.066	< 0.10	< 1.8	< 0.20	< 0.25	1.1	< 0.21	0.17	0.14	< 0.20	0.94	< 0.002
	7	μg/m3	< 0.050	< 0.078	< 1.4	< 0.16	< 0.19	0.6	< 0.16	< 0.032	0.069	< 0.16	0.69	< 0.002
	8	μg/m3	< 0.037	< 0.057	1.0	< 0.11	0.16	1.0	< 0.12	0.05	0.13	< 0.11	0.77	< 0.002
	1	μg/m3	< 0.041	< 0.064	< 1.1	< 0.13	< 0.16	0.43	< 0.13	< 0.026	0.046	< 0.13	0.48	< 0.002
	2	μg/m3	< 0.048	< 0.074	< 1.3	< 0.15	< 0.18	0.38	< 0.15	< 0.030	< 0.038	< 0.15	0.71	-
	3	μg/m3	< 0.038	< 0.059	< 1,0	< 0.12	0.18	1.8	< 0.12	0.04	0.095	< 0.12	1.9	< 0.002
RFS-FL	4	μg/m3	< 0.035	< 0.054	< 0.94	< 0.11	0.14	1.2	< 0.11	0.031	0.088	< 0.11	1.8	< 0.002
	5	μg/m3	< 0.043	< 0.067	1.1 c	< 0.13	< 0.16	1.2	< 0.14	0.06	0.17	< 0.13	0.97	< 0.002
	6	μg/m3	< 0.089	< 0.14	< 2.4	< 0.28	< 0.34	1.5	< 0.28	0.26	0.15	< 0.28	0.92	< 0.002
	7 8	μg/m3	< 0.034 < 0.040	< 0.053 < 0.063	< 0.93	< 0.11 < 0.12	< 0.13 0.29	0.65 0.96	< 0.11 < 0.13	0.039 0.046	0.1 0.15	< 0.11 < 0.12	0.47 0.79	< 0.002 < 0.002
		μg/m3			< 1.1									
	1	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	2	μg/m3	- 0.026	-	-	- 0.070	-	- 0.16	- 0.001	-	-	- 0.070	< 0.025	0.000
	3	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
RFS-TB	4 5	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025 < 0.025	0.000
	6	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	7	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	8	μg/m3 μg/m3	< 0.026 < 0.026	< 0.040 < 0.040	< 0.69 < 0.69	< 0.079 < 0.079	< 0.098 < 0.098	< 0.16 < 0.16	< 0.081 < 0.081	< 0.016 < 0.016	< 0.020 < 0.020	< 0.079 < 0.079	< 0.025	0.000
	1		< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	2	μg/m3 μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	3	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	4	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
Lab Blank	5	μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	6	μg/m3 μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098		< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	7	μg/m3 μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16 < 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000
	8	μg/m3 μg/m3	< 0.026	< 0.040	< 0.69	< 0.079	< 0.098	< 0.16	< 0.081	< 0.016	< 0.020	< 0.079	< 0.025	0.000

Table 1: Indoor Air Monitoring Data Results (Continued)

Indoor Air Monitoring Report, University of California, Berkeley, Richmond Field Station, Richmond, California

Note

- : no value for this location because of equiptment malfunction

c: estimated value

μg/m3: micrograms per cubic meter

Event 1 occurred on 26 Oct. 2007

Event 2 occurred on 7 Nov. 2007

Event 3 occurred on 29 Nov. 2007

Event 4 occurred on 12 Dec. 2007

Event 5 occurred on 19 Dec. 2007

Event 6 occurred on 10 Jan. 2008

Event 7 occurred on 24 Jan. 2008

Event 8 occurred on 5 Feb. 2008

Table 2: Indoor Air Monitoring Data Averages with Comparison Data

Indoor Air Monitoring Report, University of California, Berkeley, Richmond Field Station, Richmond, California

	Units	ving Chi	gride J. J. Treeth	neghtylene Mentylene	Charles Ser. 12	hichardellylede Chardelly	Bergere	1,2,704,000	presture Treiter	getrefere Teerseller	gardiner Report Li	Tretherneth Formatet	yde Kredie
CDHS Saugus study indoor range	μg/m3			1.1 - 1.3		nd	1.5 - 2.0			1.4 - 2.3		22 - 32	nd
CDHS Saugus study outdoor range	μg/m3			1.1 - 1.2		nd	1.5 - 1.8			1 - 4.1		1.5 - 2	nd
ARB 1991	μg/m3											61.40	
BASE Study Percent Detect		1%	0%	81%		29%	100%	5%	66%	100%		100%	
BASE Study 50th Percentile	μg/m3	< LOQ		2.90		0.35	3.60	< LOQ	0.29	1.50		15.00	
BASE Study 95th Percentile	μg/m3	< LOQ		16.00		1.30	9.10	< LOQ	2.60	18.00		32.00	
BASE Study Mean	μg/m3	0.78		21.00		0.59	4.20	1.10	0.76	3.80		16.00	
CDHS 5 Building Study Percent Detect			61%	3%		1%	21%	0%	0%	43%		100%	
CDHS 5 Building Study Results	μg/m3		N - 28 min 0.8 max 9.9	N - 285 min 0.3 max 1.0		N - 285 min 3.0 max 4.9 (ave DL < 3.0)	N - 285 min 0.8 max 5.6	N - 28 all < 2.0	N - 285 all < 1.0	N - 285 min 0.2 max 16.2		N - 265 median 19 stdev 12 min 0.4 max 81	
Target Detection Limits	μg/m3	0.0255	0.0396	0.694		0.0976	0.1596		0.0161	0.0203		0.03	1.70E-04
Percent Detect Indoor		8.20%	0.00%	41.27%	3.17%	74.60%	100%	4.76%	88.89%	93.65%	0.00%	100%	0.00%
Detected Indoor Average		0.056	< DL	2.204	0.445	0.307	1.073	0.153	0.189	0.209	< DL	16.468	< DL
Percent Detect Outdoor		0.00%	0.00%	17.65%	0.00%	46.07%	94.12%	0.00%	64.71%	88.24%	0.00%	100%	0.00%
Detected Outdoor Average		< DL	< DL	1.1	< DL	0.205	0.953	< DL	0.079	0.108	< DL	1.116	< DL
Mean Indoor Value		0.024	< DL	0.942	0.077	0.246	1.073	0.069	0.166	0.202	< DL	16.468	< DL
Mean Outdoor Value		< DL	< DL	0.196	< DL	0.123	0.914	< DL	0.062	0.100	< DL	1.116	< DL

Notes:

ARB: Air Resources Board

BASE: Building Assessment Survey and Evaluation
CDHS: California Department of Health Services

DL: Detection Limit

LOQ: Limit of Quantitation
max: Maximum detected value
min: Minimum detected value
N: Number of samples taken

nd: Not detected

stdev: Standard deviation µg/m3: micrograms per cubic meter Appendix A

Photographs of Sampling Locations

Building 163

Sampling location 163-01.
Set up in hallway next to door to the outside.

163-01, view of hallway

163-01, mechanical room, located directly across hall from sampling location

Sampling location 163-02, unoccupied office. Sample was taken on wood table.

163-02, view of office.

163-02, view of ceiling, vent directly above sample location.

Sampling location 163-03. The sampling equipment was placed on the stairs.

View from 163-03, facing northeast.

View from 163-03, facing southeast.

Building 175

Sample location 175-01. In lobby of administrative building.

175-01, view of lobby.

175-02, unused carpenters workshop behind double doors, seen in previous photo.

Sampling location 175-02. Sample was taken on upper part of the roof.

175-02, view facing south

175-02, view facing east

Building 177

Sampling location 177-01, unoccupied office.

177-01, view of hallway outside office door.

Building 155

Sampling location 155-01.
Sampling equipment sat on top of metal filing cabinet.

155-01, hallway adjacent to sampling location.

155-01, office equipment in sampling location

155-01, view from sampling location into room.

Building 478

Sampling location 478-01, unoccupied office, used as library.

478-01, sampling equipment sat on desk.

478-01, view of hallway outside office. New floor and ceiling tiles.

Sampling location 478-02. Equipment sat on table.

478-02, view from sampling location into lobby.

478-02, view from sampling location into adjacent hallway

478-02, view of adjacent unused carpenters workshop

Sampling location 478-03, kitchen and break room.

478-03, view from sampling location of opposite wall.

478-03, view from sampling location of adjacent wall.

478-03, view of hallway outside of sampling location.

Sampling location FLS-01, view to the south.

Sampling location FLS-01, view to the west.

Appendix B

Wind Roses for Sampling Events

Appendix C

Field Data Summary Sheets

TETRATECHEMING. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Hall way Near Ran Sample Location: 7 Sample Stop Time/Date: Sample Start Time/Date: Field Technician: Sample Collection Period: Air Metric PM₁₀ Sampler 1) H P Too B Sample ID #: RFS-163-01-0 DHPTOOS Beginning Flow Rate (LPM): Filter ID #: 4157.50 Ending Flow Rate (LPM): Timer Beginning Time: 4181.51 Ambient Baro. Press. (in. Hg): Timer Ending Time: Sampler Serial #: Average Daily Temp. (deg C): Summa Canister (VOC) Sampler RFS-163-01-01 Sample ID #: 30.O Beginning Canister Pressure(in. Hg) Canister ID #: Ending Canister Pressure(in. Hg) - 5-5 Average Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Formaldehyde/SKC Sampler RFS-163-01-01 Sample ID #: 3RR9170 Beginning Timer Reading: Filter ID/Lot #: Ending Timer Reading: 1442 Beginning Flow Rate (LPM) 102 SKC Pump Serial #: 28/2 Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: Normal - No equipmentissues SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RIC	CHMOND FIELD S	TATION		
	SITE INFORMATION	<u>ON</u>		
Sample Location: 163-7	02 (R00	m(12b)		1
Sample Start Time/Date: 0413-2		ple Stop Time/Date: 10 - 26 - 0	1 4308 13	↓ くつく
Sample Collection Period: / 144	7 10-25-	Field Technician:	7000	<i>ت</i> ر
	, , , , , , , , , , , , , , , , , , , 	. , , , , ,		
Section of the sectio		DZBA T SSNEZZOBERDANIOSOPRIA DEZAOZNOSOPERO EROPERO PERO PERO		
	Air Metric PM ₁₀ San	W		
Sample ID #:	DHPTool	RPS-163-02-01		
Filter ID #:	DHPTOOI	Beginning Flow Rate (LPM):	5.0	
Timer Beginning Time: Timer Ending Time:	4590.55 4614.58	Ending Flow Rate (LPM): Ambient Baro. Press. (in. Hg):	5.0	
Average Daily Temp. (deg C):	161200	Sampler Serial #:	•	
Average Daily Temp. (deg 6).		Campier Cortain.		
Śu	mma Canister (VOC)	Sampler		
Sample ID #:	PFS-163-	02-01		
Canister ID #:	33661 B	eginning Canister Pressure(in. Hg)	30.0	
Average Daily Temp. (deg C):		Ending Canister Pressure(in. Hg)	7.5	
Ambient Baro. Press. (in. Hg):				
		 		
	•	•		
	ormaldehyde/SKC S	ampler		
Sample ID #:	RPS-163-	-02-01	-	
Filter ID/Lot #:	3PR 9170	Beginning Timer Reading:	Ø	
Beginning Flow Rate (LPM)	2-1-2=	1.05 Ending Timer Reading:	Fror	
Ending Flow Rate (LPM)	ERROR	SKC Pump Serial #:		
AmbientTemp. (deg C):				
HOTEO.				
SILC Pumps No	of conera	tine upon av	rival	
m 10-26-07.	All others	Samples Norw	al.	
	$-\rho$	1/2 21 2		
SIGNATURE: 1/7/7/10 1/4	r. 1	ノロー エトチローフ	- 1	

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Room 126 163-02D (Sample Location: 10-26-6 Sample Stop Time/Date: 1324 10-25-07 Sample Start Time/Date: D. Herbocker Field Technician: Sample Collection Period: Air Metric PM₁₀ Sampler 163-02-010 DHPTOOY Sample ID #: Beginning Flow Rate (LPM): Filter ID #: DI+DTOOL Ending Flow Rate (LPM): 5.0 Timer Beginning Time: 8703.16 Ambient Baro, Press. (in. Hg): Timer Ending Time: Sampler Serial #: Average Daily Temp. (deg C): Summa Canister (VOC) Sampler RP3-163-02-01D Sample ID #: Canister ID#: 343 25 Beginning Canister Pressure(in. Hg) 32.0 Ending Canister Pressure(in. Hg) 4.9 Average Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Formaldehyde/SKC Sampler PFS-163-02-01D Sample ID #: 5PR 9170 Beginning Timer Reading: Filter ID/Lot #: 1-2=1.05 Ending Timer Reading: Beginning Flow Rate (LPM) SKC Pump Serial #: Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 3:52 10-26-67 Sample Stop Time/Date: Sample Start Time/Date: Field Technician: Minutes Sample Collection Period: Air Metric PM₁₀ Sampler RFS-163-03-0 Sample ID #: Filter ID#: DHPT003 Beginning Flow Rate (LPM): Ending Flow Rate (LPM): 57.0 4635015 Timer Beginning Time: Ambient Baro, Press. (in. Hg): 4659.29 Timer Ending Time: Sampler Serial #: Average Daily Temp. (deg C): Summa Canister (VOC) Sampler RP3-163-03-01 Sample ID #: Beginning Canister Pressure(in. Hg) Canister ID #: 4379 Ending Canister Pressure(in. Hg) 3-9.5 Average Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Formaldehyde/SKC Sampler RPS-163-03-01 Sample ID #: Beginning Timer Reading: Filter ID/Lot #: Ending Timer Reading: Beginning Flow Rate (LPM) SKC Pump Serial #: 07 Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: Samples Normal & NO equipment SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Room Sample Location: 14:16 16-26-0 10-95-107 Sample Stop Time/Date: Sample Start Time/Date: 1406 Field Technician: Sample Collection Period: Minutes Air Metric PM₁₀ Sampler RPS-478-01-0 Sample ID #: DHPT009 Beginning Flow Rate (LPM): Filter ID #: 2731.60 Ending Flow Rate (LPM): 5.1 Timer Beginning Time: 2255.80 Ambient Baro. Press. (in. Hg): Timer Ending Time: Sampler Serial #: Average Daily Temp. (deg C): Summa Canister (VOC) Sampler 1255-478-01-01 Sample ID #: Beginning Canister Pressure(in. Hg)/Arrox >5 Canister ID #: Ending Canister Pressure(in. Hg) 9.0 Average Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Formaldehyde/SKC Sampler RPS-478-01-0 Sample ID #: SPR 9170 Beginning Timer Reading: Filter ID/Lot #: **Ending Timer Reading:** 1.2 Beginning Flow Rate (LPM) SKC Pump Serial #: Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: Samplestormal- No Equipment 10-26-SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RICHMOND FIELD STATION	
SITE INFORMATION	
Sample Location: 478-02 (Front Lobby)	
	-21.07
Sample Collection Period: 1454 Minutes Field Technician: D. Harlo	ckor
Air Metric PM ₁₀ Sampler	
Sample ID#: 72 FS - 478-02-01	110-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	5.0
Timer Beginning Time: 33 98. 74 Ending Flow Rate (LPM): ら	501
Timer Ending Time: 3427.94 Ambient Baro. Press. (in. Hg): —	
Average Daily Temp. (deg C): Sampler Serial #: /	331
Summa Canister (VOC) Sampler	
Sample ID#: PS-478-02-01	erong of Carrier (sp
Canister ID#: 34263 Beginning Canister Pressure(in. Hg) #p	Prox 35
Average Daily Temp. (deg C): Ending Canister Pressure(in. Hg)	
Ambient Baro. Press. (in. Hg):	
Formaldehyde/SKC Sampler	
Sample ID#: 2FS - 478-02-01	
Filter ID/Lot #: 5PR 9170 Beginning Timer Reading:	Q
	151
Ending Flow Rate (LPM) 1.3 SKC Pump Serial #: O	8377
AmbientTemp. (deg C):	
NOTES: All Samples Normal- AD Falling	ent
Failures de problems.	- F (
F-III OF F-II-	
SIGNATURE: Molphes Voit 10-26-07	

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION 78-03 [Room 142 Sample Location: 10-26-67 Sample Stop Time/Date: Sample Start Time/Date: Field Technician: Sample Collection Period: Air Metric PM₁₀ Sampler RFS-478-03-01 Sample ID #: Beginning Flow Rate (LPM): Filter ID#: DHPT 607 3591.70 Ending Flow Rate (LPM): Timer Beginning Time: 03615.90 Ambient Baro. Press. (in. Hg): Timer Ending Time: Sampler Serial #: Average Daily Temp. (deg C): Summa Canister (VOC) Sampler RF3-478-03-01 Sample ID #: 30,0 Beginning Canister Pressure(in. Hg) Canister ID #: Ending Canister Pressure(in. Hg) Average Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Formaldehyde/SKC Sampler RFS-478-03-01 Sample ID #: 5PR9170 Beginning Timer Reading: Filter ID/Lot #: Ending Timer Reading: 1. Z Beginning Flow Rate (LPM) SKC Pump Serial #: 045 90 Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: Normal-Lems. SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION 00 mt6 Sample Location: Sample Stop Time/Date: Sample Start Time/Date: Field Technician: Sample Collection Period: Air Metric PM₁₀ Sampler Sample ID#: DHPT013 500 Beginning Flow Rate (LPM): Filter ID #: 5.1 Ending Flow Rate (LPM): Timer Beginning Time: 3211.89 Ambient Baro. Press. (in. Hg): Timer Ending Time: Sampler Serial #: 1333 Average Daily Temp. (deg C): Summa Canister (VOC) Sampler RPS-177-01-01 Sample ID #: 30933 Beginning Canister Pressure(in. Hg) Canister ID #: Ending Canister Pressure(in. Hg) Average Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Formaldehyde/SKC Sampler Sample ID #: FS-177-01-01 Beginning Timer Reading: Filter ID/Lot #: Beginning Flow Rate (LPM) **Ending Timer Reading:** SKC Pump Serial #: Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: Normal - NO Equipment 10-26-07 SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION 11CB-01 Sample Location: Sample Start Time/Date: 10-15-67 Sample Stop Time/Date: 10-26-0 . Harlocker Minutes Field Technician: Sample Collection Period: Air Metric PM₁₀ Sampler UCB-01-01 Sample ID #: DHPT014 Beginning Flow Rate (LPM): Filter ID #: 2937.93 Ending Flow Rate (LPM): Timer Beginning Time: Timer Ending Time: 2963.02 Ambient Baro. Press. (in. Hg): Sampler Serial #: Average Daily Temp. (deg C): Summa Canister (VOC) Sampler UCB-01-01 Sample ID #: 28.0 Beginning Canister Pressure(in. Hg) Canister ID #: Ending Canister Pressure(in. Hg) 5.8 Average Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Formaldehyde/SKC Sampler Sample ID #: UCB-01-01 5PR 9170 Beginning Timer Reading: Filter ID/Lot #: 1440 Ending Timer Reading: Beginning Flow Rate (LPM) l。25 SKC Pump Serial #: 0046 Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: SIGNATURE:

TETRATECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION 155-01 SITE INFORMATION Sample Location: Sample Start Time/Date: Field Technician: Sample Collection Period: Air Metric PM₁₀ Sampler LPS-155-01-01 Sample ID #: Filter ID #: DHPT012 Beginning Flow Rate (LPM): 2649.12 Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: 2673.69 Ambient Baro. Press. (in. Hg): Average Daily Temp. (deg C): Sampler Serial #: 1337 Summa Canister (VOC) Sampler KFS-155-01-07 Sample ID #: Beginning Canister Pressure(in. Hg) Canister ID #: Average Daily Temp. (deg C): Ending Canister Pressure(in. Hg) 6.5 Ambient Baro. Press. (in. Hg): Formaldehyde/SKC Sampler RPS-155-01-01 Sample ID #: SPR 9170 Beginning Timer Reading: Filter ID/Lot #: Ending Timer Reading: 1470 Beginning Flow Rate (LPM) 1.25 SKC Pump Serial #: 076[4 Ending Flow Rate (LPM) AmbientTemp. (deg C): NOTES: No-mal-SIGNATURE:

TETRA TECH EMING. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 10-25-07 Sample Stop Time/Date: 10-16-07 Sample Start Time/Date: 16:17 Sample Collection Period: 146 Minu les Field Technician: 1). How locker Air Metric PM₁₀ Sampler Sample ID #: Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: 3 88 6.Z9 Ambient Baro, Press. (in. Hg): Average Daily Temp. (deg C): Sampler Serial #: 70 Summa Canister (VOC) Sampler RPS-175-01-01 Sample ID #: Canister ID #: 3727 Beginning Canister Pressure(in. Hg) 30.O Average Daily Temp. (deg C): Ending Canister Pressure(in, Hg) Ambient Baro. Press. (in. Hg): Formaldehyde/SKC Sampler Sample ID #: RES-175-01-01 Filter ID/Lot #: S PR9170 Beginning Timer Reading: Beginning Flow Rate (LPM) Ending Timer Reading: Ending Flow Rate (LPM) SKC Pump Serial #: 644789 00199 AmbientTemp. (deg C): NOTES: Normal No 10-26-07 SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RICHMOND FIELD STATION
SITE INFORMATION
Sample Location: (75-02 (Root top)
Sample Start Time/Date: 16:22 10-25-07 Sample Stop Time/Date: 16:38 10-26-07
Sample Collection Period: 1456 Minutes Field Technician: D. Herlocker
Air Metric PM ₁₀ Sampler
Sample ID#: RFS- 175-02-01
Filter ID #: DHYTOO7 Beginning Flow Rate (LPM): 5-0
Timer Beginning Time: 3694,84 Ending Flow Rate (LPM): 5.1
Timer Ending Time: 37 9.0 Ambient Baro. Press. (in. Hg): —— Average Daily Temp. (deg C): Sampler Serial #: 137.3
Average Daily Temp. (deg C): Sampler Serial #: 1373
Summa Canister (VOC) Sampler
Sample ID#: RP9-175-02-01
Canister ID #: 35/37 Beginning Canister Pressure(in, Hg) 30-0
Average Daily Temp. (deg C): Ending Canister Pressure(in. Hg) 4-9
Ambient Baro. Press. (in. Hg):
Formaldehyde/SKC Sampler
Sample ID#: PPS - 175 - 07 - 01
Filter ID/Lot #: SP2 9170 Beginning Timer Reading:
Beginning Flow Rate (LPM) 1.25 Ending Timer Reading: / 457
Ending Flow Rate (LPM) 1.5 SKC Pump Serial # 2713 AmbientTemp. (deg C):
Ambientremp. (deg C).
NOTES:
All Samples Normal-No Equipment
Failures or Droblems.
GIGNATURE: 10-26-07

TETRA TECH EMING. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION

- Anterior of market and a second of the second of the second of	worker assessment over the studies with the property of the property of	TA WITH CONTROL OF A CANADA CA
<u></u>		
	SITE INFORMA	TION
	016	1 1 5
, , , , , , , , , , , , , , , , , , , ,	-01 (out	door along south Fence)
Sample Start Time/Date: 650		ample Stop Time/Date: 1652 10-26-07
Sample Collection Period: 14:47	<u> </u>	Les Field Technician: D. Herlockon
	Air Metric PM ₁₀ S	amala
0	<u>Canada e esta an incluidad da 75 es</u>	
Sample ID #:	~	JS-01-01
Filter ID #:	DHDLOII	Beginning Flow Rate (LPM): 5.0
Timer Beginning Time:	5693.56	Ending Flow Rate (LPM): 5 . /
Timer Ending Time:	5 717.61	Ambient Baro, Press. (in. Hg):
Average Daily Temp. (deg C):		Sampler Serial #: /340
Sui	mma Canister (VC	C) Sampler
Sample ID #:	RPS-FLS	A SEA COLUMN SERVICE S
Canister ID #:	1569	Beginning Canister Pressure(in. Hg) 29a5*
Average Daily Temp. (deg C):		Ending Canister Pressure(in. Hg) 5.1 "
Ambient Baro. Press. (in. Hg):		:
	. ,	
	·	
	15. C.	
	ormaldehyde/SK0	Control of the contro
Sample ID #:	RPS-Pes-	01-01
Filter ID/Lot #:	3 PR9170	Beginning Timer Reading: 🦻
Beginning Flow Rate (LPM)	1.25	Ending Timer Reading: 203+ 23
Ending Flow Rate (LPM)	1.4	SKC Pump Serial #: 028/6
AmbientTemp. (deg C):		
OTES: Au S	0- * 1	
MI Sample	es Nor	-mal - However when
spot Checking 15	LC pomp	, Electrical cord
discourseled, K	2 attehed	and Restarted immodiatel
Timer includes	both v	hues added together.
		J
•		
GNATURE: JOUS 05	och	10-26-07

AIR OHALIT	TETRA TECH EM INC. Y SAMPLE DOCUMENT,	ATION SHEET	
	ICHMOND FIELD STATI		
	SITE INFORMATION		
Comple Leastion: L. C.			
Sample Location: () () Sample Start Date/Time: () (() ()	7 1430 Sample Sto	on Date/Time: 11 /7 // 7	1/4
Sample ID # (all media):		Id Technician:	- A
verage Daily Temp. (deg C):	Ambient Baro. Pr		
	Air Metric PM ₁₀ Sampler		
PM ₁₀ Filter ID ≉	DHPTD24	Beginning Flow Rate (LPM):	5,0
Timer Beginning Time	: 2963.02	Ending Flow Rate (LPM):	50
Timer Ending Time	2987,21	Sampler Serial #:	1345
	escuration with a company position and a constitution of the const	ANTA S. C.	
THE PARTY OF THE P	umma Canister (VOC) Samp		
Canister ID #		g Canister Pressure(in. Hg):	<u> √Ş</u>
Flow Meter ID #	Engin	g Canister Pressure(in. Hg):	D-
	Formaldehyde/SKC Sample		
Formaldehyde Lot ID #	0 0 0 0 0	Beginning Timer Reading:	0
Beginning Flow Rate (LPM		Ending Timer Reading:	12942
Ending Flow Rate (LPM	1.3	SKC Pump Serial #: (DOHE
FIELD NOTES:	Can	0-1-1-0	A
graine pre	Sour sa	COUISLE =	Ψ_{-}
15ECHALL B	dissire po	\mathcal{U}	
000			
<u> </u>			
-			
SIGNATURE:	ontly		

	CH EM INC.	
	DOCUMENTATION SHEET	
RICHMOND F	ELDSTATION	
SITEINE	ORMATION	
Sample Location: 162-4		
Sample Start Date/Time: 11/6/07 11:00	Sample Stop Date/Time: #:00 11/7/07	11:45
Sample ID # (all media): [2] 5-[63-(0)-(0)	Field Technician:	1114
	mbient Baro. Press. (in. Hg):	
Air Metric F	PM ₁₀ Sampler	
PM ₁₀ Filter ID #: Dttpt	D3d Beginning Flow Rate (LPM): 5d	
Timer Beginning Time: 4(8)	Ending Flow Rate (LPM): 4,3	
Timer Ending Time: 4205	Sampler Serial #: 1322	
Summa Canisto	er (VOC) Sampler	
23929 Canister ID#: 55/14	Beginning Canister Pressure(in. Hg):	
Flow Meter ID #: 3392	Ending Canister Pressure(in. Hg): 7 /	
Formaldehyd	e/SKC Sampler	
Formaldehyde Lot ID#: Zien 4	A STATE OF THE STA	
Beginning Flow Rate (LPM): 1,25	Ending Timer Reading: 1446	
Ending Flow Rate (LPM): 1, 3	SKC Pump Serial #: 028/2	
FIELD NOTES:		
· · · · · · · · · · · · · · · · · · ·		
-1		
SIGNATURE: MA (COVLE)		

Sample Location: 163 – 02 Sample Start Date/Time: 11/6/07 11:26 Sample Stop Date/Time: 11/7/07 Sample ID # (all media): 12 FS – 163 – 02 – 02 Field Technician: 5443	
Sample Start Date/Time: 11/6/07 11:26 Sample Stop Date/Time: 11/7/07	
Sample ID # (all media): (2 FS-163-0) - 0) Field Technician:	, 11:28
erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg):	
Air Metric PM ₁₀ Sampler	
PM ₁₀ Filter ID #: DHPTQ Beginning Flow Rate (LPM): <	$\frac{5}{2}$, φ
Timer Beginning Time: 8703 , 6 Ending Flow Rate (LPM):	5.9
Timer Ending Time: @727, 2 Sampler Serial #:	315
Summa Canister (VOC) Sampler	
Canister ID #: 33574 Beginning Canister Pressure(in. Hg): 4	<u> 8</u>
Flow Meter ID #: 33574 Ending Canister Pressure(in. Hg):	8,5
3	
Formaldehyde/SKC Sampler	
Formaldehyde Lot ID#: 5PR 9229 Beginning Timer Reading:	Φ,
Beginning Flow Rate (LPM): 2.5 Ending Timer Reading:	1440
Ending Flow Rate (LPM): SKC Pump Serial #	2816
FIELD NOTES:	

TEURA 18	CHEMING.
AIR QUALITY SAMPLE	DOCUMENTATION SHEET
RICHMOND	FIELD STATION
SITEINS	ORMATION
Sample Location: 63-02	
Sample Start Date/Time: 11/6/07	26 Sample Stop Date/Time:
Sample ID # (all media): PFS - 163 - OQI	O-D2 Field Technician:
rerage Daily Temp. (deg C):	mbient Baro. Press. (in. Hg):
the state of the control of the cont	PM ₁₀ Sampler
PM ₁₀ Filter ID#:	627 Beginning Flow Rate (LPM): 49
Timer Beginning Time: イムイ	Ending Flow Rate (LPM): 5.0
Timer Ending Time: 4638	3.8/ Sampler Serial #: 1214
Summa Ganist	er (VOC) Sampler
Canister ID #: ゴス (ユ	9 Beginning Canister Pressure(in. Hg): 32
Flow Meter ID#: 3213	Ending Canister Pressure(in. Hg):
Formaldehyc	le/SKC Sampler
Formaldehyde Lot ID#:	Beginning Timer Reading:
Beginning Flow Rate (LPM): 2,5	Ending Timer Reading:
Ending Flow Rate (LPM): つ	SKC Pump Serial #: 02916
FIELD NOTES:	
Shave cameter	AESSUR E()
	1
<u> </u>	
and to be to	
SIGNATURE: ///	

	TETRA TECH EM I	Ne.	
AIR QUALITY	SAMPLE DOCUME	INTATION SHEET	
R	CHMOND FIELD ST	ATION	
	SITE INFORMATIO	N	
Sample Location: 163-0)3		
Sample Start Date/Time: 1 / 6 / 0 =	 	e Stop Date/Time: 11/7/0	7 11:3
Sample ID # (all media): ₽ = - 16	<u>3-03-02</u>	Field Technician:	
rerage Daily Temp. (deg C):		o. Press. (in. Hg):	
	Air Metric PM ₁₀ Samp	Control of the contro	
PM ₁₀ Filter ID #:	10111 (p) 2 2	Beginning Flow Rate (LPM):	<u>5.0</u>
Timer Beginning Time:		Ending Flow Rate (LPM):	<u>5,0</u>
Timer Ending Time:	4683,30	Sampler Serial #: 1	277
			Helikaa, maray maraki
	imma Canister (VOC) S	AND THE RESERVE THE PROPERTY OF THE PROPERTY O	
		nning Canister Pressure(in. Hg):	30 PS
Flow Meter ID #:	33673 E	nding Canister Pressure(in. Hg):	-9 -
	Formaldehyde/SKC Sar		
Formaldehyde Lot ID #:	200 A	Beginning Timer Reading:	$\overline{\Lambda}$
Beginning Flow Rate (LPM):		Ending Timer Reading:	119491
Ending Flow Rate (LPM):		SKC Pump Serial #:	102526
		ONO I ump denai #.	41770
FIELD NOTES:			
COMSTER DIESSU	R. 1 (a)	Pick Up	
		- to sop	
		•	
	<u> </u>		
SIGNATURE: ALLO LOCAL	علام		

TETRA TECHIENING.
AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION
SITEINFORMATION
Sample Location: 175-0
Sample Start Date/Time: 11/6/07 12/35 Sample Stop Date/Time: 11/7/07 12/4
Sample ID # (all media): RF5-175-01-02 Field Technician: Zw
verage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg):
Air Metric PM ₁₀ Sampler
PM ₁₀ Filter ID #: DH-PT 0 3 Beginning Flow Rate (LPM): 5, 0
Timer Beginning Time: 3886, 29 Ending Flow Rate (LPM): 50
Timer Ending Time: 39(0, 33 Sampler Serial #4) 3749
1279
Summa Canister (VOC) Sampler
Canister ID #: 41948 Beginning Canister Pressure(in. Hg): 23 Flow Meter ID #: 94948 Ending Canister Pressure(in. Hg): 1210
Flow Meter ID #: 94948 Ending Canister Pressure(in. Hg): 1219
Formaldehyde/SKC Sampler
Formaldehyde Lot ID#: 5PR 9229 Beginning Timer Reading: 1,25
Beginning Flow Rate (LPM): 1, 25 Ending Timer Reading:
Ending Flow Rate (LPM): SKC Pump Serial #: 42749
FIELD NOTES:
USED TRIP BLANK, CANSTER
- FIRST CANISTER NO PRESSURE
SIGNATURE: Aller (a 2000)

1500 P

Sample Location: 175-02 Sample Start Date/Time: 1/6/07 11:40 Sample Stop Date/Time: 1/6/07 11:4 Sample ID # (all media): 12F5-175-02-02 Field Technician: 44.5 rage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM ₁₀ Sampler PM ₁₀ Filter ID #: DH PT (D) 18 Beginning Flow Rate (LPM): 5.1	<u>-</u> <u>'+</u> +
Sample Start Date/Time: 1/6/07 11:40 Sample Stop Date/Time: 1/7/07 11:40 Sample ID # (all media): 12 F5 - 17 5 - 02 Field Technician: 34 Serage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM ₁₀ Sampler	44
Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- 75- Q2- Q2 Field Technician: Galacter Sample ID # (all media): QF5- QF5- QF5- QF5- QF5- QF5- QF5- QF5-	
erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM ₁₀ Sampler	. 11
Air Metric PM ₁₀ Sampler	
PM ₁₀ Filter ID#: DH PT (7) 1Q Beginning Flow Rate (LPM): -1	
Dirit Glob Deginning For Nate (21 III). 511	
Timer Beginning Time: 3719.10 Ending Flow Rate (LPM): 5, /	
Timer Ending Time: 3743 - 14 Sampler Serial #: 1323	3
	. 10-25
Summa Canister (VOC) Sampler Canister ID #: ううとテン Beginning Canister Pressure(in, Hg): ラケ	 _
Flow Meter ID#: 33872 Ending Canister Pressure(in. Hg): 4,2	<u> </u>
Formaldehyde/SKC-Sampler	
Formaldehyde Lot ID #: 5PR 9229 Beginning Timer Reading: 47715	ξ <
Beginning Flow Rate (LPM): 1 25 Ending Timer Reading: ドウク	
Ending Flow Rate (LPM): 1、3 SKC Pump Serial #: ゆそ子	2
FIELD NOTES:	
	-

U

The state of the s	ECH EM INC.
	DOCUMENTATION SHEET
RICHMOND	FIELD STATION
SITEIN	FORMATION
Sample Location: 177-0	
	Sample Stop Date/Time: WADA 12:00
Sample ID # (all media): RFS- 177- DI	Field Technician:
	Ambient Baro. Press. (in. Hg):
Air Metric	PM ₁₀ Sampler
PM ₁₀ Filter ID#: TO H OT	ののち Beginning Flow Rate (LPM): 5.1
Timer Beginning Time: 3211	Ending Flow Rate (LPM): 5-1
Timer Ending Time: 323	5,89 Sampler Serial #: 1333
Summa Canis	ster (VOC) Sampler
Canister ID#: 3391	Beginning Canister Pressure(in. Hg): 33
Flow Meter ID#: 339	
Fermaldehy	yde/SKC Sampler
Formaldehyde Lot ID #: 57R 9	Beginning Timer Reading:
Beginning Flow Rate (LPM): 1,35	Ending Timer Reading:
Ending Flow Rate (LPM):	SKC Pump Serial #: 10479
FIELD NOTES:	
	·
SIGNATURE:	

	SITE INFORMATION	
		[3300 1000 100 100 100 100 100 100 100 10
Sample Location: 55-C) Sample Start Date/Time: 76/07 Sample ID # (all media): 85-155 erage Daily Temp. (deg C): A PM ₁₀ Filter ID #: 7	12:05 Sample Stop Date/Time: 11/7/07 12:05 Sample Stop Date/Time: 11/7/07 12:05 Sample Stop Date/Time: 11/7/07 12:05 Sample Sam	12:4
	673,69 Ending Flow Rate (LPM):	5.0
Timer Ending Time:	Sampler Serial #: 3	<u>3 </u>
Sumn	na Canister (VOC) Sampler	
Canister ID #:	ろナーイ Beginning Canister Pressure(in. Hg): ス	
Flow Meter ID #:	Ending Canister Pressure(in. Hg): (/
For	maldehyde/SKC Sampler	
Formaldehyde Lot ID #: <	=PR9229 Beginning Timer Reading: Q	5
Beginning Flow Rate (LPM):	[25] Ending Timer Reading:	HP
Ending Flow Rate (LPM):	SKC Pump Serial #: 0	7-614
FIELD NOTES:		

	TETRA TECH I	EM ING				
AIR QUALITY	SAMPLE DOC	UMENTATION SHEET				
RiC	HMOND FIEL	DSTATION				
SITE INFORMATION						
276						
Sample Location: 478-	W (C)					
Sample Start Date/Time: 11/6/07	- 13:14	Sample Stop Date/Time: (1/7/07 13:14)				
Sample ID # (all media): RFS-47	<u>-8-41-42</u>	Field Technician:				
rerage Daily Temp. (deg C):	Ambier Air Metric PM ₁₀	nt Baro. Press. (in. Hg):				
PM ₁₀ Filter ID #: 1						
P. P.	$\frac{\mathcal{I}(1)}{\mathcal{I}}$	Beginning Flow Rate (LPM): 5				
Timer Beginning Time:	2255.84	J 15- A				
Timer Ending Time:	32 Fg . E	Sampler Serial #: 1278				
Sur	nma Canister (V	OC) Sampler				
Canister ID #:	1576	Beginning Canister Pressure(in. Hg):				
Flow Meter ID #:	15760	Ending Canister Pressure(in. Hg):				
		3, 4,4				
	ormaldehyde/SK	C Sampler				
Formaldehyde Lot ID #:	SPR92	Beginning Timer Reading: 1				
Beginning Flow Rate (LPM):	1,2	Ending Timer Reading: イイイク				
Ending Flow Rate (LPM):	1,25	SKC Pump Serial #: 102) 76				
FIELD NOTES:						
	 					
1 -						
	<u> </u>					
SIGNATURE:	70.1					

AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 478
Sample Location: 478 - 3 Sample Stop Date/Time: 176 - 3 Sample ID # (all media): 278 - 278 - 3 - 4 Special Technician: 278 - 4 Sample ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 278 - 3 Special ID # (all media): 278 - 3 Special ID #
Sample Start Date/Time: G O F B Sample Stop Date/Time: Formaldehyde Lot ID # Sample Stop Date/Time: G O F B Sample Stop Date
Sample Start Date/Time: G O F O Field Technician: G O Field Technician:
Sample ID # (all media): R
rerage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM ₁₀ Sampler PM ₁₀ Filter ID #: PM ₁₀ Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Summa Canister (VOC) Sampler Summa Canister (VOC) Sampler Canister ID #: Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): Flow Meter ID #: Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Flow Rate (LPM): Formaldehyde Lot ID #: Beginning Flow Rate (LPM): Beginning Timer Reading: Ending Timer Reading:
Air Metric PM ₁₀ Sampler PM ₁₀ Filter ID#: DHP DB Beginning Flow Rate (LPM): 5. CD Timer Beginning Time: 3422, 94 Ending Flow Rate (LPM): 5. CD Timer Ending Time: 3422, 94 Ending Flow Rate (LPM): 5. CD Timer Ending Time: 3422, 94 Ending Flow Rate (LPM): 5. CD Summa Canister (VOC) Sampler Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 541 CD Flow Meter ID#: 5544 CD Ending Canister Pressure(in. Hg): 5. CD Formaldehyde/SKC Sampler Formaldehyde Lot ID#: 57229 Beginning Timer Reading: CD Beginning Flow Rate (LPM): 125 Ending Timer Reading: 444
Timer Beginning Time: 3422, 94 Ending Flow Rate (LPM): 5, 9 Timer Ending Time: 346, 98 Sampler Serial #: 33 Summa Canister (VOC) Sampler Summa Canister (VOC) Sampler Seginning Canister Pressure(in. Hg): 54 Seginning Canister Pressure(in. Hg): 5, 9 Formaldehyde/SKC Sampler Formaldehyde Lot ID #: 57 9 29 Beginning Timer Reading: 5 Seginning Flow Rate (LPM): 1, 25 Ending Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Ending Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Ending Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Ending Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Ending Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Ending Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Seginning Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Seginning Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Seginning Timer Reading: 64 Seginning Timer Reading: 64 Seginning Flow Rate (LPM): 1, 25 Seginning Timer Reading: 64 Seginning Timer Reading:
Timer Ending Time: 346,98 Sampler Serial #: 33 Summa Canister (VOC) Sampler Summa Canister (VOC) Sampler Canister ID #: 5544 Beginning Canister Pressure(in. Hg): 544 Beginning Canister Pressure(in. Hg): 554 Beginning Canister Pressure(in. Hg): 554 Beginning Canister Pressure(in. Hg): 554 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Flow Rate (LPM): 655 Beginning Timer Reading: 644 Beginning Timer
Summa Canister (VOC) Sampler 34[8] Canister ID #: 5544 Beginning Canister Pressure(in. Hg): Flow Meter ID #: 5544 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: 729 Beginning Timer Reading: Beginning Flow Rate (LPM): 125 Ending Timer Reading:
S4181 Canister ID #: 5544 Beginning Canister Pressure(in. Hg): S418 Flow Meter ID #: 5544 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: 5729 Beginning Timer Reading: Beginning Flow Rate (LPM): 125 Ending Timer Reading:
S4181 Canister ID#: 5544 Beginning Canister Pressure(in. Hg): S418 Flow Meter ID#: 5544 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID#: 5729 Beginning Timer Reading: Beginning Flow Rate (LPM): 125 Ending Timer Reading: 441
Formaldehyde/SKC Sampler Formaldehyde Lot ID#: FORMALD Beginning Flow Rate (LPM): 125 Ending Canister Pressure(in. Hg): 5
Formaldehyde/SKC Sampler Formaldehyde Lot ID #: FR 729 Beginning Timer Reading: Beginning Flow Rate (LPM): L25 Ending Timer Reading: H1
Formaldehyde Lot ID#: SPR 929 Beginning Timer Reading: Beginning Flow Rate (LPM): 1,25 Ending Timer Reading: 4411
Beginning Flow Rate (LPM): 1,25 Ending Timer Reading:
Ending Flow Rate (LPM): 1, 25 SKC Pump Serial #: 083 77
FIELD NOTES:
SIGNATURE:

.

Sa	mple Location: 478	-φ <u>3</u>		
	art Date/Time: W6/07	13;17Sar	mple Stop Date/Time:	7 13:
) # (all media): 北ラらー 4 Temp. (deg C):	78-43-40	Field Technician: Baro. Press. (in. Hg):	
rerage Daily	emp. (deg O).	Air Metric PM ₁₀ Sa		
and the second second second second	PM ₁₀ Filter ID #:	DHPTON'7	Beginning Flow Rate (LPM):	5.0
	Timer Beginning Time:	3615,90	Ending Flow Rate (LPM):	5.9
	Timer Ending Time:	3639, 90	Sampler Serial #:	1313
		mma Canister (VOC) Sampler	
The state of the s	Canister ID #:		eginning Canister Pressure(in. Hg):	<u> </u>
	Flow Meter ID #:	34425	Ending Canister Pressure(in. Hg):	8,0
		ormaldehyde/SKC		
	Formaldehyde Lot ID #:	SPR922	Beginning Timer Reading:	\mathcal{A}
	Beginning Flow Rate (LPM):	1,25	Ending Timer Reading:	1440
	Ending Flow Rate (LPM):	1,25	SKC Pump Serial #:(14594
FIELD NOTES:		inantinisti kantinisti kantinisti kantinisti kantinisti kantinisti kantinisti kantinisti kantinisti kantinisti	elija koopering order merija kar haring van herika karan kar haring karan karan karan karan karan karan karan Karan karan ka	特别的特别 ,我们就是2006年

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET	
RICHMOND FIELD STATION	
SITE INFORMATION	
Sample Location: F45-01	
Sample Start Date/Time: W/6/07 12:12Sample Stop Date/Time: 1/2/07 12:2	7
Sample ID # (all media): LFS-F/S-G/I - D Field Technician:	
rerage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg):	
Air Metric PM ₁₀ Sampler	
PM ₁₀ Filter ID #: DHFTQ \ Beginning Flow Rate (LPM): 5.0	
Timer Beginning Time: 5717, 6\ Ending Flow Rate (LPM): 6, 0	
Timer Ending Time: 547, 80 Sampler Serial #:	
1	
Summa Canister (VOC) Sampler	
Canister ID #: イン4つ Beginning Canister Pressure(in, Hg): ラン・	
Flow Meter ID#: 424 ユ Ending Canister Pressure(in. Hg): / (/)	
Formaldehyde/SKC Sampler	
Formaldehyde Lot ID #:5029 Beginning Timer Reading:	12:4
Beginning Flow Rate (LPM): Ending Timer Reading: 255	12.4
Ending Flow Rate (LPM): 🐧 SKC Pump Serial #:07738	1
FIELD NOTES:	
1 - 0	
Sur Colon II.	
SIGNATURE: WE COSTLY	
Set up ske on 11/7/07, 12:30	
Set up Ske on 11/7/107 12:30 Jason to pick up 11/8/07	
Y	

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: Sample Stop Date/Time: 10:21 Sample ID # (all media): 🗘 👌 Field Technician: rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM_{no} Sampler PM₁₀ Filter ID#: DHPT 433 Beginning Flow Rate (LPM): 4.5 Timer Beginning Time: 4205.54 Ending Flow Rate (LPM): 4-5 Timer Ending Time: 4229.55 Sampler Serial #: 1322 Summa Canister (VOC) Sampler Canister ID #: Beginning Canister Pressure(in. Hg): 30 psi 12014 12014 Flow Meter ID #: Ending Canister Pressure(in. Hg): 8.1 Formaldehyde/SKC Sampler Formaldehyde Lot ID #: SAR9 229 Beginning Timer Reading: **b** Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 291 / FIELD NOTES:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 10:30 Sample Stop Date/Time: Sample ID # (all media): Field Technician: 3 erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM10 Filter ID#: DHPT 434 Beginning Flow Rate (LPM): 5.6 Timer Beginning Time: 4638.61 Ending Flow Rate (LPM): 4.9 Sampler Serial #: 1214 Timer Ending Time: 4662.67 Summa Canister (VOC) Sampler Canister ID #: 12330 Beginning Canister Pressure(in. Hg): 30 PSI Ending Canister Pressure(in. Hg): 8.9 Flow Meter ID #: 12 330 Formaldehyde/SKC Sampler Formaldehyde Lot ID#: SR 9229 Beginning Timer Reading: Beginning Flow Rate (LPM): 2.5 Ending Timer Reading: 14-4 | Ending Flow Rate (LPM): SKC Pump Serial # 008(6 FIELD NOTES:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 163-02 Sample Start Date/Time: W | 28 | 67 10:30 Sample Stop Date/Time:)] 10:54 Sample ID # (all media): 2FS-163-02D-03 Field Technician: rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₃₀ Sampler PM10 Filter ID #: DHPT 035 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 8727.21 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 8751.28 Sampler Serial #: 1315 Summa Canister (VOC) Sampler Canister ID #: 32126 Beginning Canister Pressure(in. Hg): 30-Flow Meter ID #: 32126 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler 5PR9229 Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 2.5 Ending Timer Reading: Ending Flow Rate (LPM): SKC Pump Serial #: (FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: Sample Stop Date/Time: 10:40 Sample ID # (all media): Field Technician: rerage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: PHPT 036 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 4683.30 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 4701.36 Sampler Serial #: 12.77 Summa Canister (VOC) Sampler Canister ID #: 6394 Ψ Beginning Canister Pressure(in. Hg): Flow Meter ID #: 03946 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: SPR 9229 Beginning Timer Reading: 1.3 Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 4770 - (1) Sample Start Date/Time: \(\|\)\28/07 \(\|\)2:10 Sample Stop Date/Time: 11/29/07 Sample ID # (all media): PPS-418-01-03 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 041 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 22.79.80 Ending Flow Rate (LPM): 5. Timer Ending Time: 2303.79 Sampler Serial #: 12.78 Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 30 psi Canister ID#: 914 Flow Meter ID #: Ending Canister Pressure(in. Hg): 0.5 psi Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: る Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 1 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC.

AIR QUALITY SAMPLE I	DOCUMENTATION SHEET
RICHMOND	FIELD STATION
SIIE INF	ORMATION
Sample Location: 478-02	
Sample Start Date/Time: \\ 28/07 12:0	Sample Stop Date/Time: \\/29/07 2:02
Sample ID # (all media): 12F5 - 478 - 02 -0	
	mbient Baro. Press. (in. Hg):
Air Metric	⁹ M ₁₀ Sampler
PM ₁₀ Filter ID # DHPT 04	2 Beginning Flow Rate (LPM): 5.0
Timer Beginning Time: 3446.9	
Timer Ending Time: 34 70.9	9 Sampler Serial #: [33]
2552-24	
	er (VOC) Sampler
Canister ID #: 31432	Beginning Canister Pressure(in. Hg): 20 PSi Ending Canister Pressure(in. Hg): 5.8 PSi
Flow Meter ID #: 31432	Ending Canister Pressure(in. Hg): 5.8 psi
	e/SKC Sampler
Formaldehyde Lot ID#: Pp 9:	
Beginning Flow Rate (LPM): 1.25 Ending Flow Rate (LPM): 1.5	Ending Timer Reading: 1440
Ending Flow Rate (LPM): 1. ラ	SKC Pump Serial #: 48 374
FIELD NOTES:	
/	
	· ·
SIGNATURE:	

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIFLD STATION

		UMENTATION SHEET	
RIG	HMOND FIEL	DSIAHON	
	SITE INFORM	ATION	
Sample Location: 478 -	<u>ψ૩</u>		
Sample Start Date/Time: \\ 28/07		Sample Stop Date/Time: 11/29/07	12:16
Sample ID # (all media): 12F5-418		Field Technician:	· · · · · · · · · · · · · · · · · · ·
rerage Daily Temp. (deg C):	Ambie	nt Baro. Press. (in. Hg):	
	Air Metric PM ₁₀		
PM ₁₀ Filter ID #: †	7HPT 043	Beginning Flow Rate (LPM):	4.5
Timer Beginning Time: 3	3639.91	Ending Flow Rate (LPM):	5.0
Timer Ending Time:	3663.90	Sampler Serial #:	13/3
Research March 1987			
Sur	nma Canister (V	GC) Sampler	
Canister ID #: 1	338Ul	Beginning Canister Pressure(in. Hg):	30 psi
Flow Meter ID #:	33861	Ending Canister Pressure(in. Hg):	5.1251
			-
	ormaldehyde/SK		
Formaldehyde Lot ID #:	JR9229	Beginning Timer Reading:	0
Beginning Flow Rate (LPM):	1.25	Ending Timer Reading:	1440
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #:	DH599
			ν .
FIELD NOTES:			
			
	<u> </u>		
SIGNATURE:			

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: \\ 11:26 Sample ID # (all media): PPS - 177-01 - 03 Field Technician: 6 erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 037 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 3910.33 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 3934.32 Sampler Serial #: 1270 Summa Canister (VOC) Sampler Canister ID #: 1592 Beginning Canister Pressure(in. Hg): 30 psi Flow Meter ID #: 1592 Ending Canister Pressure(in. Hg): 7.5 ps Formaldehyde/SKC Sampler Formaldehyde Lot ID #: SPR 9229 Beginning Timer Reading: Beginning Flow Rate (LPM): 1.2-5 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 1/1)4 FIELD NOTES: SIGNATURE:

TETRA TECH	EM INC.	
AIR QUALITY SAMPLE DOC	UMENTATION SHEET	
RICHMOND FIELD STATION		
SITEINEORM	ATION	
Sample Location: UCB - 4	9	
Sample Start Date/Time: 11/19/07 10349	Sample Stop Date/Time: $11/20/07$	
Sample ID # (all nice):- UCB-D1-D3	Field Technician:	
rerage Daily Temp. (deg C): Ambie	nt Baro. Press. (in. Hg):	
Air Metric PM ₁₀		
PM ₁₀ Filter ID #: DHPT 032	Beginning Flow Rate (LPM): 5.0	
Timer Beginning Time: 2987.21	Ending Flow Rate (LPM): ラ。。	
Timer Ending Time: 30 11.19	Sampler Serial #: 1345	
Summa Canister (V		
Canister ID #: 34719	Beginning Canister Pressure(in. Hg): 35 51	
Flow Meter ID #: 34 7 19	Ending Canister Pressure(in. Hg): 4.0 PC;	
Formaldehyde/SK		
Formaldehyde Lot ID #: SPR 9229	Beginning Timer Reading:	
Beginning Flow Rate (LPM): 1.3	Ending Timer Reading: 1440	
Ending Flow Rate (LPM): 1.3	SKC Pump Serial #: 0046	
FIELD NOTES:	·	
· · · · · · · · · · · · · · · · · · ·		

SIGNATURE:		
OIGNATURE.		

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Stop Date/Time: 11/29/07 Sample Start Date/Time: \(\gamma\) 11:33 Sample ID # (all media): 2FS-155-61-63 Field Technician: rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: WHPT 040 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 2697.72 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 2721.72 Sampler Serial #: |332. Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 29 psi Canister ID#: 10978 Ending Canister Pressure(in. Hg): 8.25 psi Flow Meter ID #: 10978 Formaldehyde/SKC Sampler Formaldehyde Lot ID#: 3PR9229 Beginning Timer Reading: Beginning Flow Rate (LPM): いる Ending Timer Reading: 1440 Ending Flow Rate (LPM): 1.2 SKC Pump Serial #: の子の14 FIELD NOTES:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 11:05 Sample Stop Date/Time: Sample ID # (all media): D3 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg); Air Metric PM_{an} Sampler PM₁₀ Filter ID #: DHPT 039 Beginning Flow Rate (LPM): 5.O Timer Beginning Time: 32 35.89 Ending Flow Rate (LPM): 5.1 Timer Ending Time: 3259.88 Sampler Serial #: 1333 Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 30 Canister ID #. 4373 Flow Meter ID#: 4373 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID#: 5PA9 229 Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1440 Ending Flow Rate (LPM): 1.25 SKC Pump Serial #: (X1) (99 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: \\:\3 Sample Stop Date/Time: 11:13 Sample ID # (all media): Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID#: DHPT 038 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 3743.14 Ending Flow Rate (LPM): 5.1 Timer Ending Time: 3767.15 Sampler Serial #: 1323 Summa Canister (VOC) Sampler Canister ID #: 239 2 Beginning Canister Pressure(in. Hg): 27.5 Flow Meter ID #: 23921 Ending Canister Pressure(in, Hg): 2.5 Formaldehyde/SKC Sampler SPR9229 Formaldehyde Lot ID #: Beginning Timer Reading: 1.25 Beginning Flow Rate (LPM): Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 1777 12 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: \1 Sample Stop Date/Time: 11/29/67 12:32 Sample ID # (all media): 245 - FLS - 01 - 03 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID#: DHPT 044 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 05741.81 Ending Flow Rate (LPM): 5. Timer Ending Time: Sampler Serial #: 1340 Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 30 PSI Canister ID#: 34238 Flow Meter ID #: 34 238 Ending Canister Pressure(in. Hg): 4.25 Formaldehyde/SKC Sampler 5tR9229 Formaldehyde Lot ID #: Beginning Timer Reading: O Beginning Flow Rate (LPM): \.2 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 129/10 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: Sample Stop Date/Time: Sample ID # (all media): Field Technician: rerage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 34436 Beginning Canister Pressure(in. Hg): Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: SPR 9229 Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 107 09:3 Sample Stop Date/Time: Sample ID # (all methan Tick - DI - 04 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press, (in, Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHATI Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler 05398 Beginning Canister Pressure(in. Hg): Canister ID #: Flow Meter ID #: 58 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID#. SPR9393 Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRATECH EMING.	
AIR QUALITY SAMPLE DOCUMENTATION SHEET	
RICHMOND FIELD STATION	3 44 5 2
SITE INFORMATION	
Sample Location: (63-0)	
Sample Start Date/Time: ろんん ゆっこう Sample Stop Date/Time:	
Sample ID # (all media): AFS-163-9(-04) Field Technician: Saw	·
erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg):	
Air Metric PM ₄₀ Sampler	e e e e e e
PM ₁₀ Filter ID #: DHOTOH6 Beginning Flow Rate (LPM):	4,3
Timer Beginning Time: 4229,56 Ending Flow Rate (LPM):	<u>4.3</u>
Timer Ending Time: 4之ら3、57 Sampler Serial #: /	<u>322</u>
Summa Canister (VOC) Sampler	5 0
Canister ID #: 3357 Beginning Canister Pressure(in. Hg):	29
Flow Meter ID#: 3357 Ending Canister Pressure(in. Hg):	8,5
Formaldehyde/SKC.Sampler	//
Formaldehyde Lot ID#: 5PQ9393 Beginning Timer Reading:	
Beginning Flow Rate (LPM): 3 Ending Timer Reading:	1444
Ending Flow Rate (LPM): (3 SKC Pump Serial #: (12812
FIELD NOTES:	52,25 (510) (44.1
THE ROTES.	
	:
SIGNATURE:	

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 12 Sample Stop Date/Time: Sample ID # (all media):12 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHOT DAG Beginning Flow Rate (LPM): Timer Beginning Time: 4662, 67 Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler 23929 Beginning Canister Pressure(in. Hg): Canister ID #: Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: 5PR 9293 Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 1中 14 Sample Stop Date/Time: - Field Technician: Sample ID # (all media): rerage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM_{f0} Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 94603 Beginning Canister Pressure(in. Hg): Flow Meter ID #: 94603 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: (FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 10 44 Sample Stop Date/Time: Sample Start Date/Time: Sample ID # (all media):D Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): DHDY 0249 Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 33 ピン4 Beginning Canister Pressure(in. Hg): Flow Meter ID #: 🔿 Ending Canister Pressure(in, Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: < Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #2 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: Sample Stop Date/Time: Sample ID # (all media): [Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: UHPT 05 Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: Beginning Canister Pressure(in. Hg): Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: 4 Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM ING.	
AIR QUALITY SAMPLE DOCUMENTATION SHEET	
RIGHMOND FIELD STATION	
SITE INFORMATION	
Sample Location: 7-0 2	
Sample Start Date/Time: 12/11/07 11', 19 Sample Stop Date/Time:	
Sample ID # (all media): RTS-175-Q2-QT Field Technician: 4	
rerage Daily Temp. (deg C): Air Metric PM ₁₀ Sampler	
PM ₁₀ Filter ID #: THPT D5 2 Beginning Flow Rate (LPM):	
Timer Beginning Time: 37-67, 15 Ending Flow Rate (LPM):	5.0
Timer Ending Time: 3791.13 Sampler Serial #: 17	323
Summa Canister (VOC) Sampler	
Canister ID #: 3082+5 Beginning Canister Pressure(in. Hg):	38
Flow Meter ID#: 3 中 8 4 5 Ending Canister Pressure(in. Hg): =	7-1
Formaldehyde/SKC Sampler	
Formaldehyde Lot ID#: 50293 Beginning Timer Reading:	7)
Beginning Flow Rate (LPM): (5 Ending Timer Reading: [5	444
Ending Flow Rate (LPM): (, 25 SKC Pump Serial #: Q	547
	para para
FIELD NOTES:	
NOTES.	
· · · · · · · · · · · · · · · · · · ·	
	:
	-
SIGNATURE:	

TETRA TECH EM INC.	
AIR QUALITY SAMPLE DOCUMENTATION SHEET	
RICHMOND FIELD STATION	
SITEINFORMATION	
Sample Location:	
Sample Start Date/Time: (2) W (07-) (Sample Stop Date/Time:	
Sample ID # (all media): RES-478 177-01 - Field Technician:	
rerage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg):	· (VI)
Air Metric PM ₁₀ Sampler	
PM ₁₀ Filter ID #: DH PT 053 Beginning Flow Rate (LPM): 5	<u>(b)</u>
Timer Beginning Time: 3259 B Ending Flow Rate (LPM): 5	2()
Timer Ending Time: 3268 84 Sampler Serial #: 133	<u> 33</u>
Summa Canister (VOC) Sampler	
Canister ID #: 422 Beginning Canister Pressure(in. Hg): 29	<u>4</u> S_
Flow Meter ID #: 422 Ending Canister Pressure(in. Hg): 7	<u> </u>
Formaldehyde/SKC Sampler	ζ
Formaldehyde Lot ID#: 57 93 93 Beginning Timer Reading:	<u>)</u>
Beginning Flow Rate (LPM): 1, 25 Ending Timer Reading: 2	79
Ending Flow Rate (LPM): 1, 25 SKC Pump Serial #:	174
FIELD NOTES:	dika dewi
FIELD NOTES:	
	
SIGNATURE:	<u></u>

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: √Sample Start Date/Time: Sample Stop Date/Time: Sample ID # (all media): Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: \ Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 12d)9d/ Beginning Canister Pressure(in, Hg): Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: 5 Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRATECHEM INC.	
AIR QUALITY SAMPLE DOCUMENTATION SHEET	
RICHMOND FIELD STATION	ATTOMICS OF THE STATE OF THE ST
SITE INFORMATION	
Sample Location: 478-0	-
Sample Start Date/Time: 2/1/07 12: 08 Sample Stop Date/Time:	7
Sample ID # (all media): RFS-478-01 - 04 Field Technician: 2011	
rerage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg):	, , , , , , , , , , , , , , , , , , , ,
Air Metric PM ₁₀ Sampler	ANTONIA S
PM ₁₀ Filter ID # Beginning Flow Rate (LPM):	4. 1
Timer Beginning Time: 2303 79 Ending Flow Rate (LPM):	5.0
Timer Ending Time: 3327,77 Sampler Serial #:	1270
Summa Canister (VOC) Sampler	
Canister ID #: 22913 Beginning Canister Pressure(in. Hg):	30)
Flow Meter ID #: 22913 Ending Canister Pressure(in. Hg):	7.8
33 1	
Formaldehyde/SKC Sampler -	
Formaldehyde Lot ID #: 5P29393 Beginning Timer Reading:	<i>(</i>)
Beginning Flow Rate (LPM): 1,5 Ending Timer Reading:	KKIA
Ending Flow Rate (LPM): 3 SKC Pump Serial #:	10476
· · · · · · · · · · · · · · · · · · ·	
FIELD NOTES:	
SIGNATURE:	

AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION
RICHMOND FIELD STATION
SITE INFORMATION
Sample Location: 478-02
Sample Start Date/Time: 2/11/07 2:14 Sample Stop Date/Time: 2/12/07 12:14
Sample ID # (all media): \$\infty\$ 15-478-02-04 Field Technician: 3005
rerage Daily Temp. (deg C); Arr Metric PM ₁₀ Sampler
ON ARCHIOLOGIC
5.0
Timer Beginning Time: 3470, 99 Ending Flow Rate (LPM): 5, 0 Timer Ending Time: 3494, 99 Sampler Serial #: 1330
Timer Ending Time: 34 94, 97 Sampler Serial #: 133
Summa Canister (V@C) Sampler
Canister ID#: 33542 Beginning Canister Pressure(in. Hg): 29,5
Flow Meter ID #: 33542 Ending Canister Pressure(in. Hg): 3.0
Formaldehyde/SKC Sampler:
Formaldehyde Lot ID#: 5PR9393 Beginning Timer Reading:
Beginning Flow Rate (LPM): , 3 Ending Timer Reading:
Ending Flow Rate (LPM): 1, 3 SKC Pump Serial #: 0887
FIELD NOTES:
SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: /Ø7 Sample Stop Date/Time: Sample Start Date/Time Field Technician: Sample ID # (all media): ФЗ −Ф Ambient Baro. Press. (in. Hg): rerage Daily Temp. (deg C): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 253 (Beginning Canister Pressure(in. Hg): Flow Meter ID #: 25 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Beginning Timer Reading: Formaldehyde Lot ID #: < Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 2:24 Sample Stop Date/Time:); Sample ID # (all media): 1 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #5 Summa Canister (VOC) Sampler Canister ID #: Beginning Canister Pressure(in, Hg): Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: -Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: (FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: Sample Stop Date/Time: Sample ID # (all media): Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM_{to} Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: TEN Black Beginning Canister Pressure(in. Hg): Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #:-Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: (1:00 Sample Stop Date/Time: Sample ID # (all media): - OI- 05 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press, (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: PHPT \$ 59 Beginning Flow Rate (LPM): Timer Beginning Time: 4253.57 Ending Flow Rate (LPM): Timer Ending Time: 4277.82 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 34445 Beginning Canister Pressure(in. Hg): 29.5 % Flow Meter ID #: 34445 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 25 Ending Timer Reading: 1452 .25 Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 162-02 Sample Start Date/Time: 18 Dec. 11:09 Sample Stop Date/Time: 12/19/07 11:09 Sample ID # (all media): RFS - 162-02-05 Field Technician: 500 erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM10 Filter ID#: DHTT \$600 Beginning Flow Rate (LPM): Timer Beginning Time: 4686.66 Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 34 4 24 Beginning Canister Pressure(in. Hg): 30 Flow Meter ID #: 34024 Ending Canister Pressure(in. Hg): 8.5 pc Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: 2.5 Beginning Flow Rate (LPM): Ending Timer Reading: 1440 2.5 Ending Flow Rate (LPM): SKC Pump Serial #: 2816 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 162-020 Sample Start Date/Time: 12/18/07 Sample Stop Date/Time: [2/19/07 11:09 11:09 Sample ID # (all media): RFS - 162-62D-05 Field Technician: Sw rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID # DHPT O@1 Beginning Flow Rate (LPM): 5. 4 Timer Beginning Time: 8775.29 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 8199.37 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 35269 Beginning Canister Pressure(in. Hg): 32 Flow Meter ID #: 35269 Ending Canister Pressure(in. Hg): 5. 4 PS1 Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 2.5 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 28 16 FIELD NOTES:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 163-03 Sample Start Date/Time: 12/18/07 11.18 Sample Stop Date/Time: 12/19/07 11:18 Sample ID # (all media): RFS - 163 - 63 - 65 Field Technician: Sw erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM10 Filter ID#: toltpT 062 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 4731.32 Ending Flow Rate (LPM): 5. 🗢 Timer Ending Time: 4755.31 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 24478 Beginning Canister Pressure(in. Hg): Flow Meter ID #: 24478 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 OFF **Ending Timer Reading:** Ending Flow Rate (LPM): OFF SKC Pump Serial #: 07738 FIELD NOTES: on 12/19 pickup. SIGNATURE:

TETRA TECH EMING.

AIR QUALITY SAMPLE D	OCUMENTATION SHEET
RIGHMOND FI	ELD STATION
SITE INFO	RMATION
Sample Location: 175 - 01	
Sample Start Date/Time: \2 \18 \b7 \ \12:2	
Sample ID # (all media): RFS - 175 - 61 - 05	
rerage Daily Temp. (deg C): Am	bient Baro. Press. (in. Hg):
Air Metric Ph	
PM ₁₀ Filter ID #: DHPT OU:	
Timer Beginning Time: 3958.37	
Timer Ending Time: 3982.44	Sampler Serial #:
1000-464 (SA) (AA)	
Summa Canister	
Canister ID #: 34449	Beginning Canister Pressure(in. Hg): ?
Flow Meter ID #: 34449	Ending Canister Pressure(in. Hg): 19.0
Formaldehyde	
Formaldehyde Lot ID #:	Beginning Timer Reading: ϕ
Beginning Flow Rate (LPM): 1.25	Ending Timer Reading: 1447
Ending Flow Rate (LPM): [.25	SKC Pump Serial #:
FIELD NOTES:	7.1
- no seginning somma ca	nister pressure recorded.
	W
SIGNATURE:	
NORAL TONE.	

TETRA TECH EM INC.

CUMENTATION SHEET
LDSTATION
MATION
Sample Stop Date/Time: 12 19 07 12:37
Field Technician: Sw
eient Baro, Press. (in. Hg):
10 Sampler
Beginning Flow Rate (LPM): 5.0
Ending Flow Rate (LPM): S. O
Sampler Serial #:
(VOC) Sampler
Beginning Canister Pressure(in. Hg): 29,5 psi
Ending Canister Pressure(in. Hg): 18,5 ps
SKC Sampler
Beginning Timer Reading:
Ending Timer Reading: 1446
SKC Pump Serial #:
· · · · · · · · · · · · · · · · · · ·
7.77.77

TETRA TECH EM ING.

AIR QUALITY	SAMPLE DOC	UMENTATION SHEET	
RI	CHMOND FIEL	DSTATION	
			-
	SITE INFORM	ATION	
Sample Location: [77 - 0]			
Sample Start Date/Time: [2] 16 0 7	12:40:	Sample Stop Date/Time: 12 19 /07	12:40
Sample ID # (all media): Pたら-1つつ	1-01-05	Field Technician: らい	
rerage Daily Temp. (deg C):	Ambie	nt Baro. Press. (in. Hg):	, .
	Air Metric PM ₁₀	Sampler	
PM ₁₀ Filter ID #:	DHPT 065	Beginning Flow Rate (LPM):	5.0
Timer Beginning Time:	3283.85	Ending Flow Rate (LPM):	5.0
Timer Ending Time:	3307.87	Sampler Serial #:	
		,	
100 years of the Su	mma Canister (V	OC) Sampler	
Canister ID #:	02327	Beginning Canister Pressure(in. Hg):	31 psi
Flow Meter ID #:	02327	Ending Canister Pressure(in. Hg):	
			1
	ormaldehyde/Sk	C Sampler	150 S 150 S 45
Formaldehyde Lot ID #:		Beginning Timer Reading:	0
Beginning Flow Rate (LPM):	1.25	Ending Timer Reading:	1440
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #:	
FIELD NOTES:		A	
			· · · · · ·
			;
SIGNATURE:		T TANKS	

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 155 - 0 Sample Start Date/Time: 12/18/07 Sample Stop Date/Time: 12 19 /07 12:49 12:49 Sample ID # (all media): 12FS - 155 - 01 - 05 Field Technician: Sw erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM10 Filter ID # DHPT OLL Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 2745.72 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 2769.69 Sampler Serial #: 1332 Summa Canister (VOC) Sampler Canister ID#: 34253 Beginning Canister Pressure(in. Hg): 29,5 Flow Meter ID#: 31253 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: 0 Beginning Flow Rate (LPM): 1.3 Ending Timer Reading: Ending Flow Rate (LPM): 1.3 SKC Pump Serial #: FIELD NOTES:

AIR QUALITY SAMPLE DOCUMENTATION SHEET					
RI	CHMOND FIEI	DSTATION	n ng gjara (2 - 5 - 5 - 5 Lifetyr og til 12 - 12		
		N. W.			
	SITE INFORI	ATION			
Sample Location: 478-01					
Sample Start Date/Time: 12/18/07	12.4.	Sample Stop Date/Time: (2(19/07	10150		
Sample ID # (all media): PF5 - 475			13:50		
rerage Daily Temp. (deg C):		Field Technician: 5w ent Baro. Press. (in. Hg):			
trage Daily Terrip. (deg C).	Air Metric PM ₁	ent Balo. Fless. (թ ng). ո Sampler			
PM ₁₀ Filter ID #:	14pt 067	Beginning Flow Rate (LPM):	5.0		
Timer Beginning Time:					
Timer Ending Time:		Sampler Serial #:	1278		
		1			
to the state of the Su	mma Canister ()	VOC) Sampler			
Canister ID #:	33669	Beginning Canister Pressure(in. Hg):	33 psi		
Flow Meter ID #:	33669	Ending Canister Pressure(in. Hg):	10.5 Bi		
			Υ.		
Fig. 1. Sept. 1. Sept	ormaldehyde/S	KC Sampler	unseren esta en		
Formaldehyde Lot ID #:		Beginning Timer Reading:	٥		
Beginning Flow Rate (LPM):	(.2	Ending Timer Reading:	1444		
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #:			
			8.88		
FIELD NOTES:					
	·				
			····		
SIGNATURE:					

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RICHMOND FIELD STATION SITE INFORMATION Sample Location: 478-02 Sample Start Date/Time: \2\18\07 13:52 Sample Stop Date/Time: 12/19/07 13:56 Sample ID # (all media): RFS - 478 - 02 - 05 Field Technician: 500 rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM10 Filter ID#: DHPT 068 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 3494.97 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 35/9 12 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 34 634 Beginning Canister Pressure(in. Hg): 30 PSi Flow Meter ID#: 34034 Ending Canister Pressure(in. Hg): 8.5 Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1446 Ending Flow Rate (LPM): 1.25 SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RICHMOND FIELD STATION SITE INFORMATION Sample Location: 478 - 03 Sample Start Date/Time: 12 | 18 | 07 13.58 Sample Stop Date/Time: 12/19/07 14:08 Sample ID # (all media): RFS - 478 - 03 - 05 Field Technician: 500 rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg); Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 069 Beginning Flow Rate (LPM): Timer Beginning Time: 3687.98 Ending Flow Rate (LPM): Timer Ending Time: 3712.15 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 33877 Beginning Canister Pressure(in. Hg): 29.0 PSi Flow Meter ID #: 33877 Ending Canister Pressure(in. Hg): 29.0 ps; Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1449 Ending Flow Rate (LPM): 1.25 SKC Pump Serial #: FIELD NOTES: SIGNATURE:

AIR QUALITY SAMPLE DOCUMENTATION SHEET				
RICHMOND FIE	LD STATION			
NIFECTOR III DE L'ANTE DE				
SITE INFOR	RMATION			
Sample Location: FLS -0]				
Sample Start Date/Time: \\(\(\) \(14:20		
Sample ID # (all media): KFS-FLS-01-05	Field Technician: らい			
rerage Daily Temp. (deg C): Amk	pient Baro. Press. (in. Hg):	3279 (1970)		
Air Metric PM				
PM ₁₀ Filter ID#: DHPT 670	Beginning Flow Rate (LPM):			
Timer Beginning Time: 5789.84	Ending Flow Rate (LPM):	5.0		
Timer Ending Time: 5813.93	Sampler Serial #:	1340		
Summa Canister				
Canister ID #: 25243	Beginning Canister Pressure(in. Hg):	30.5 psi		
Flow Meter ID #: 25243	Ending Canister Pressure(in. Hg):	8-0 psi		
		Seligibility of the selection of the sel		
Formaldehyde/		2,750,20		
Formaldehyde Lot ID #:	Beginning Timer Reading:	0		
Beginning Flow Rate (LPM): (-2	Ending Timer Reading:	1494		
Ending Flow Rate (LPM): 1.25	SKC Pump Serial #:			
EIELD NOTES	A COLUMN DESCRIPTION OF THE PROPERTY OF THE PR	Maide Berg Line Avia		
FIELD NOTES:				
	· · · · · · · · · · · · · · · · · · ·			
	1 1			
SIGNATURE:				

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION

RICHMOND FIELD STATION				
	SITE INFOR	MATION		
Consola Lacation, 11 CD				
Sample Location: CB	-4	0	7 2 -	
Sample Start Date/Time: 12/18/0	7 9:35	Sample Stop Date/Time: 12/19/0	4-9:35	
Sample ID # (all media): PFS-UC	B-01-	(P) 5 Field Technician: 2000	<u> </u>	
erage Daily Temp. (deg C):	Amb Air Metric PM	ient Baro. Press. (in. Hg):	est along its comment with	
PM ₁₀ Filter ID #:			- <i>-</i>	
			5. ¢	
Timer Beginning Time:			5. P	
Timer Ending Time:	5057. 9:	Sampler Serial #:		
	A	Machine Translate International Control		
		(VOC) Sampler	-/ /	
Canister ID #:		Beginning Canister Pressure(in. Hg): 2 Ending Canister Pressure(in. Hg): 2	36. \$ psi	
Flow Meter ID #:	33763	Ending Canister Pressure(in. Hg): 2	28.5 psi	
	ormaldehyde/S	V0 200 120		
Formaldehyde Lot ID#:			1	
Beginning Flow Rate (LPM):	1.25	Beginning Timer Reading:	Ø	
Ending Flow Rate (LPM):	1.25	Ending Timer Reading:	 	
Ending Flow Itale (EFIVI).	1-2-3	SKC Pump Serial #:	461	
FIELD NOTES:			odyczenie waże za loka o	
: DOSSIDLE DAMAR DIGIOLO	an with	The Aumma canister		
10 3711/4 Space Je 1101/42	001111	1 - Norma Can Staz	·	
	1.0			
		THE	··· · · · ·	
SIGNATURE:				

AIR QUALITY SAMPLE DOCUMENTATION SHEET					
RIC	SHMOND FIEL	DSTATION			
Westerpean acording to the contract of		TO THE TOTAL OF TH			
	SITE INFORI	AATION			
Sample Location: 63 - 0					
Sample Start Date/Time: 1908	10.22	Sample Stan Date/Time: 1/10/50	11.07		
Sample ID # (all media): RFS - 16	11:23	Sample Stop Date/Time: 1/10/08 Field Technician: cf	11:23		
rerage Daily Temp. (deg C):		ent Baro. Press. (in. Hg):			
erage bany remp. (deg c).	Air Metric PM ₁	Sampler			
PM ₁₀ Filter ID #:	DHPT 074		3,5		
Timer Beginning Time:	4277.82	Ending Flow Rate (LPM):	3.75		
Timer Ending Time:	4301.91	Sampler Serial #:	1322		
Su	mma Canister (\	/OC) Sampler			
Canister ID #:	12005	Beginning Canister Pressure(in. Hg):	32 PSi		
Flow Meter ID #:	12005	Ending Canister Pressure(in. Hg):	PSi		
Figure 1 and 1	ormaldehyde/S	KC Sampler			
Formaldehyde Lot ID #:	***	Beginning Timer Reading:	D		
Beginning Flow Rate (LPM):	1.5	Ending Timer Reading:	1444		
Ending Flow Rate (LPM):	1.6	SKC Pump Serial #:	644800		
			official from the second		
FIELD NOTES:					
	· · · ·				
	· · · · · · · · · · · · · · · · · · ·				
	- MAN				
	 				
CICNATURE.		r a second			
SIGNATURE:					

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION 163-02 Sample Location: Sample Start Date/Time: 1/9/08 11:30 Sample Stop Date/Time: 11:30 Sample ID # (all media): RFS-163-02-06 Field Technician: rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): none none Timer Beginning Time: Ending Flow Rate (LPM): none Timer Ending Time: none Sampler Serial #: Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 30 151 Canister ID #: 34231 Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 2.75 Ending Timer Reading: Ending Flow Rate (LPM): 2.70 SKC Pump Serial #: 644868 FIELD NOTES: Air Metric Samples for RFS-163-02 is broken

SIGNATURE:

AIR QUALITY SAMPLE DOCUMENTATION SHEET					
RIG	RIGHMOND FIELD STATION				
	SITE INFORI	ANELON			
	****OHIE=INEOKI				
Sample Location: 163 - 0	20				
Sample Start Date/Time: \19108	11:30	Sample Stop Date/Time: 1/10/08	11.30		
Sample ID # (all media): PFS-163			-,		
erage Daily Temp. (deg C):	Ambi	ent Baro. Press. (in. Hg):			
	Air Metric PM,	₀ Sampler			
PM ₁₀ Filter ID #.	DHPT 073	Beginning Flow Rate (LPM):	5.0		
Timer Beginning Time:	8799.32	·	5,0		
Timer Ending Time:	8823.3	Sampler Serial #:	1315		
Sul	mma Canister (\	VOC) Sampler			
Canister ID #:	35136	Beginning Canister Pressure(in. Hg):	30 psi		
Flow Meter ID #:	35136	Ending Canister Pressure(in. Hg):	7.5 psi		
The state of the s	ormaldehyde/S	KC Sampler			
Formaldehyde Lot ID #:		Beginning Timer Reading:	1 O		
Beginning Flow Rate (LPM):	2.75	Ending Timer Reading:	1440		
Ending Flow Rate (LPM):	2.70	SKC Pump Serial #:	644868		
			5 (A) (A)		
			ingeright (programme) mandestrations (constitution)		
FIELD NOTES:					
			·		
	<u>.</u>				
			:		
	·				
SIGNATURE:	-				

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 163-03 Sample Start Date/Time: \/9/08 Sample Stop Date/Time: 11:37 10/08 11:39 Sample ID # (all media): 12 = 5 - 163 - 03 - 06 Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM_m Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): DHPT 072 5.0 Timer Beginning Time: 4755.32 Ending Flow Rate (LPM): 5.0 Timer Ending Time: Sampler Serial #: 1277 Summa Canister (VOC) Sampler Canister ID #: 1588 Beginning Canister Pressure(in. Hg): 1588 Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: 0 Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 175-01 Sample Start Date/Time: 12:09 Sample Stop Date/Time: 10/08 119108 12:09 Sample ID # (all media): 12-FS-175-01-06 Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): DHPT 077 Timer Beginning Time: 3982.45 Ending Flow Rate (LPM): Timer Ending Time: 4006 44 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 201 Beginning Canister Pressure(in. Hg): Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 175-02 Sample Start Date/Time: \19 | 08 12:17 · Sample Stop Date/Time: Sample ID # (all media): 1255-175-02-06 Field Technician: rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 678 Beginning Flow Rate (LPM): Timer Beginning Time: 3615.26 Ending Flow Rate (LPM): 5.1 Timer Ending Time: 38 39.26 Sampler Serial #: 1323 Summa Canister (VOC) Sampler Canister ID #: 34747 Beginning Canister Pressure(in. Hg): 35 ps Flow Meter ID #: 34747 Ending Canister Pressure(in, Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.5 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES:

SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 1/1/08 12:25 Sample Stop Date/Time: 1110108 12:25 Sample ID # (all media): 12 FS - 177 - 0 | - 0 6 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID # DHPT 075 Beginning Flow Rate (LPM): 5.1 Timer Beginning Time: 3307.87 Ending Flow Rate (LPM): Timer Ending Time: 3331.87 Sampler Serial #: 1333 Summa Canister (VOC) Sampler Canister ID #: 4167 Beginning Canister Pressure(in, Hg): Flow Meter ID #: 4167 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: \55-6 Sample Start Date/Time: 1/9/06 12:34 Sample Stop Date/Time: Sample ID # (all media): 2 5- 155-01-06 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 076 Beginning Flow Rate (LPM): 5.1 Timer Beginning Time: 2769, 69 Ending Flow Rate (LPM): Timer Ending Time: 2793.66 Sampler Serial #: 1332 Summa Canister (VOC) Sampler Canister ID#: 33322 Beginning Canister Pressure(in. Hg): Flow Meter ID#: 33322 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.5 **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: 761757 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 1/9/06 Sample Stop Date/Time: 10:31 110/08 Sample ID # (all media): RES-UCB-01-06 Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 671 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 3059.03 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 3083.08 Sampler Serial #: 1375 Summa Canister (VOC) Sampler Canister ID #: 34740 Beginning Canister Pressure(in. Hg): 31 Flow Meter ID #; Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1,5 **Ending Timer Reading:** Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

AIR QUALITY SAMPLE DOCUMENTATION SHEET					
RIC	HMOND F	IELD:	STATION		
SITE INFORMATION					
	SHE INF	JRWAI	IUN		
Sample Location: 478 -0	1 .				
Sample Start Date/Time: \19\06	13:07	Sar	nple Stop Date/Time:	1/10/08	13:09
Sample ID # (all media): 12F5-4-		-	Field Technician:	cif	
rerage Daily Temp. (deg C):			Baro. Press. (in. Hg):	- J ·	, ,
	Air Metric I				
PM ₁₀ Filter ID #:	DHPT C	81	Beginning Flow	Rate (LPM):	5.0
Timer Beginning Time:	2351.8		Ending Flow	Rate (LPM):	5
Timer Ending Time:	2375.	87	Sam	pler Serial #:	1278
Star	mma Canist	er (VOC) Sampler		
Canister ID #:	3941	В	eginning Canister Pres	sure(in. Hg):	3 psi
Flow Meter ID #:	3941		Ending Canister Pres	sure(in. Hg):	Tosi
			Water and the second		1 1
	ormaldehyd	e/SKC	Sampler was the large		ugararan 14 (1.5)
Formaldehyde Lot ID #:			Beginning Tir	ner Reading:	0
Beginning Flow Rate (LPM):	1.5		Ending Tim	er Reading:	1444
Ending Flow Rate (LPM):	1.6	,	SKC Pt	ump Serial #:	761836
FIELD NOTES:					
				- i	
				····	· ·
			 		
	<u> </u>		···		
` <u> </u>					
SIGNATURE:					

AIR QUALITY SAMPLE DOCUMENTATION SHEET				
RI	SHMOND F	IELD STATION		
	OVER TWO			
	SHEINE	DRMATION		
Sample Location: 478 -c	2			
Sample Start Date/Time: \/9 08	,	Sample Stop Date/Time: \/\[0\08	3:33	
Sample ID # (all media): 12 = 5 - 4				
rerage Daily Temp. (deg C):	Ar	mbient Baro. Press. (in. Hg):	,	
	Air Metric F	PM ₁₀ Sampler		
PM ₁₀ Filter ID #:	DHPT C	Beginning Flow Rate (LPM):	5.	
Timer Beginning Time:	3519.1	2 Ending Flow Rate (LPM):	5.1	
Timer Ending Time:	3543.	Sampler Serial #: 1	33	
Nest				
sure in the sure of the sure o	mma Caniste	er (VOC) Sampler		
Canister ID #:	12942		2 psi	
Flow Meter ID #:	1294	Z Ending Canister Pressure(in. Hg):	7 psi	
N. B. de J. C.				
		e/SKC Sampler		
Formaldehyde Lot ID #:	**************************************	Beginning Timer Reading:	<u> </u>	
Beginning Flow Rate (LPM):	1.3	Ending Timer Reading:	1440	
Ending Flow Rate (LPM):	1.5	SKC Pump Serial #:	761246	
FIELD NOTES:				

			·	
SIGNATURE:				
JIGRATURE.				

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RICHMOND FIELD STATION				
SITE INFO	PMATION			
	MIATICI			
Sample Location: 478-03				
Sample Start Date/Time: \ \ \ 9 08 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sample Stop Date/Time: \\\ \ \o \\ \ \ \ \ \ \ \ \ \ \ \ \ \			
Sample ID # (all media): P-FS-478-63-6	> Field Technician:			
rerage Daily Temp. (deg C): Am	nbient Baro. Press. (in. Hg):			
Air Metric P	W ₁₀ Sampler			
PM ₁₀ Filter ID #: DHPT 07				
Timer Beginning Time: 3712.1 Timer Ending Time: 3736.1				
Timer Ending Time: 3736.	5 Sampler Serial #: 1313			
Summa Caniste	r (VOC) Sampler			
Canister ID #: 31194	Beginning Canister Pressure(in. Hg): 32 PSi			
Flow Meter ID #: 3)1,9 4	Ending Canister Pressure(in. Hg): 9.5 PSi			
Formaldehyde	/SKC Sampler			
Formaldehyde Lot ID #.	Beginning Timer Reading: O			
Beginning Flow Rate (LPM): 1.5	Ending Timer Reading: 1440			
Ending Flow Rate (LPM): Ι· Ψ	SKC Pump Serial #: 6336×7			
CIFL D NOTES				
FIELD NOTES:				
SIGNATURE:	· · · · · · · · · · · · · · · · · · ·			

AIR QUALITY SAMPLE DOCUMENTATION SHEET				
RIC	CHMONE	FIELD) STATION	
Banks and a survival of the basis of the same of the s	`			
	SITEIN	IFORM/	ATION	
Sample Location: FLS - 0		·		
Sample Start Date/Time: \19\68			ample Stop Date/Time: \\\ \o\o\s	13:49
Sample ID # (all media): PFS - F	<u> LS-01</u>		Field Technician: cff	
rerage Daily Temp. (deg C):		Ambien	t Baro. Press. (in. Hg):	
DM Files ID 4:	Air Metri	a transference space and		
PM ₁₀ Filter ID #:	PHPT		Beginning Flow Rate (LPM):	
Timer Beginning Time:	58 13		Ending Flow Rate (LPM):	5.
Timer Ending Time:	5837	.96	Sampler Serial #:	1340
			DC) Sampler	
Canister ID #:			Beginning Canister Pressure(in. Hg):	31 psi
Flow Meter ID #:	1367	l	Beginning Canister Pressure(in. Hg): Ending Canister Pressure(in. Hg):	23.5 psi
NEROLANI				
	ormaldeh	yde/SK	Sampler	
Formaldehyde Lot ID #:			Beginning Timer Reading:	0
Beginning Flow Rate (LPM):	1.25		Ending Timer Reading:	1442
Ending Flow Rate (LPM):	1.25		SKC Pump Serial #:	799078
FIELD NOTES:				
		<u></u>		
				·
	<u> </u>			
<u> </u>		•		
			•	
`				
SIGNATURE:	*************			

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: VCB-01 Sample Start Date/Time: \\23 | 08 9:40 Sample Stop Date/Time: Sample ID # (all media): PLFS - UCB - 01 - 0Th Field Technician: Sw erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 097 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 3083.08 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 3107.06 Sampler Serial #: Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 40 Canister ID#: 1079 Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 00461 FIELD NOTES: SIGNATURE:

AIR QUALITY SAMPLE DOCUMENTATION SHEET				
·· ;				
In El				
10:56				
				
4.5				
5.0				
322				
OPSI				
o. S. psi				
^				
<u>0</u>				
440 2812				
14014				
A Section of the Sect				
:				

AIR QUALITY SAMPLE DOCUMENTATION SHEET				
RICHMOND FIE	LD STATION			
XXVIII SAN SAN AND AND AND AND AND AND AND AND AND A				
SITEINFOR	RMATION			
Sample Location: 11-2 - D2				
Sample Location: \(\(\(\(\)\)\\\\\\\\\\\\\\\\\\\\\\\\\\	Sample Stop Date/Time: 24 08 10:59			
Sample Start Date/Time: \ 23 06 0:59 Sample ID # (all media): RFS - 163 - 02 - 0				
	pient Baro. Press. (in. Hg):			
Air Metric PM				
PM ₁₀ Filter ID#: DHPT o	Beginning Flow Rate (LPM): 5.0			
Timer Beginning Time: 8823.				
Timer Ending Time: 8847.				
Summa Canister	(VOC) Sampler			
Canister ID#: 3420	Beginning Canister Pressure(in. Hg): 35%			
Flow Meter ID #: 34201	Ending Canister Pressure(in. Hg): 7.5			
	•			
Formaldehyde/				
Formaldehyde Lot ID #:	Beginning Timer Reading:			
Beginning Flow Rate (LPM): 2.7 Ending Flow Rate (LPM): 2.7	Ending Timer Reading: 1440			
Ending Flow Rate (LPM): 2 · 7	SKC Pump Serial #: 2816			
FIELD NOTES:				
SIGNATURE:				

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 163-02D Sample Start Date/Time: 1123 08 Sample Stop Date/Time: 1/24 05 10:59 Sample ID # (all media): 12-PS - 163-02D-07 Field Technician: 1/24 / 05 erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): Timer Beginning Time: Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 35 Psi Canister ID#: 05364 Flow Meter ID#: 05344 Ending Canister Pressure(in, Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 2.1 Ending Timer Reading: 1440 Ending Flow Rate (LPM): 2.7 SKC Pump Serial #: 28 16 FIELD NOTES:

SIGNATURE:

AIR QUALITY SAMPLE DOCUMENTATION SHEET				
RICHMOND FIELD STATION				
ATTENDED TO THE PARTY OF THE PA				
SITE INFOR	WATON			
Sample Location: 163-03				
Sample Start Date/Time: 1/23/06 11:08	Sample Stop Date/Time: 1/24/06 11:08			
Sample ID # (all media): PFS - 143-03 - 0	11-11-11-11-11-11-11-11-11-11-11-11-11-			
rerage Daily Temp. (deg C): Amb	ient Baro. Press. (in. Hg):			
Air Metric RM	10 Sampler			
PM ₁₀ Filter ID #: DHPT IO I	Beginning Flow Rate (LPM): 5.0			
Timer Beginning Time: 4179. 32	Ending Flow Rate (LPM): 5.0			
Timer Ending Time: 4803.3	Sampler Serial #: 1277			
Summa Canister				
Canister ID #: \2\Le70	Beginning Canister Pressure(in. Hg): 29.5			
Flow Meter ID #: 12470	Beginning Canister Pressure(in. Hg): 29.5 psi Ending Canister Pressure(in. Hg): 7.0 psi			
Formaldehyde/S				
Formaldehyde Lot ID #:	Beginning Timer Reading:			
Beginning Flow Rate (LPM): \.3	Ending Timer Reading: 1440			
Ending Flow Rate (LPM): 1.3	SKC Pump Serial #. 7738			
	· · · · · · · · · · · · · · · · · · ·			
FIELD NOTES:				
FIELD NOTES.				
	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			
SIGNATURE:				

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: \123/08 11:36 Sample Stop Date/Time: 1 11:36 Sample ID # (all media): LFS - 175-01-07 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): 5.0 DHPT 102 Timer Beginning Time: 4006.44 Ending Flow Rate (LPM): 5,0 4030.39 Timer Ending Time: Sampler Serial #: 1270 Summa Canister (VOC) Sampler Canister ID #: 25305 Beginning Canister Pressure(in. Hg): 32.0 PS Flow Meter ID #: 25 305 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

AIR QUALITY SAMPL	E DOCUMENTATION SHEET
RICHMONI	FIELD STATION
Ob. 1	NFORMATION
SIIEI	NEURMATION
Sample Location: 175-02	
Sample Start Date/Time: \123/08 \1:45	Sample Stop Date/Time: \124/08 1:45
Sample ID # (all media): 2 5 - 179 - 02 -	
rerage Daily Temp. (deg C):	Ambient Baro. Press. (in. Hg):
Air Metr	ic PM _{f0} Sampler
PM ₁₀ Filter ID #: DHPT	103 Beginning Flow Rate (LPM): 5.0
Timer Beginning Time: 3839	.26 Ending Flow Rate (LPM): 5.0
Timer Ending Time: 3863	. 24 Sampler Serial #:
Summa Can	ister (VOC) Sampler
Canister ID #: 0933	
Flow Meter ID #: 0933	Ending Canister Pressure(in. Hg): 10.5 psi
	iyde/SKC Sampler
Formaldehyde Lot ID #:	Beginning Timer Reading:
Beginning Flow Rate (LPM): 1.2 5	Ending Timer Reading: 1440
Ending Flow Rate (LPM): 1.25	SKC Pump Serial #:
FIELD NOTES:	•
SIGNATURE:	
OIGHT OIL	

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RIGHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: \123108 1.63 Sample Stop Date/Time: 11:53 1124/08 Sample ID # (all media): RFS-177-01-07 Field Technician: SW erage Daily Temp. (deg C): Ambient Baro, Press, (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 104 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 3331.87 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 3355.87 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 34372 Beginning Canister Pressure(in. Hg): 30 Psi Flow Meter ID#: 34372 Ending Canister Pressure(in. Hg): 7.5 PSi Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 10479 FIELD NOTES:

SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 155-01 Sample Start Date/Time: \|23|08 Sample Stop Date/Time: 11:58 11:58 Sample ID # (all media): RFS - 195-01-07 Field Technician: Sw erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): DHDT 105 Timer Beginning Time: 2793.66 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 28 17.66 Sampler Serial #: 1332 Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 28 psi Canister ID#: 33655 Flow Meter ID #: 33455 Ending Canister Pressure(in. Hg): 2.5 psi Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1440 Ending Flow Rate (LPM): 1.25 SKC Pump Serial #: 7614 FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 478 -01 Sample Start Date/Time: 1/23/06 Sample Stop Date/Time: 12:45 Sample ID # (all media): 2=5-475-01-07 Field Technician: SW rerage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 107 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 2375.87 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 2399.87 Sampler Serial #: 12.78 Summa Canister (VOC) Sampler Canister ID #: 31133 Beginning Canister Pressure(in. Hg): 35 psi Flow Meter ID #: 31133 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): ,25 Ending Timer Reading: 1442 Ending Flow Rate (LPM): .25 SKC Pump Serial #: FIELD NOTES: SIGNATURE:

AIR QUALITY SAMPLE DOCUMENTATION SHEET			
RIC	HMOND FIE	LD STATION	
increase as a second se			
	SITE INFOR	MATION	
Sample Location: 478-02			
Sample Start Date/Time: 1/23 168	12:35	Sample Stop Date/Time: 1/24 108	12:37
Sample ID # (all media): P-5-478		Field Technician: 812	100.7
rerage Daily Temp. (deg C):		ent Baro. Press. (in. Hg):	
	Air Metric PM	₀ Sampler	
PM ₁₀ Filter ID #: •	DAPT 10	Beginning Flow Rate (LPM):	5.0
Timer Beginning Time:			5,0
Timer Ending Time:	3567.17	Sampler Serial #:	1331
	nma Canister (
Canister ID #: 1		Beginning Canister Pressure(in. Hg): Ending Canister Pressure(in. Hg):	29.5ps
Flow Meter ID #:	25231	Ending Canister Pressure(in, Hg):	3 PS1
F	ormaldehyde/S	Ke Samular	Control of the contro
Formaldehyde Lot ID #:	o initial deligration	Beginning Timer Reading:	6
Beginning Flow Rate (LPM):	1.25	Ending Timer Reading:	1442
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #	
<u> </u>	*	one rump condin.	0 7 1 1
FIELD NOTES:			
	·		
	····		
	· · · ·		
SIGNATURE.			
SIGNATURE:			

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RICHMOND FIELD STATION SITE INFORMATION Sample Location: 478 -03 Sample Start Date/Time: \123/08 12:52 Sample Stop Date/Time: Sample ID # (all media): 12FS-478-03-07 Field Technician: erage Daily Temp. (deg C): Ambient Baro, Press. (in. Hg): Air Metric PM₁₀ Sampler PM10 Filter ID #: DHPT 108 Beginning Flow Rate (LPM): 5.0 Timer Beginning Time: 3736.15 Ending Flow Rate (LPM): Timer Ending Time: 37 60、17 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 2\006 Beginning Canister Pressure(in. Hg): 30 pci Flow Meter ID #: 21006 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): 1.25 Ending Timer Reading: 1440 Ending Flow Rate (LPM): SKC Pump Serial #: 4590 FIELD NOTES:

SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: FLS-01 Sample Start Date/Time: \\23/08 13:07 Sample Stop Date/Time: 124/08 13:10 Sample ID # (all media): RFS-FLS-01-07 Field Technician: &w erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 109 Beginning Flow Rate (LPM): Timer Beginning Time: 5837.96 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 5862.02 Sampler Serial #: 1349 Summa Canister (VOC) Sampler Canister ID #: 36045 Beginning Canister Pressure(in. Hg): 30 PG Flow Meter ID #: 3e o 45 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: 1.25 Beginning Flow Rate (LPM): Ending Timer Reading: 1444 Ending Flow Rate (LPM): 1.25 SKC Pump Serial #: FIELD NOTES: SIGNATURE:

AIR QUALITY SAMPLE DOCUMENTATION SHEET			
West words and the Rich	CHMOND FIE	LD STATION	
	SITE INFOR	MATION	
	<u> </u>		
Sample Location: UCB-01	·		
Sample Start Date/Time: 2/5/06	9:51	Sample Stop Date/Time: 246 108	9:51
Sample ID # (all media): 2FS-UC1	3-01-08	Field Technician: Sw	
rerage Daily Temp. (deg C):		ient Baro. Press. (in. Hg):	
1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 -	Air Metric PM		
PM ₁₀ Filter ID #:	PHPT 110	Beginning Flow Rate (LPM):	5.0
Timer Beginning Time:	3107.06	Ending Flow Rate (LPM):	5.0
Timer Ending Time:	3131.35	Sampler Serial #:	1345
	-		
Suj	mma Canister (
	9909	Beginning Canister Pressure(in. Hg):	29.5 psi
Flow Meter ID #:	9909	Beginning Canister Pressure(in. Hg): Ending Canister Pressure(in. Hg):	5 Psi
NUMBER OF STREET			
	ormaldehyde/S	SKC Sampler	
Formaldehyde Lot ID #:		Beginning Timer Reading:	0
Beginning Flow Rate (LPM):	1.25	Ending Timer Reading:	1440
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #.	8461
		t.	
		Brough Guidherth Scholl in Visit 1	
FIELD NOTES:			
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
			:
			
	-		
SIGNATURE:	·		

TETRATECH ENDING.

AIR QUALITY	SAMPLE DO	CUMENTATION SHEET	
RIGHT	CHMOND FIE	DISTATION	
	SITEINFOR	MATION	
		-	
Sample Location: 163-01			
Sample Start Date/Time: 2/5/08	10:33	Sample Stop Date/Time: 2/6/08	10:33
Sample ID # (all media): RFS - ILe	3-01-08	Field Technician: Sw	
rerage Daily Temp. (deg C):	Ambi	ent Baro. Press. (in. Hg):	
	Air Metric PM	₀ Sampler	
PM ₁₀ Filter ID #:	DHPT III	Beginning Flow Rate (LPM):	5.6
Timer Beginning Time:	4325.92	Ending Flow Rate (LPM):	5.0
Timer Ending Time:	4350.0	Sampler Serial #:	1322
Superior and the second of the second	mma Canister (VOC) Sampler	and the same
Canister ID #:	34416	Beginning Canister Pressure(in. Hg):	34 psi
Flow Meter ID #:	34414	Ending Canister Pressure(in. Hg):	12 PSi
	· .		
and the state of t	ormaldehyde/S	KC Sampler	
Formaldehyde Lot ID #:		Beginning Timer Reading:	0
Beginning Flow Rate (LPM):	1.3	Ending Timer Reading:	1445
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #:	2812
	1		
	10 A 40 S	a dalam di pada di Para Pana di Pana di Para di Para di Pana d	
FIELD NOTES:			
			,
			· · ·
SIGNATURE:			
			-, ., ., ., ., ., ., ., ., ., ., ., ., .,

AIR QUALITY	SAMPLE DO	CUMENTATION SHEET	
Z RIO	CHMOND FIE	LD STATION	State of the second
	SITE INFOR	MATION	
Sample Location: \63-02	-		
Sample Start Date/Time: 215 06	10:42	Sample Stop Date/Time: 2/6/08	10:41
Sample ID # (all media): PFS-16:	3-02-08	Field Technician: 8W	
rerage Daily Temp. (deg C):	Ambi	ient Baro. Press. (in. Hg):	
	Air Metric PM	o Sampler	
PM ₁₀ Filter ID #:	DHPT112	Beginning Flow Rate (LPM):	50
Timer Beginning Time:	8847.35	Ending Flow Rate (LPM):	5.0
Timer Ending Time:	8871.38		
Su	mma Canister (VOC) Sampler	
Canister ID #:	9564	Beginning Canister Pressure(in. Hg):	32 PSi
Flow Meter ID #:	9564	Ending Canister Pressure(in. Hg):	9 PS
The state of the s	ormaldehyde/S	KC/Sampler	
Formaldehyde Lot ID #:		Beginning Timer Reading:	6
Beginning Flow Rate (LPM):	2.5	Ending Timer Reading:	1439
Ending Flow Rate (LPM):	2.5	SKC Pump Serial #:	2816
000	al calle as a		
FIELD NOTES:			
SIGNATURE:	-		

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION

	AIR QUALIT SAWPLE DUGUMENTATION SHEET			
R(C	FIN(O)NID FIE	LD STATION		
	SITE INFOR	RMATION	THE RESERVE	
		MIAGION		
Sample Location: 103-021	>			
Sample Start Date/Time: 2/5/06		Sample Stop Date/Time: 2/6/08	10:41	
Sample ID # (all media): PFS - 162	-02D-0	Field Technician:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
rerage Daily Temp. (deg C):	Amb	pient Baro. Press. (in. Hg):		
	Air Metric PN	I _{f0} Sampler		
PM ₁₀ Filter ID #:		Beginning Flow Rate (LPM): -	no man en resulta de partir de la composición de la composición de la composición de la composición de la compo	
Timer Beginning Time:		Ending Flow Rate (LPM):		
Timer Ending Time:		Sampler Serial #:		
			No.	
	nma Canister	(VOC) Sampler		
Canister ID #:		Beginning Canister Pressure(in. Hg):		
Flow Meter ID #:		Ending Canister Pressure(in. Hg):		
	ormaldehyde/			
Formaldehyde Lot ID #: Beginning Flow Rate (LPM):	25	Beginning Timer Reading:	<u>0</u>	
Ending Flow Rate (LPM):	2.5		439	
Litting 1 tow Nate (LPW).	7.5	SKC Pump Serial #:	2816	
FIELD NOTES:			***	
· summa can	ister w	as leaking, so tur	nod	
82 - no sa	mole.	7,701		
00				
SIGNATURE:	· · · · · · · · · · · · · · · · · · ·			

AIR QUALITY SAMPLE DOCUMENTATION SHEET			
RIC	CHMOND FIELD	STATION	
STATE OF THE PARTY	SITE INFORMA	TION	
Sample Location: \(\(\(\begin{align*} \) \(\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Sample Start Date/Time: 2 5 06		ample Stop Date/Time: 2/6/08	10:51
Sample ID # (all media): P-5 - 10			
rerage Daily Temp. (deg C):	Ambien Air Metric PM ₁₀ S	Baro. Press. (in. Hg):	
PM ₁₀ Filter ID #:			
	DHPT 113	Beginning Flow Rate (LPM):	5-0
Timer Beginning Time:	4803.34	Ending Flow Rate (LPM):	5.0
Timer Ending Time:	4827.34	Sampler Serial #:	1277
	mma Canister (VC		
Canister ID #:		Beginning Canister Pressure(in. Hg):	
Flow Meter ID #:	34181	Ending Canister Pressure(in. Hg):	4 psi
			1 05 (8:25)
	ormaldehyde/SKG		
Formaldehyde Lot ID #:	120	Beginning Timer Reading:	0
Beginning Flow Rate (LPM):	1.25	Ending Timer Reading:	1440
Ending Flow Rate (LPM):	(-20)	SKC Pump Serial #:	7738
			5
FIELD NOTES:	<u> </u>	AND THE RESIDENCE OF THE PARTY	
TALLE NOTES.	4		•
	· · · · · · · · · · · · · · · · · · ·		
	·		
	·		
SIGNATURE:			
		<u> </u>	

TETRA TECHLEMING.

AIR QUALITY	SAMPLE DO	CUMENTATION SHEET	
RIO RIO	CHMOND FIE	LD STATION	
	× 10 000		
	SITEINFOR	MATION 2	
	 		
Sample Location: 175-01		•	
Sample Start Date/Time: 2/5/08	11:16	Sample Stop Date/Time: 2/6/06	12:00
Sample ID # (all media): 2=5-176	5-01-08	Field Technician: SW	
verage Daily Temp. (deg C):	Ambi	ent Baro. Press. (in. Hg):	
	Air Metric PM.	And the contract of the contra	
PM ₁₀ Filter ID #:	DHPT 114	Beginning Flow Rate (LPM):	5.0
Timer Beginning Time:	4030.39	Ending Flow Rate (LPM):	5.0
Timer Ending Time:	4055.15	Sampler Serial #:	1270
Su	mma Canister (VOC) Sampler	
Canister ID #:	34434	Beginning Canister Pressure(in. Hg):	30 PSi
Flow Meter ID #:	34434	Ending Canister Pressure(in. Hg):	5 PSi
			J
1	ormaldehyde/S	KG Sampler	
Formaldehyde Lot ID #:		Beginning Timer Reading:	b
Beginning Flow Rate (LPM):	1.25	Ending Timer Reading:	1485
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #:	
	-		
FIELD NOTES:		· · · · · · · · · · · · · · · · · · ·	•
: [
SIGNATURE:			

TETRATECH EMING.

AIR QUALITY SAMPLE DOCUMENTATION SHEET					
RICHMOND FIELD STATION					
	SITE INFOR	MATION			
	<u> </u>		-		
Sample Location: \75 -02	 				
Sample Start Date/Time: 2/5/06	11:21	Sample Stop Date/Time: 2/6/06	12:03		
Sample ID # (all media):		Field Technician:	,		
rerage Daily Temp. (deg C):	Amb	ient Baro. Press. (in. Hg):			
	Air Metric PM				
PM ₁₀ Filter ID #:	DHPT 115	Beginning Flow Rate (LPM):	5.0		
Timer Beginning Time:	3863.20	Ending Flow Rate (LPM):	5,0		
Timer Ending Time:	3887.79	Sampler Serial #:	1323		
Survey of the state of the stat	mma Canister	VOC) Sampler,	7.1		
Canister ID #.	35976	Beginning Canister Pressure(in. Hg):	35 psi		
Flow Meter ID #:	35976	Ending Canister Pressure(in. Hg):	6 081		
Figure 1	ormaldehyde/8	KC Sampler			
Formaldehyde Lot ID #:		Beginning Timer Reading:	0		
Beginning Flow Rate (LPM):	1.25	Ending Timer Reading:	1482		
Ending Flow Rate (LPM):	1.25	SKC Pump Serial #:			
		taring and a mining of the second			
FIELD NOTES:					
· 1st battery for Air	Metric u	ses not working. Wen-	t back		
for med batter	2 - begra	- to work.			
	1		-		
<i></i>					
SIGNATURE:					

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: Sample Start Date/Time: 2/5/08 11:40 Sample Stop Date/Time: 2/6/108 Sample ID # (all media): RF5-177-01-08 Field Technician: Ambient Baro. Press. (in. Hg): rerage Daily Temp. (deg C): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: Beginning Flow Rate (LPM): DHPT 116 Timer Beginning Time: 3355.88 Ending Flow Rate (LPM): 50 Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 35996 Beginning Canister Pressure(in. Hg): 39 Ps Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): Ending Timer Reading: Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 155-01 Sample Start Date/Time: 2/5/06 Sample Stop Date/Time: 11:45 Rts-155-01-08 Sample ID # (all media): Field Technician: &w erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DH?T II7 Beginning Flow Rate (LPM): 50 Timer Beginning Time: 2817, Le6 Ending Flow Rate (LPM): 5.0 Timer Ending Time: 2841, 72 Sampler Serial #: 1332 Summa Canister (VOC) Sampler Beginning Canister Pressure(in. Hg): 32 pc; Canister ID #: 34345 Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): Ending Timer Reading: Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRATECHEMING. AIR QUALITY SAMPLE DOCUMENTATION SHEET

RICHMOND FIELD STATION				
elte wron	MATION	NEW CONTROL OF THE SECOND SECO		
SINE INDER	WATION			
1		· · · · · · · · · · · · · · · · · · ·		
12:29	Sample Stop Date/Time: 2/6/08	12:29		
18-01-08		· · · · · · · · · · · · · · · · · · ·		
Ambi	ent Baro. Press. (in. Hg):			
·	Beginning Flow Rate (LPM):	5.0		
2399.67	Ending Flow Rate (LPM):	5.0		
2423.90	Sampler Serial #:	1278		
10 12 15 15 15 15 15 15 15 15 15 15 15 15 15				
		20 Peri		
34409	Ending Canister Pressure(in. Hg):	D P81		
ormaldehvde/S	Ke Samalar			
		ව		
1.25		1440		
-		10476		
		<u>10 1ψ</u>		
:				
············				
•				
TOWNS AND THE PARTY AND THE PA	SITE INFOR	SITE INFORMATION 12:29 Sample Stop Date/Time: 2/6/08 8-0 -08 Field Technician: Swall Ambient Baro. Press. (in. Hg): Air Metric PM ₁₀ Sampler DHPT 19 Beginning Flow Rate (LPM): 2399.67 Ending Flow Rate (LPM): 2423.90 Sampler Serial #: Image: Sampler Serial Seginning Canister Pressure(in. Hg): 34409 Ending Canister Pressure(in. Hg): Sampler Serial Seginning Timer Reading: Sampler Serial Seginning Timer Reading: Sampler Sending Timer Reading Timer Reading Timer Reading Timer		

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION

SITE INFORMATION Sample Location: 478-02 Sample Start Date/Time: 2/6/08 12:22 Sample Stop Date/Time: 2/6/06 Sample ID # (all media): 2-5-478-02-08 Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 116 Beginning Flow Rate (LPM): 5.5 Timer Beginning Time: 3567.17 Ending Flow Rate (LPM): 5・0 Timer Ending Time: 3591.18 Sampler Serial #: Summa Canister (VOC) Sampler Canister ID #: 1566 Beginning Canister Pressure(in. Hg): 35 psi Flow Meter ID #: 1966 Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: Beginning Flow Rate (LPM): (.3 Ending Timer Reading: Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRA TECH EM INC. AIR QUALITY SAMPLE DOCUMENTATION SHEET RICHMOND FIELD STATION SITE INFORMATION Sample Location: 474-03 Sample Start Date/Time:2 12:36 Sample Stop Date/Time: 2/6/06 Sample ID # (all media): PLFS - 478 - 03 - 08 Field Technician: erage Daily Temp. (deg C): Ambient Baro. Press. (in. Hg): Air Metric PM₁₀ Sampler PM₁₀ Filter ID #: DHPT 120 Beginning Flow Rate (LPM): Timer Beginning Time: 3760.16 Ending Flow Rate (LPM): Timer Ending Time: Sampler Serial #: Summa Canister (VOC) Sampler 33785: Canister ID #: -🛴 Beginning Canister Pressure(in. Hg): 29 33185:Flow Meter ID #: Ending Canister Pressure(in. Hg): Formaldehyde/SKC Sampler Formaldehyde Lot ID #: Beginning Timer Reading: 0 Beginning Flow Rate (LPM): 1.25 1440 **Ending Timer Reading:** 1.25 Ending Flow Rate (LPM): SKC Pump Serial #: FIELD NOTES: SIGNATURE:

TETRATECH EM INC.

AIR QUALITY SAMPLE DOCUMENTATION SHEET						
RIGHMOND FIELD STATION						
	X (((
	SITE INFO	RMATION				
Sample Location: 2-80 - 0						
Sample Start Date/Time: 2 5 %	13:17	Sample Step Date/Time: 211-120	12.17			
Sample ID # (all media): 12F5 - 28		Sample Stop Date/Time: 2[6]08	13:17			
erage Daily Temp. (deg C):		6 Field Technician: 600 pient Baro, Press. (in. Hg):	· · · · · · · · · · · · · · · · · · ·			
letage bany temp. (deg o).	Air Metric PN		350650000000000000000000000000000000000			
PM ₁₀ Filter ID #:	DHPT 12		50			
Timer Beginning Time:			5.0			
Timer Ending Time:	5886-0		1340			
Su	mma Canister	(VOC) Sampler				
Canister ID #:	5354	Beginning Canister Pressure(in. Hg):	30.5 PSi			
Flow Meter ID #:	5354	Ending Canister Pressure(in. Hg):	5.5 Bi			
	V-//		1			
	ormaldehyde <i>l</i>	SKC Sampler	894535 176-3			
Formaldehyde Lot ID #:		Beginning Timer Reading:	0			
Beginning Flow Rate (LPM):	1.3		1440			
Ending Flow Rate (LPM):	1.3	SKC Pump Serial #:				
			Selfanda - 12 m			
FIELD NOTES:						
	·					
<u> </u>			·			
SIGNATURE:						

Appendix D

Analytical Results

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0710708B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518.008.01 UCB-Air

DATE RECEIVED: 10/30/2007 **CONTACT:** Kelly Buettner 11/01/2007

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
05A	RFS-478-01-01	Modified TO-15 SIM	7.5 "Hg
06A	RFS-478-02-01	Modified TO-15 SIM	0.0 "Hg
07A	RFS-478-03-01	Modified TO-15 SIM	6.0 "Hg
08A	Lab Blank	Modified TO-15 SIM	NA
09A	CCV	Modified TO-15 SIM	NA
10A	LCS	Modified TO-15 SIM	NA

CERTIFIED BY:

Linda d. Fruman

DATE: <u>1</u>1/02/07

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0710708B

Three 6 Liter Summa Special (SIM Certified) samples were received on October 30, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-478-01-01

Lab ID#: 0710708B-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.036	0.097	0.17	0.47
Benzene	0.090	0.17	0.28	0.55
Trichloroethene	0.0054	0.075	0.029	0.40
Tetrachloroethene	0.0054	0.010	0.036	0.072

Client Sample ID: RFS-478-02-01

Lab ID#: 0710708B-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.067	0.15	0.21	0.47
Trichloroethene	0.0040	0.030	0.022	0.16
Tetrachloroethene	0.0040	0.014	0.027	0.098

Client Sample ID: RFS-478-03-01

Lab ID#: 0710708B-07A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.084	0.13	0.27	0.42
Trichloroethene	0.0050	0.0064	0.027	0.035
Tetrachloroethene	0.0050	0.011	0.034	0.074

Client Sample ID: RFS-478-01-01 Lab ID#: 0710708B-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a103106 1.79	Date of Collection: 10/26/07 Date of Analysis: 10/31/07 03:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.071	Not Detected
Methylene Chloride	0.36	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
Chloroform	0.036	0.097	0.17	0.47
Benzene	0.090	0.17	0.28	0.55
1,2-Dichloroethane	0.036	Not Detected	0.14	Not Detected
Trichloroethene	0.0054	0.075	0.029	0.40
Tetrachloroethene	0.0054	0.010	0.036	0.072

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

Surrogates		Method Limits
	%Recovery	
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	91	70-130

Not Detected

0.14

Not Detected

0.036

Client Sample ID: RFS-478-02-01 Lab ID#: 0710708B-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a103107 1.34	Date of Collection: 10/26/07 Date of Analysis: 10/31/07 04:35 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.053	Not Detected
Methylene Chloride	0.27	Not Detected	0.93	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
Chloroform	0.027	Not Detected	0.13	Not Detected
Benzene	0.067	0.15	0.21	0.47
1,2-Dichloroethane	0.027	Not Detected	0.11	Not Detected
Trichloroethene	0.0040	0.030	0.022	0.16
Tetrachloroethene	0.0040	0.014	0.027	0.098

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

2	, WB	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	92	70-130

Not Detected

0.11

Not Detected

0.027

Client Sample ID: RFS-478-03-01 Lab ID#: 0710708B-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a103108 1.68	Date of Collection: 10/26/07 Date of Analysis: 10/31/07 05:31 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	Not Detected	0.16	Not Detected
Benzene	0.084	0.13	0.27	0.42
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.0064	0.027	0.035
Tetrachloroethene	0.0050	0.011	0.034	0.074
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	90	70-130

Client Sample ID: Lab Blank Lab ID#: 0710708B-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a103105 1.00		Date of Collection: I Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: CCV Lab ID#: 0710708B-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a103102	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/31/07 09:38 AM

Compound	%Recovery
Vinyl Chloride	104
1,1-Dichloroethene	98
Methylene Chloride	101
cis-1,2-Dichloroethene	101
Chloroform	94
Benzene	99
1,2-Dichloroethane	86
Trichloroethene	83
Tetrachloroethene	83
trans-1,2-Dichloroethene	103

Container Type: NA - Not Applicable

остания туротти тост фрисция		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: LCS Lab ID#: 0710708B-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a103103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/31/07 10:49 AM

Compound	%Recovery
Vinyl Chloride	96
1,1-Dichloroethene	105
Methylene Chloride	105
cis-1,2-Dichloroethene	100
Chloroform	94
Benzene	98
1,2-Dichloroethane	86
Trichloroethene	82
Tetrachloroethene	85
trans-1,2-Dichloroethene	100

Container Type: NA - Not Applicable

урегия полурения		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

DATE COMPLETED:

AN ENVIRONMENTAL ANALYTICAL LABORATORY

11/12/2007

WORK ORDER #: 0710708A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518.008.01 UCB-Air

DATE RECEIVED: 10/30/2007 **CONTACT:** Kelly Buettner

AC./PRES.
TOWT TELD
5.0 "Hg
5.0 "Hg
7.5 "Hg
3.0 "Hg
8.0 "Hg
7.0 "Hg
4.0 "Hg
5.0 "Hg
5.5 "Hg
4.0 "Hg
5.0 "Hg
29.0 "Hg
NA

Continued on next page

PECEIDT

WORK ORDER #: 0710708A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518.008.01 UCB-Air

DATE RECEIVED: 10/30/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 11/12/2007

 FRACTION #
 NAME
 TEST
 VAC./PRES.

 17B
 LCS
 Modified TO-15 SIM
 NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>1</u>1/12/07

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0710708A

Eleven 6 Liter Summa Special (SIM Certified) samples were received on October 30, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	<pre><!--=30% RSD with 2 compounds allowed out to < 40% RSD</pre--></pre>	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample RFS-UCB-01-01 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not

performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-01-01

Lab ID#: 0710708A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.080	0.16	0.26	0.50
Trichloroethene	0.0048	0.0063	0.026	0.034
Tetrachloroethene	0.0048	0.0092	0.033	0.062

Client Sample ID: RFS-163-01-01 Lab Duplicate

Lab ID#: 0710708A-01AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.080	0.14	0.26	0.44
Tetrachloroethene	0.0048	0.0086	0.033	0.058

Client Sample ID: RFS-163-02-01

Lab ID#: 0710708A-02A

Compound	Rpt. Limit (ppbv)	Amount	Rpt. Limit (uG/m3)	Amount
		(ppbv)		(uG/m3)
cis-1,2-Dichloroethene	0.036	0.18	0.14	0.71
Benzene	0.090	0.13	0.28	0.41
Trichloroethene	0.0054	0.041	0.029	0.22
Tetrachloroethene	0.0054	0.029	0.036	0.20

Client Sample ID: RFS-163-02-01D

Lab ID#: 0710708A-03A

Compound	Rpt. Limit (ppbv)	Amount	Rpt. Limit (uG/m3)	Amount
		(ppbv)		(uG/m3)
Benzene	0.074	0.12	0.24	0.37
Tetrachloroethene	0.0045	0.0085	0.030	0.058

Client Sample ID: RFS-163-03-01

Lab ID#: 0710708A-04A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.092	0.12	0.29	0.38

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-03-01

Lab ID#: 0710708A-04A

 Trichloroethene
 0.0055
 0.0060
 0.030
 0.032

 Tetrachloroethene
 0.0055
 0.010
 0.037
 0.068

Client Sample ID: RFS-177-01-01

Lab ID#: 0710708A-08A

Compound	Rɒt. Limit (ppbv)	Amount	Rpt. Limit (uG/m3)	Amount (uG/m3)
		(ppbv)		
Chloroform	0.035	0.073	0.17	0.36
Benzene	0.088	0.23	0.28	0.74
Trichloroethene	0.0052	0.0083	0.028	0.045
Tetrachloroethene	0.0052	0.014	0.036	0.092

Client Sample ID: RFS-UCB-01-01

Lab ID#: 0710708A-09A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount
				(uG/m3)
Chloroform	0.031	0.033	0.15	0.16
Benzene	0.078	0.27	0.25	0.85
Trichloroethene	0.0046	0.0084	0.025	0.045
Tetrachloroethene	0.0046	0.016	0.032	0.11

Client Sample ID: RFS-155-01-01

Lab ID#: 0710708A-10A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.080	0.16	0.26	0.50
Trichloroethene	0.0048	0.0062	0.026	0.034
Tetrachloroethene	0.0048	0.015	0.033	0.10

Client Sample ID: RFS-175-01-01

Lab ID#: 0710708A-11A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.016	0.020	0.042	0.052
Chloroform	0.033	0.036	0.16	0.18

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-175-01-01

Lab ID#: 0710708A-11A

 Benzene
 0.082
 0.48
 0.26
 1.5

 Trichloroethene
 0.0049
 0.0067
 0.026
 0.036

 Tetrachloroethene
 0.0049
 0.022
 0.033
 0.15

Client Sample ID: RFS-175-02-01

Lab ID#: 0710708A-12A

Compound	Rɒt. Limit (ppbv)	Amount	Rpt. Limit	Amount (uG/m3)		
		(ppbv)	(uG/m3)			
Benzene	0.078	0.12	0.25	0.40		
Tetrachloroethene	0.0046	0.0075	0.032	0.051		

Client Sample ID: RFS-FLS-01-01

Lab ID#: 0710708A-13A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.080	0.14	0.26	0.43
Tetrachloroethene	0.0048	0.0068	0.033	0.046

Client Sample ID: RFS-TB-01

Lab ID#: 0710708A-14A

No Detections Were Found.

Client Sample ID: RFS-163-01-01 Lab ID#: 0710708A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110206 1.61	Date of Collection: 10/26/07 Date of Analysis: 11/2/07 02:30 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.045	0.16	0.22
Benzene	0.080	0.16	0.26	0.50
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.0063	0.026	0.034
Tetrachloroethene	0.0048	0.0092	0.033	0.062
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

(0	•••••••	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: RFS-163-01-01 Lab Duplicate Lab ID#: 0710708A-01AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110207 1.61	Date of Collection: 10/26/07 Date of Analysis: 11/2/07 03:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.044	0.16	0.22
Benzene	0.080	0.14	0.26	0.44
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	Not Detected	0.026	Not Detected
Tetrachloroethene	0.0048	0.0086	0.033	0.058

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

,		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	90	70-130

Not Detected

0.13

Not Detected

0.032

Client Sample ID: RFS-163-02-01 Lab ID#: 0710708A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110215 1.79		Date of Collection: 10/26/07 Date of Analysis: 11/2/07 09:11 PM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.071	Not Detected
Methylene Chloride	0.36	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.036	0.18	0.14	0.71
Chloroform	0.036	Not Detected	0.17	Not Detected
Benzene	0.090	0.13	0.28	0.41

Not Detected

0.041

0.029

Not Detected

0.14

0.029

0.036

0.14

Not Detected

0.22

0.20

Not Detected

0.036

0.0054

0.0054

0.036

Container Type: 6 Liter Summa Special (SIM Certified)

1,2-Dichloroethane

Tetrachloroethene

trans-1,2-Dichloroethene

Trichloroethene

3 p. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: RFS-163-02-01D Lab ID#: 0710708A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110217 1.49	Date of Collection: 10/26/07 Date of Analysis: 11/2/07 10:28 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.038	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.059	Not Detected
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	Not Detected	0.14	Not Detected
Benzene	0.074	0.12	0.24	0.37
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0045	Not Detected	0.024	Not Detected
Tetrachloroethene	0.0045	0.0085	0.030	0.058

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	90	70-130	

Not Detected

0.12

Not Detected

0.030

Client Sample ID: RFS-163-03-01 Lab ID#: 0710708A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110218 1.83	Date of Collection: 10/26/07 Date of Analysis: 11/2/07 11:07 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.047	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.072	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.14	Not Detected
Chloroform	0.037	Not Detected	0.18	Not Detected
Benzene	0.092	0.12	0.29	0.38

Not Detected

0.0060

0.010

Not Detected

0.15

0.030

0.037

0.14

Not Detected

0.032

0.068

Not Detected

0.037

0.0055

0.0055

0.037

Container Type: 6 Liter Summa Special (SIM Certified)

1,2-Dichloroethane

Tetrachloroethene

trans-1,2-Dichloroethene

Trichloroethene

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	88	70-130	

Client Sample ID: RFS-177-01-01 Lab ID#: 0710708A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110506 1.75	Date of Collection: 10/26/07 Date of Analysis: 11/5/07 01:56 PI		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.069	Not Detected
Methylene Chloride	0.35	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Chloroform	0.035	0.073	0.17	0.36
Benzene	0.088	0.23	0.28	0.74
1,2-Dichloroethane	0.035	Not Detected	0.14	Not Detected
Trichloroethene	0.0052	0.0083	0.028	0.045
Tetrachloroethene	0.0052	0.014	0.036	0.092
trans-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	88	70-130	

Client Sample ID: RFS-UCB-01-01 Lab ID#: 0710708A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110507 1.55	Date of Collection: 10/26/07 Date of Analysis: 11/5/07 03:03 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
Methylene Chloride	0.31	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	0.033	0.15	0.16
Benzene	0.078	0.27	0.25	0.85
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.0084	0.025	0.045
Tetrachloroethene	0.0046	0.016	0.032	0.11
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

3 p. 1 3. 1 2. 1 2. 1 2. 1 2. 1 2. 1 2. 1 2		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	88	70-130

Client Sample ID: RFS-155-01-01 Lab ID#: 0710708A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110508 1.61	Date of Collection: 10/26/07 Date of Analysis: 11/5/07 04:44 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	0.33	1.1	1.1
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	Not Detected	0.16	Not Detected
Benzene	0.080	0.16	0.26	0.50
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.0062	0.026	0.034
Tetrachloroethene	0.0048	0.015	0.033	0.10

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	89	70-130	

Not Detected

0.13

Not Detected

0.032

Client Sample ID: RFS-175-01-01 Lab ID#: 0710708A-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110509 1.64			ollection: 10/26/07 nalysis: 11/5/07 05:33 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.016	0.020	0.042	0.052	
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected	
Methylene Chloride	0.33	Not Detected	1.1	Not Detected	
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected	
Chloroform	0.033	0.036	0.16	0.18	
Benzene	0.082	0.48	0.26	1.5	
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected	
Trichloroethene	0.0049	0.0067	0.026	0.036	
Tetrachloroethene	0.0049	0.022	0.033	0.15	
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected	

Container Type: 6 Liter Summa Special (SIM Certified)

Сельши с турен с Сельши сресым (с	• • • • • • • • • • • • • • • • •	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	90	70-130	

Client Sample ID: RFS-175-02-01 Lab ID#: 0710708A-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110510 1.55	a110510 1.55		Date of Collection: 10/26/07 Date of Analysis: 11/5/07 06:28 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected	
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected	
Methylene Chloride	0.31	Not Detected	1.1	Not Detected	
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected	
Chloroform	0.031	Not Detected	0.15	Not Detected	
Benzene	0.078	0.12	0.25	0.40	
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected	
Trichloroethene	0.0046	Not Detected	0.025	Not Detected	
Tetrachloroethene	0.0046	0.0075	0.032	0.051	
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected	

Container Type: 6 Liter Summa Special (SIM Certified)

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: RFS-FLS-01-01 Lab ID#: 0710708A-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110511 1.61	Date of Collection: 10/26/07 Date of Analysis: 11/5/07 07:13		. 0, 20, 0 .
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	Not Detected	0.16	Not Detected
Benzene	0.080	0.14	0.26	0.43
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	Not Detected	0.026	Not Detected

0.0048

0.032

Container Type: 6 Liter Summa Special (SIM Certified)

Tetrachloroethene

trans-1,2-Dichloroethene

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	90	70-130	

0.0068

Not Detected

0.033

0.13

0.046

Not Detected

Client Sample ID: RFS-TB-01 Lab ID#: 0710708A-14A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	u		Date of Collection: Date of Analysis: 1	ection: 10/26/07 ysis: 11/5/07 08:08 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected	
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected	
Methylene Chloride	0.20	Not Detected	0.69	Not Detected	
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected	
Chloroform	0.020	Not Detected	0.098	Not Detected	
Benzene	0.050	Not Detected	0.16	Not Detected	
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected	
Trichloroethene	0.0030	Not Detected	0.016	Not Detected	
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected	
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected	

Container Type: 6 Liter Summa Special (SIM Certified)

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	85	70-130	

Client Sample ID: Lab Blank Lab ID#: 0710708A-15A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110205 1.00	Date of Collection: NA Date of Analysis: 11/2/07 12:38 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: Lab Blank Lab ID#: 0710708A-15B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a110505 1.00	Date of Collection: NA Date of Analysis: 11/5/07 12:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: CCV Lab ID#: 0710708A-16A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a110202	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/2/07 09:49 AM

Compound	%Recovery
Vinyl Chloride	112
1,1-Dichloroethene	100
Methylene Chloride	103
cis-1,2-Dichloroethene	104
Chloroform	95
Benzene	103
1,2-Dichloroethane	85
Trichloroethene	84
Tetrachloroethene	82
trans-1,2-Dichloroethene	105

occurrence ryperior recomplished		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	93	70-130	

Client Sample ID: CCV Lab ID#: 0710708A-16B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a110502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/5/07 08:51 AM

Compound	%Recovery
Vinyl Chloride	111
1,1-Dichloroethene	102
Methylene Chloride	105
cis-1,2-Dichloroethene	105
Chloroform	96
Benzene	103
1,2-Dichloroethane	87
Trichloroethene	86
Tetrachloroethene	86
trans-1,2-Dichloroethene	107

Comment Types and Theory Types and T		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: LCS Lab ID#: 0710708A-17A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a110203	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/2/07 10:36 AM

Compound	%Recovery
Vinyl Chloride	100
1,1-Dichloroethene	105
Methylene Chloride	106
cis-1,2-Dichloroethene	101
Chloroform	93
Benzene	99
1,2-Dichloroethane	84
Trichloroethene	82
Tetrachloroethene	84
trans-1,2-Dichloroethene	101

occurrence types the trees types and		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: LCS Lab ID#: 0710708A-17B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a110503	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/5/07 09:45 AM

Compound	%Recovery
Vinyl Chloride	96
1,1-Dichloroethene	104
Methylene Chloride	105
cis-1,2-Dichloroethene	99
Chloroform	92
Benzene	97
1,2-Dichloroethane	83
Trichloroethene	81
Tetrachloroethene	83
trans-1,2-Dichloroethene	100

остания туротти тост фриовило		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	90	70-130

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0710670A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518,008,01 UCB-RFS Air

DATE RECEIVED: 10/27/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 11/01/2007

TEST FRACTION # NAME 05A Modified TO-11A RFS-478-01-01 05AA RFS-478-01-01 Lab Duplicate Modified TO-11A 06A RFS-478-02-01 Modified TO-11A 07A RFS-478-03-01 Modified TO-11A 08A Lab Blank Modified TO-11A 09A LCS Modified TO-11A

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>11/01/07</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004

NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0710670A

Three TO-11 Cartridge samples were received on October 27, 2007. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-478-01-01

Lab ID#: 0710670A-05A

Compound	Rbt. Limit	Kpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.026	25	13

Client Sample ID: RFS-478-01-01 Lab Duplicate

Lab ID#: 0710670A-05AA

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.026	25	13

Client Sample ID: RFS-478-02-01

Lab ID#: 0710670A-06A

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehvde	0.050	0.028	16	9.1

Client Sample ID: RFS-478-03-01

Lab ID#: 0710670A-07A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount	
	(ug)	(uG/m3)	(ug)	(uG/m3)	
Formaldehyde	0.10	0.050	65	33	

Client Sample ID: RFS-478-01-01 Lab ID#: 0710670A-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1031007
 Date of Collection: 10/26/07

 Dil. Factor:
 1.00
 Date of Analysis: 10/31/07 01:23 PM

 Date of Extraction: 10/31/07
 Rpt. Limit
 Amount
 Amount

Rpt. Limit Rpt. Limit Amount Amount (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.026 25 13

Air Sample Volume(L): 1880 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-01-01 Lab Duplicate

Lab ID#: 0710670A-05AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1031010		Date of Collection:	
Dii. Factor:	1.00		Date of Analysis: 10 Date of Extraction:	
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.026

25

13

0.050

Air Sample Volume(L): 1880 Container Type: TO-11 Cartridge

Formaldehyde

Client Sample ID: RFS-478-02-01 Lab ID#: 0710670A-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1031008 1.00		Date of Collection: 10	/31/07 01:44 PM
			Date of Extraction:	10/31/07
	Rpt. Limit	Rpt. Limit	Amount	Amount

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.028
 16
 9.1

Air Sample Volume(L): 1810 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-03-01 Lab ID#: 0710670A-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1031032 Date of Collection: 10/26/07
Dil. Factor: 2.00 Date of Analysis: 10/31/07 10:05 PM
Date of Extraction: 10/31/07

Rpt. Limit Rpt. Limit Amount Amount

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.10	0.050	65	33

Air Sample Volume(L): 1990 Container Type: TO-11 Cartridge

Client Sample ID: Lab Blank Lab ID#: 0710670A-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	11001000		Date of Collection: N Date of Analysis: 10	
			Date of Extraction:	10/31/07
Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.025	Not Detected	Not Detected

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 0710670A-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1031004 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 10/31/07 12:20 PM

Date of Extraction: 10/31/07

Compound %Recovery

Formaldehyde 101

Air Sample Volume(L): 2000

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0710670B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518,008,01 UCB-RFS Air

DATE RECEIVED: 10/27/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 11/02/2007

FRACTION #	<u>NAME</u>	<u>TEST</u>
01A	RFS-163-01-01	Modified TO-11A
01AA	RFS-163-01-01 Lab Duplicate	Modified TO-11A
02A(cancelled)	RFS-163-02-01	Modified TO-11A
03A(cancelled)	RFS-163-02-01D	Modified TO-11A
04A	RFS-163-03-01	Modified TO-11A
08A	RFS-177-01-01	Modified TO-11A
09A	RFS-UCB-01-01	Modified TO-11A
10A	RFS-155-01-01	Modified TO-11A
11A	RFS-175-01-01	Modified TO-11A
12A	RFS-175-02-01	Modified TO-11A
13A	RFS-FLS-01-01	Modified TO-11A
14A	RFS-TB-01	Modified TO-11A
15A	Lab Blank	Modified TO-11A
16A	LCS	Modified TO-11A

CERTIFIED BY:

Linda d. Fruman

DATE: <u>1</u>1/02/07

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0710670B

Eleven TO-11 Cartridge samples were received on October 27, 2007. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

Samples RFS-163-02-01 and RFS-163-02-01D were cancelled per client's request.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-163-01-01				
Lab ID#: 0710670B-01A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	25	14
Client Sample ID: RFS-163-01-01 Lab l	Duplicate			
Lab ID#: 0710670B-01AA				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	25	14
Client Sample ID: RFS-163-03-01				
Lab ID#: 0710670B-04A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.026	0.65	0.34
Client Sample ID: RFS-177-01-01				
Lab ID#: 0710670B-08A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	36	19
Client Sample ID: RFS-UCB-01-01				
Lab ID#: 0710670B-09A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.026	2.2	1.1
Client Sample ID: RFS-155-01-01				
Lab ID#: 0710670B-10A				
· · · · · · · - · ·	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.024	20	9.6

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-175-01-01

Lab ID#: 0710670B-11A

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.026	19	10

Client Sample ID: RFS-175-02-01

Lab ID#: 0710670B-12A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	1.1	0.55

Client Sample ID: RFS-FLS-01-01

Lab ID#: 0710670B-13A

Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-TB-01

Lab ID#: 0710670B-14A

No Detections Were Found.

Client Sample ID: RFS-163-01-01 Lab ID#: 0710670B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1031011 Date of Collection: 10/26/07
Dil. Factor: 1.00 Date of Analysis: 10/31/07 02:46 PM
Date of Extraction: 10/31/07

Compound	Rpt. Limit	Rpt. Limit	Amount (ug)	Amount
	(ug)	(uG/m3)		(uG/m3)
Formaldehvde	0.050	0.028	25	14

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-01-01 Lab Duplicate

Lab ID#: 0710670B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1031012 Date of Collection: 10/26/07

Dil. Factor: 1.00 Date of Analysis: 10/31/07 03:07 PM

Date of Extraction: 10/31/07

Regular Amount Amount

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-03-01 Lab ID#: 0710670B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1031018		Date of Collection:	10/26/07
Dil. Factor:	1.00	Date of Analysis: 10/31/07 05:1		0/31/07 05:13 PM
			Date of Extraction:	10/31/07
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.026

0.65

0.34

0.050

Air Sample Volume(L): 1920 Container Type: TO-11 Cartridge

Formaldehyde

Client Sample ID: RFS-177-01-01 Lab ID#: 0710670B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1031019
 Date of Collection: 10/26/07

 Dil. Factor:
 1.00
 Date of Analysis: 10/31/07 05:33 PM

 Date of Extraction: 10/31/07

 Rpt. Limit
 Amount
 Amount

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.027	36	19

Air Sample Volume(L): 1880 Container Type: TO-11 Cartridge

Client Sample ID: RFS-UCB-01-01 Lab ID#: 0710670B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1031020
 Date of Collection: 10/26/07

 Dil. Factor:
 1.00
 Date of Analysis: 10/31/07 05:54 PM

 Date of Extraction: 10/31/07
 Rpt. Limit
 Amount
 Amount

Rpt. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0262.21.1

Air Sample Volume(L): 1910 Container Type: TO-11 Cartridge

Client Sample ID: RFS-155-01-01 Lab ID#: 0710670B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1031021 Date of Collection: 10/26/07

Dil. Factor: 1.00 Date of Analysis: 10/31/07 06:15 PM

Date of Extraction: 10/31/07

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.024	20	9.6

Air Sample Volume(L): 2060 Container Type: TO-11 Cartridge

Client Sample ID: RFS-175-01-01 Lab ID#: 0710670B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1031022
 Date of Collection: 10/26/07

 Dil. Factor:
 1.00
 Date of Analysis: 10/31/07 06:36 PM

 Date of Extraction: 10/31/07

 Rpt. Limit
 Amount
 Amount

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.026	19	10

Air Sample Volume(L): 1900 Container Type: TO-11 Cartridge

Client Sample ID: RFS-175-02-01 Lab ID#: 0710670B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1031023 Date of Collection: 10/26/07
Dil. Factor: 1.00 Date of Analysis: 10/31/07 06:57 PM
Date of Extraction: 10/31/07

Rpt. Limit Rpt. Limit Amount Amount

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.025	1.1	0.55

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Client Sample ID: RFS-FLS-01-01 Lab ID#: 0710670B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1031024
 Date of Collection: 10/26/07

 Dil. Factor:
 1.00
 Date of Analysis: 10/31/07 07:18 PM

 Date of Extraction: 10/31/07

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount
	(ug)			(uG/m3)
Formaldehyde	0.050	0.026	0.92	0.48

Air Sample Volume(L): 1910 Container Type: TO-11 Cartridge

Client Sample ID: RFS-TB-01 Lab ID#: 0710670B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1031005 1.00		Date of Collection: Date of Analysis: 10	
			Date of Extraction:	10/31/07
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Formaldehyde

Client Sample ID: Lab Blank Lab ID#: 0710670B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1031003 1.00		Date of Collection: N Date of Analysis: 10	
			Date of Extraction:	10/31/07
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000

Formaldehyde

Client Sample ID: LCS Lab ID#: 0710670B-16A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1031004 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 10/31/07 12:20 PM

Date of Extraction: 10/31/07

Compound %Recovery

Formaldehyde 101

Air Sample Volume(L): 2000

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0711150A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518.008.01 UCB-Air

DATE RECEIVED: 11/08/2007 **CONTACT:** Kelly Buettner

DATE COMPLETED:

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
01A	RFS-163-01-02	Modified TO-15 SIM	4.0 "Hg
02A	RFS-163-02-02	Modified TO-15 SIM	6.0 "Hg
03A	RFS-163-02D-02	Modified TO-15 SIM	6.0 "Hg
04A	RFS-163-03-02	Modified TO-15 SIM	0.8 psi
05A	RFS-478-01-02	Modified TO-15 SIM	5.0 "Hg
06A	RFS-478-02-02	Modified TO-15 SIM	0.6 psi
06AA	RFS-478-02-02 Lab Duplicate	Modified TO-15 SIM	0.6 psi
07A	RFS-478-03-02	Modified TO-15 SIM	5.5 "Hg
08A	RFS-175-01-02	Modified TO-15 SIM	6.0 "Hg
09A	RFS-175-02-02	Modified TO-15 SIM	4.0 "Hg
10A	RFS-177-01-02	Modified TO-15 SIM	0.4 psi
11A	RFS-155-01-02	Modified TO-15 SIM	6.5 "Hg
12A	RFS-UCB-01-02	Modified TO-15 SIM	0.6 psi
13A	RFS-FLS-01-02	Modified TO-15 SIM	8.5 "Hg
14A	Lab Blank	Modified TO-15 SIM	NA
14B	Lab Blank	Modified TO-15 SIM	NA
15A	CCV	Modified TO-15 SIM	NA

Continued on next page

WORK ORDER #: 0711150A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518.008.01 UCB-Air

DATE RECEIVED: 11/08/2007 CONTACT: Kelly Buettner

DATE COMPLETED:

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
15B	CCV	Modified TO-15 SIM	NA
16A	LCS	Modified TO-15 SIM	NA
16B	LCS	Modified TO-15 SIM	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>11/21/07</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0711150A

Thirteen 6 Liter Summa Special (SIM Certified) samples were received on November 08, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample RFS-163-02-02 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

The Chain of Custody (COC) information for sample RFS-163-02D-02 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-01-02

Lab ID#: 0711150A-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.31	0.71	1.1	2.5
Chloroform	0.031	0.059	0.15	0.29
Benzene	0.078	0.15	0.25	0.48

Client Sample ID: RFS-163-02-02

Lab ID#: 0711150A-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.34	0.48	1.2	1.7
Chloroform	0.034	0.034	0.16	0.17
Benzene	0.084	0.14	0.27	0.45
Tetrachloroethene	0.0050	0.030	0.034	0.20

Client Sample ID: RFS-163-02D-02

Lab ID#: 0711150A-03A

Rot. Limit	Amount (nnhy)	Rpt. Limit (uG/m3)	Amount (uG/m3)
,	,	1.2	1.7
0.034	0.035	0.16	0.17
0.084	0.21	0.27	0.68
0.0050	0.0089	0.034	0.060
	(ppbv) 0.34 0.034 0.084	(ppbv) (ppbv) 0.34 0.48 0.034 0.035 0.084 0.21	(ppbv) (ppbv) (uG/m3) 0.34 0.48 1.2 0.034 0.035 0.16 0.084 0.21 0.27

Client Sample ID: RFS-163-03-02

Lab ID#: 0711150A-04A

	Rot. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.064	0.11	0.20	0.36
Tetrachloroethene	0.0038	0.0091	0.026	0.062

Client Sample ID: RFS-478-01-02

Lab ID#: 0711150A-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.032	0.037	0.16	0.18

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-478-01-02

Lah	ID#:	0711	150A	-05A

Benzene	0.080	0.26	0.26	0.81
Trichloroethene	0.0048	0.071	0.026	0.38
Tetrachloroethene	0.0048	0.16	0.033	1.1

Client Sample ID: RFS-478-02-02

Lab ID#: 0711150A-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.26	0.82	0.90	2.8
Benzene	0.064	0.14	0.21	0.44
Tetrachloroethene	0.0039	0.035	0.026	0.24

Client Sample ID: RFS-478-02-02 Lab Duplicate

Lab ID#: 0711150A-06AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.26	0.82	0.90	2.8
Benzene	0.064	0.13	0.21	0.42
Trichloroethene	0.0039	0.0060	0.021	0.032
Tetrachloroethene	0.0039	0.035	0.026	0.24

Client Sample ID: RFS-478-03-02

Lab ID#: 0711150A-07A

	Rbt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.082	0.16	0.26	0.50
Tetrachloroethene	0.0049	0.012	0.033	0.084

Client Sample ID: RFS-175-01-02

Lab ID#: 0711150A-08A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.017	0.021	0.043	0.053
Chloroform	0.034	0.072	0.16	0.35
Benzene	0.084	0.20	0.27	0.65
Trichloroethene	0.0050	0.0068	0.027	0.036

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-175-01-02				
Lab ID#: 0711150A-08A Tetrachloroethene	0.0050	0.023	0.034	0.15
Tetrachioroethene	0.0050	0.023	0.034	0.13
Client Sample ID: RFS-175-02-02				
Lab ID#: 0711150A-09A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.078	0.13	0.25	0.41
Client Sample ID: RFS-177-01-02				
Lab ID#: 0711150A-10A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Chloroform	0.026	0.13	0.13	0.64
Benzene	0.065	0.14	0.21	0.44
Client Sample ID: RFS-155-01-02				
Lab ID#: 0711150A-11A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.086	0.15	0.27	0.47
Client Sample ID: RFS-UCB-01-02				
Lab ID#: 0711150A-12A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.26	0.28	0.90	0.97
Benzene	0.064	0.25	0.21	0.81
Client Sample ID: RFS-FLS-01-02				
Lab ID#: 0711150A-13A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.094	0.12	0.30	0.38

Client Sample ID: RFS-163-01-02 Lab ID#: 0711150A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Dil. Factor:	1.55		Date of Analysis: 11	/15/07 05:40 PM
File Name:	a111510		Date of Collection: 1	1/7/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
Methylene Chloride	0.31	0.71	1.1	2.5
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	0.059	0.15	0.29
Benzene	0.078	0.15	0.25	0.48
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	Not Detected	0.025	Not Detected
Tetrachloroethene	0.0046	Not Detected	0.032	Not Detected
trans-1.2-Dichloroethene	0.031	Not Detected	0.12	Not Detected

Surregates	9/ Pagayany	Method Limits
Surrogates	%Recovery	LIIIIIS
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-163-02-02 Lab ID#: 0711150A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111511 1.68		Date of Collection: 1 Date of Analysis: 11	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	0.48	1.2	1.7
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	0.034	0.16	0.17
Benzene	0.084	0.14	0.27	0.45
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	Not Detected	0.027	Not Detected
Tetrachloroethene	0.0050	0.030	0.034	0.20
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

(Communication of the communication of the communic	50	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: RFS-163-02D-02 Lab ID#: 0711150A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111512		Date of Collection:	11/7/07
Dil. Factor:	1.68	Date of Analysis: 11/15/07 06:59 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	0.48	1.2	1.7
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	0.035	0.16	0.17
Benzene	0.084	0.21	0.27	0.68
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	Not Detected	0.027	Not Detected
Tetrachloroethene	0.0050	0.0089	0.034	0.060
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: RFS-163-03-02 Lab ID#: 0711150A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111513	Date of Collection: 11/7/07
Dil. Factor:	1.27	Date of Analysis: 11/15/07 07:38 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.032	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.050	Not Detected
Methylene Chloride	0.25	Not Detected	0.88	Not Detected
cis-1,2-Dichloroethene	0.025	Not Detected	0.10	Not Detected
Chloroform	0.025	Not Detected	0.12	Not Detected
Benzene	0.064	0.11	0.20	0.36
1,2-Dichloroethane	0.025	Not Detected	0.10	Not Detected
Trichloroethene	0.0038	Not Detected	0.020	Not Detected
Tetrachloroethene	0.0038	0.0091	0.026	0.062
trans-1,2-Dichloroethene	0.025	Not Detected	0.10	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: RFS-478-01-02 Lab ID#: 0711150A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM

	Pnt Limit	Amount	Pnt Limit	Amount
Dil. Factor:	1.61		Date of Analysis: 11	/15/07 08:18 PM
File Name:	a111514		Date of Collection: 1	1/7/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.037	0.16	0.18
Benzene	0.080	0.26	0.26	0.81
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.071	0.026	0.38
Tetrachloroethene	0.0048	0.16	0.033	1.1
trans-1.2-Dichloroethene	0.032	Not Detected	0.13	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: RFS-478-02-02 Lab ID#: 0711150A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111508	Date of Collection: 11/7/07
Dil. Factor:	1.29	Date of Analysis: 11/15/07 04:22 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.033	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.051	Not Detected
Methylene Chloride	0.26	0.82	0.90	2.8
cis-1,2-Dichloroethene	0.026	Not Detected	0.10	Not Detected
Chloroform	0.026	Not Detected	0.12	Not Detected
Benzene	0.064	0.14	0.21	0.44
1,2-Dichloroethane	0.026	Not Detected	0.10	Not Detected
Trichloroethene	0.0039	Not Detected	0.021	Not Detected
Tetrachloroethene	0.0039	0.035	0.026	0.24
trans-1,2-Dichloroethene	0.026	Not Detected	0.10	Not Detected

(0		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: RFS-478-02-02 Lab Duplicate Lab ID#: 0711150A-06AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111509	Date of Collection: 11/7/07
Dil. Factor:	1.29	Date of Analysis: 11/15/07 05:01 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.033	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.051	Not Detected
Methylene Chloride	0.26	0.82	0.90	2.8
cis-1,2-Dichloroethene	0.026	Not Detected	0.10	Not Detected
Chloroform	0.026	Not Detected	0.12	Not Detected
Benzene	0.064	0.13	0.21	0.42
1,2-Dichloroethane	0.026	Not Detected	0.10	Not Detected
Trichloroethene	0.0039	0.0060	0.021	0.032
Tetrachloroethene	0.0039	0.035	0.026	0.24
trans-1,2-Dichloroethene	0.026	Not Detected	0.10	Not Detected

	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-478-03-02 Lab ID#: 0711150A-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a111515 1.64		Date of Collection: Date of Analysis: 1	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected

0.033 Not Detected 0.16 Not Detected Chloroform Benzene 0.082 0.16 0.26 0.50 1,2-Dichloroethane 0.033 Not Detected 0.13 Not Detected Trichloroethene 0.0049 Not Detected 0.026 Not Detected Tetrachloroethene 0.0049 0.012 0.033 0.084 trans-1,2-Dichloroethene Not Detected Not Detected 0.033 0.13

3 p. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-175-01-02 Lab ID#: 0711150A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a111518 1.68		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	0.021	0.043	0.053
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	0.072	0.16	0.35
Benzene	0.084	0.20	0.27	0.65
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.0068	0.027	0.036

0.0050

0.034

Container Type: 6 Liter Summa Special (SIM Certified)

Tetrachloroethene

trans-1,2-Dichloroethene

3 p. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	91	70-130

0.023

Not Detected

0.034

0.13

0.15

Not Detected

Client Sample ID: RFS-175-02-02 Lab ID#: 0711150A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111611	Date of Collection: 11/7/07
Dil. Factor:	1.55	Date of Analysis: 11/16/07 05:14 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
Methylene Chloride	0.31	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	Not Detected	0.15	Not Detected
Benzene	0.078	0.13	0.25	0.41
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	Not Detected	0.025	Not Detected
Tetrachloroethene	0.0046	Not Detected	0.032	Not Detected
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected

Сельшин турого — по томини ороски (с	• • • • • • • • • • • • • • • • •	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	90	70-130

Client Sample ID: RFS-177-01-02 Lab ID#: 0711150A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

:10 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.033	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.052	Not Detected
Methylene Chloride	0.26	Not Detected	0.90	Not Detected
cis-1,2-Dichloroethene	0.026	Not Detected	0.10	Not Detected
Chloroform	0.026	0.13	0.13	0.64
Benzene	0.065	0.14	0.21	0.44
1,2-Dichloroethane	0.026	Not Detected	0.10	Not Detected
Trichloroethene	0.0039	Not Detected	0.021	Not Detected
Tetrachloroethene	0.0039	Not Detected	0.026	Not Detected
trans-1,2-Dichloroethene	0.026	Not Detected	0.10	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: RFS-155-01-02 Lab ID#: 0711150A-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil. Factor:	1.71	Date of Analysis: 11/16/07 06:32 PM
File Name:	a111613	Date of Collection: 11/7/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
Chloroform	0.034	Not Detected	0.17	Not Detected
Benzene	0.086	0.15	0.27	0.47
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0051	Not Detected	0.028	Not Detected
Tetrachloroethene	0.0051	Not Detected	0.035	Not Detected
trans-1.2-Dichloroethene	0.034	Not Detected	0.14	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: RFS-UCB-01-02 Lab ID#: 0711150A-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111615	Date of Collection: 11/7/07
Dil. Factor:	1.29	Date of Analysis: 11/16/07 07:49 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.033	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.051	Not Detected
Methylene Chloride	0.26	0.28	0.90	0.97
cis-1,2-Dichloroethene	0.026	Not Detected	0.10	Not Detected
Chloroform	0.026	Not Detected	0.12	Not Detected
Benzene	0.064	0.25	0.21	0.81
1,2-Dichloroethane	0.026	Not Detected	0.10	Not Detected
Trichloroethene	0.0039	Not Detected	0.021	Not Detected
Tetrachloroethene	0.0039	Not Detected	0.026	Not Detected
trans-1.2-Dichloroethene	0.026	Not Detected	0.10	Not Detected

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-FLS-01-02 Lab ID#: 0711150A-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111616		Date of Collection:	11/7/07
Dil. Factor:	1.87	Date of Analysis: 11/16/07 08:28 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
-				

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected
Chloroform	0.037	Not Detected	0.18	Not Detected
Benzene	0.094	0.12	0.30	0.38
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0056	Not Detected	0.030	Not Detected
Tetrachloroethene	0.0056	Not Detected	0.038	Not Detected
trans-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected

	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: Lab Blank Lab ID#: 0711150A-14A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a111506 1.00	Date of Collection: NA Date of Analysis: 11/15/07 02:17 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: Lab Blank Lab ID#: 0711150A-14B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a111608a 1.00		Date of Collection: Note of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	89	70-130	

Client Sample ID: CCV Lab ID#: 0711150A-15A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/15/07 10:35 AM

Compound	%Recovery
Vinyl Chloride	122
1,1-Dichloroethene	93
Methylene Chloride	99
cis-1,2-Dichloroethene	101
Chloroform	95
Benzene	100
1,2-Dichloroethane	83
Trichloroethene	76
Tetrachloroethene	78
trans-1,2-Dichloroethene	99

останов туротта тост фрасция		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: CCV Lab ID#: 0711150A-15B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111602	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/16/07 09:44 AM

Compound	%Recovery
Vinyl Chloride	114
1,1-Dichloroethene	92
Methylene Chloride	100
cis-1,2-Dichloroethene	97
Chloroform	93
Benzene	104
1,2-Dichloroethane	86
Trichloroethene	81
Tetrachloroethene	77
trans-1,2-Dichloroethene	100

останов туротта тост фрасция		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: LCS Lab ID#: 0711150A-16A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111503	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/15/07 11:36 AM

Compound	%Recovery
Vinyl Chloride	118
1,1-Dichloroethene	109
Methylene Chloride	116
cis-1,2-Dichloroethene	108
Chloroform	102
Benzene	111
1,2-Dichloroethane	93
Trichloroethene	86
Tetrachloroethene	83
trans-1,2-Dichloroethene	109

ochimica Typeria a recompliance		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: LCS Lab ID#: 0711150A-16B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a111606	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/16/07 12:59 PM

Compound	%Recovery
Vinyl Chloride	104
1,1-Dichloroethene	106
Methylene Chloride	112
cis-1,2-Dichloroethene	104
Chloroform	99
Benzene	105
1,2-Dichloroethane	89
Trichloroethene	82
Tetrachloroethene	80
trans-1,2-Dichloroethene	104

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	90	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0711150B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # 51518.008.01 UCB-Air

DATE RECEIVED: 11/08/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 11/27/2007

FRACTION #	NAME	<u>TEST</u>
01A	RFS-163-01-02	Modified TO-11A
01AA	RFS-163-01-02 Lab Duplicate	Modified TO-11A
02A	RFS-163-02-02	Modified TO-11A
03A	RFS-163-02D-02	Modified TO-11A
04A	RFS-163-03-02	Modified TO-11A
05A	RFS-478-01-02	Modified TO-11A
06A	RFS-478-02-02	Modified TO-11A
07A	RFS-478-03-02	Modified TO-11A
08A	RFS-175-01-02	Modified TO-11A
09A	RFS-175-02-02	Modified TO-11A
10A	RFS-177-01-02	Modified TO-11A
11A	RFS-155-01-02	Modified TO-11A
12A	RFS-UCB-01-02	Modified TO-11A
13A	RFS-TB-02	Modified TO-11A
14A	Lab Blank	Modified TO-11A
15A	LCS	Modified TO-11A

CERTIFIED BY:

Linda d. Fruman

DATE: <u>11/27/07</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0711150B

Thirteen TO-11 Cartridge samples were received on November 08, 2007. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

The Chain of Custody (COC) information for sample RFS-TB-02 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates

as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Client Sample ID: RFS-163-01-02

Client Sample ID: RFS-163-03-02

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.027	39	21
Client Sample ID: RFS-163-01-02	I ah Dunlicata			

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	39	21

7		
Client Sample ID: RFS-163-02-02		
Lab ID#: 0711150B-02A		

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	33	18

i omialaenyae	0.000	0.020	00	
Client Sample ID: RFS-163-02D-02				

Lab ID#: 0711150B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	23	13

Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	23	13

Lab ID#: 0711150B-04A				
	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Compound	(ug)			
Formaldehyde	0.050	0.027	1.6	0.85

1 official dolly do	0.000	0.027	1.0	0.00
Client Sample ID: RFS-478-01-02				
•				
Lab ID#: 0711150B-05A				
Lab 1D#; 0/11150D-05A				

Compound	Rɒt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	5.1	2.9

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-478-02-02				
Lab ID#: 0711150B-06A				
0	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	13	7.0
Client Sample ID: RFS-478-03-02				
Lab ID#: 0711150B-07A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.10	0.056	69	38
Client Sample ID: RFS-175-01-02				
Lab ID#: 0711150B-08A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	27	15
Client Sample ID: RFS-175-02-02				
Lab ID#: 0711150B-09A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	3.0	1.6
Client Sample ID: RFS-177-01-02				
Lab ID#: 0711150B-10A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	32	17
Client Sample ID: RFS-155-01-02				
Lab ID#: 0711150B-11A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
			\ U /	, ,

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-UCB-01-02

Lab ID#: 0711150B-12A

	Rpt. Limit	Rpt. Limit Amount		Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	3.2	1.7

Client Sample ID: RFS-TB-02

Lab ID#: 0711150B-13A

No Detections Were Found.

Client Sample ID: RFS-163-01-02 Lab ID#: 0711150B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114009
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 12:08 PM

Date of Extraction: 11/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	39	21

Client Sample ID: RFS-163-01-02 Lab Duplicate

Lab ID#: 0711150B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1114010		Date of Collection:	11/7/07
Dil. Factor:	1.00		Date of Analysis: 11/14/07 12:29 PM	
			Date of Extraction:	11/14/07
	Rnt Limit	Rpt. Limit	Amount	Amount

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	39	21

Client Sample ID: RFS-163-02-02 Lab ID#: 0711150B-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1114011 Date of Collection: 11/7/07

Dil. Factor: 1.00 Date of Analysis: 11/14/07 12:50 PM

Date of Extraction: 11/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	33	18

Client Sample ID: RFS-163-02D-02 Lab ID#: 0711150B-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

	Pnt Limit	Rnt Limit	Amount	Δmount	
			Date of Extraction:	11/14/07	
Dil. Factor:	1.00		Date of Analysis: 11/14/07 01:11 PM		
File Name:	f1114012		Date of Collection: 1	11/7/07	

	Rpt. Limit	Rpt. Limit Amount	Amount	
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	23	13

Client Sample ID: RFS-163-03-02 Lab ID#: 0711150B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1114016 Date of Collection: 11/7/07
Dil. Factor: 1.00 Date of Analysis: 11/14/07 02:34 PM
Date of Extraction: 11/14/07

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	1.6	0.85

Client Sample ID: RFS-478-01-02 Lab ID#: 0711150B-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114017
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 02:55 PM

Date of Extraction: 11/14/07

	Rpt. Limit	Rpt. Limit	Amount Am	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	5.1	2.9

Client Sample ID: RFS-478-02-02 Lab ID#: 0711150B-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114018
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 03:16 PM

 Date of Extraction: 11/14/07
 Date of Extraction: 11/14/07

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	13	7.0

Client Sample ID: RFS-478-03-02 Lab ID#: 0711150B-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	64444000		Data of Callagtian	44/7/07
riie Name:	f1114028		Date of Collection:	11///0/
Dil. Factor:	2.00	Date of Analysis: 11/14/07 07:09 PM		
			Date of Extraction:	11/14/07
	Rpt. Limit	Rpt. Limit	Amount	Amount

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.10	0.056	69	38

Client Sample ID: RFS-175-01-02 Lab ID#: 0711150B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114020
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 03:58 PM

 Date of Extraction: 11/14/07
 11/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.027	27	15

Client Sample ID: RFS-175-02-02 Lab ID#: 0711150B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114021
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 04:19 PM

Date of Extraction: 11/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	3.0	1.6

Client Sample ID: RFS-177-01-02 Lab ID#: 0711150B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114022
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 04:39 PM

 Date of Extraction: 11/14/07
 1.1/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	32	17

Client Sample ID: RFS-155-01-02 Lab ID#: 0711150B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114023
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 05:00 PM

 Date of Extraction: 11/14/07

 Rpt. Limit
 Amount
 Amount

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.028	26	14

Client Sample ID: RFS-UCB-01-02 Lab ID#: 0711150B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1114024
 Date of Collection: 11/7/07

 Dil. Factor:
 1.00
 Date of Analysis: 11/14/07 05:21 PM

 Date of Extraction: 11/14/07
 11/14/07

CompoundRpt. Limit
(ug)Rpt. Limit
(uG/m3)Amount
(ug)Amount
(ug)Formaldehyde0.0500.0273.21.7

Client Sample ID: RFS-TB-02 Lab ID#: 0711150B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1114008 1.00		Date of Collection: Date of Analysis: 17	
		Date of Extraction: 11/14/07		
Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.025	Not Detected	Not Detected

Client Sample ID: Lab Blank Lab ID#: 0711150B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1114004 1.00		Date of Collection: N Date of Analysis: 1	1/14/07 10:23 AM
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.025	Not Detected	Not Detected

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 0711150B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1114005 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 11/14/07 10:44 AM

Date of Extraction: 11/14/07

Compound %Recovery

Formaldehyde 103

Air Sample Volume(L): 2000

Container Type: NA - Not Applicable

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0711596A

Work Order Summary

CLIENT:	Mr. Doug Herlocker	BILL TO:	Mr. Doug Herlocker
	Tetra Tech		Tetra Tech

106 N. 6th. St.

Suite 202

Boise, ID 83702

Tetra 1ech
106 N. 6th. St.
Suite 202

Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # S518.008.01

FAX: PROJECT # S518.008.01 RFS Air

DATE RECEIVED: 11/30/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 12/12/2007

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
01A(cancelled)	RFS-UCB-001-003	Modified TO-15 SIM	0.6 psi
02A	RFS-163-01-03	Modified TO-15 SIM	5.0 "Hg
03A	RFS-163-02-03	Modified TO-15 SIM	5.5 "Hg
04A	RFS-163-02D-03	Modified TO-15 SIM	5.0 "Hg
05A	RFS-163-03-03	Modified TO-15 SIM	2.5 "Hg
06A	RFS-175-01-03	Modified TO-15 SIM	4.5 "Hg
07A	RFS-175-02-03	Modified TO-15 SIM	2.5 "Hg
08A	RFS-177-01-03	Modified TO-15 SIM	5.0 "Hg
09A	RFS-155-01-03	Modified TO-15 SIM	7.0 "Hg
10A	RFS-478-01-03	Modified TO-15 SIM	6.0 "Hg
11A	RFS-478-02-03	Modified TO-15 SIM	3.5 "Hg
12A	RFS-478-03-03	Modified TO-15 SIM	4.0 "Hg
12AA	RFS-478-03-03 Lab Duplicate	Modified TO-15 SIM	4.0 "Hg
13A	RFS-FLS-01-03	Modified TO-15 SIM	3.0 "Hg
13AA	RFS-FLS-01-03 Lab Duplicate	Modified TO-15 SIM	3.0 "Hg
14A	RFS-TB-01-03	Modified TO-15 SIM	29.0 "Hg
15A	Lab Blank	Modified TO-15 SIM	NA

Continued on next page

WORK ORDER #: 0711596A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # S518.008.01

FAX: PROJECT # \$518,008.01 RFS Air

DATE RECEIVED: 11/30/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 12/12/2007

FRACTION# NAME TEST VAC./PRES.

16A CCV Modified TO-15 SIM NA
17A LCS Modified TO-15 SIM NA
NA

CERTIFIED BY:

DATE: 12/12/07

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0711596A

Fourteen 6 Liter Summa Special (SIM Certified) samples were received on November 30, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

Sample RFS-UCB-001-003 arrived at above ambient pressure yet flow controllers were used for sample collection. Per client instructions, the analysis was cancelled.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.

- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-01-03

Lab ID#: 0711596A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.32	0.66	1.1	2.3
Chloroform	0.032	0.052	0.16	0.25
Benzene	0.080	0.33	0.26	1.1
Trichloroethene	0.0048	0.014	0.026	0.074
Tetrachloroethene	0.0048	0.013	0.033	0.088

Client Sample ID: RFS-163-02-03

Lab ID#: 0711596A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.33	0.55	1.1	1.9
Chloroform	0.033	0.043	0.16	0.21
Benzene	0.082	0.31	0.26	1.0
Trichloroethene	0.0049	0.010	0.026	0.056
Tetrachloroethene	0.0049	0.014	0.033	0.099

Client Sample ID: RFS-163-02D-03

Lab ID#: 0711596A-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.32	0.55	1.1	1.9
Chloroform	0.032	0.044	0.16	0.21
Benzene	0.080	0.31	0.26	1.0
Trichloroethene	0.0048	0.0096	0.026	0.051
Tetrachloroethene	0.0048	0.013	0.033	0.090

Client Sample ID: RFS-163-03-03

Lab ID#: 0711596A-05A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3) (uG/	(uG/m3)
Chloroform	0.029	0.032	0.14	0.15
Benzene	0.073	0.40	0.23	1.3
Trichloroethene	0.0044	0.028	0.024	0.15
Tetrachloroethene	0.0044	0.016	0.030	0.11

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-175-01-03

Lab ID#: 0711596A-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.016	0.023	0.040	0.059
Chloroform	0.032	0.060	0.15	0.30
Benzene	0.079	0.40	0.25	1.3
Trichloroethene	0.0047	0.0070	0.025	0.037
Tetrachloroethene	0.0047	0.032	0.032	0.22

Client Sample ID: RFS-175-02-03

Lab ID#: 0711596A-07A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.029	0.030	0.14	0.15
Benzene	0.073	0.40	0.23	1.3
Trichloroethene	0.0044	0.0063	0.024	0.034
Tetrachloroethene	0.0044	0.015	0.030	0.10

Client Sample ID: RFS-177-01-03

Lab ID#: 0711596A-08A

Compound	Rpt. Limit	Amount	Rpt. Limit Am	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.032	0.11	0.16	0.53
Benzene	0.080	0.37	0.26	1.2
Trichloroethene	0.0048	0.0065	0.026	0.035
Tetrachloroethene	0.0048	0.029	0.033	0.20

Client Sample ID: RFS-155-01-03

Lab ID#: 0711596A-09A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.088	0.36	0.28	1.1
Trichloroethene	0.0052	0.0071	0.028	0.038
Tetrachloroethene	0.0052	0.029	0.036	0.20

Client Sample ID: RFS-478-01-03

Lab ID#: 0711596A-10A

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-478-01-03

Lab ID#: 0711596A-10A

Compound	Rpt. Limit	Amount	i	Amount
	(ppbv)	(ppbv)		(uG/m3)
Chloroform	0.034	0.092	0.16	0.45
Benzene	0.084	0.68	0.27	2.2
Trichloroethene	0.0050	0.21	0.027	1.1
Tetrachloroethene	0.0050	0.015	0.034	0.10

Client Sample ID: RFS-478-02-03

Lab ID#: 0711596A-11A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.30	0.96	1.0	3.3
Chloroform	0.030	0.042	0.15	0.21
Benzene	0.076	0.44	0.24	1.4
Trichloroethene	0.0046	0.013	0.024	0.071
Tetrachloroethene	0.0046	0.014	0.031	0.092

Client Sample ID: RFS-478-03-03

Lab ID#: 0711596A-12A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.31	0.42	1.1	1.5
Chloroform	0.031	0.032	0.15	0.16
Benzene	0.078	0.42	0.25	1.3
Trichloroethene	0.0046	0.0098	0.025	0.052
Tetrachloroethene	0.0046	0.013	0.032	0.088

Client Sample ID: RFS-478-03-03 Lab Duplicate

Lab ID#: 0711596A-12AA

Compound	Rpt. Limit	Amount	Rpt. Limit Amo	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.31	0.42	1.1	1.4
Chloroform	0.031	0.030 J	0.15	0.15
Benzene	0.078	0.42	0.25	1.3
Trichloroethene	0.0046	0.0082	0.025	0.044
Tetrachloroethene	0.0046	0.013	0.032	0.089

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-FLS-01-03

Lab ID#: 0711596A-13A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.030	0.037	0.14	0.18
Benzene	0.074	0.57	0.24	1.8
Trichloroethene	0.0045	0.0074	0.024	0.040
Tetrachloroethene	0.0045	0.014	0.030	0.095

Client Sample ID: RFS-FLS-01-03 Lab Duplicate

Lab ID#: 0711596A-13AA

Compound	Rpt. Limit	Amount	Rpt. Limit An	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.030	0.037	0.14	0.18
Benzene	0.074	0.57	0.24	1.8
Trichloroethene	0.0045	0.0062	0.024	0.033
Tetrachloroethene	0.0045	0.014	0.030	0.099

Client Sample ID: RFS-TB-01-03

Lab ID#: 0711596A-14A
No Detections Were Found.

Client Sample ID: RFS-163-01-03 Lab ID#: 0711596A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil. Factor:	1.61	Date of Analysis: 12/5/07 12:55 PM
File Name:	a120507	Date of Collection: 11/29/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	0.66	1.1	2.3
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.052	0.16	0.25
Benzene	0.080	0.33	0.26	1.1
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.014	0.026	0.074
Tetrachloroethene	0.0048	0.013	0.033	0.088
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-163-02-03 Lab ID#: 0711596A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120508	Date of Collection: 11/29/07
Dil. Factor:	1.64	Date of Analysis: 12/5/07 01:43 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
Methylene Chloride	0.33	0.55	1.1	1.9
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
Chloroform	0.033	0.043	0.16	0.21
Benzene	0.082	0.31	0.26	1.0
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected
Trichloroethene	0.0049	0.010	0.026	0.056
Tetrachloroethene	0.0049	0.014	0.033	0.099
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected

	ŕ	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-163-02D-03 Lab ID#: 0711596A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

•		_		
Dil. Factor:	1.61		Date of Analysis: 12/5/07 02:22 PM	/
File Name:	a120509		Date of Collection: 11/29/07	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	0.55	1.1	1.9
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.044	0.16	0.21
Benzene	0.080	0.31	0.26	1.0
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.0096	0.026	0.051
Tetrachloroethene	0.0048	0.013	0.033	0.090
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-163-03-03 Lab ID#: 0711596A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil. Factor:	1.46	Date of Analysis: 12/5/07 03:01 PM
File Name:	a120510	Date of Collection: 11/29/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.037	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.058	Not Detected
Methylene Chloride	0.29	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.029	Not Detected	0.12	Not Detected
Chloroform	0.029	0.032	0.14	0.15
Benzene	0.073	0.40	0.23	1.3
1,2-Dichloroethane	0.029	Not Detected	0.12	Not Detected
Trichloroethene	0.0044	0.028	0.024	0.15
Tetrachloroethene	0.0044	0.016	0.030	0.11
trans-1,2-Dichloroethene	0.029	Not Detected	0.12	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-175-01-03 Lab ID#: 0711596A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120511	Date of Collection: 11/29/07
Dil. Factor:	1.58	Date of Analysis: 12/5/07 03:49 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	0.023	0.040	0.059
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
Chloroform	0.032	0.060	0.15	0.30
Benzene	0.079	0.40	0.25	1.3
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0047	0.0070	0.025	0.037
Tetrachloroethene	0.0047	0.032	0.032	0.22
trans-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected

	·	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: RFS-175-02-03 Lab ID#: 0711596A-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

a120512	Date of Collection: 11/29/07
1.46	Date of Analysis: 12/5/07 04:28 PM
	--

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.037	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.058	Not Detected
Methylene Chloride	0.29	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.029	Not Detected	0.12	Not Detected
Chloroform	0.029	0.030	0.14	0.15
Benzene	0.073	0.40	0.23	1.3
1,2-Dichloroethane	0.029	Not Detected	0.12	Not Detected
Trichloroethene	0.0044	0.0063	0.024	0.034
Tetrachloroethene	0.0044	0.015	0.030	0.10
trans-1,2-Dichloroethene	0.029	Not Detected	0.12	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: RFS-177-01-03 Lab ID#: 0711596A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

a120513	Date of Collection: 11/29/07
1.61	Date of Analysis: 12/5/07 05:07 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.11	0.16	0.53
Benzene	0.080	0.37	0.26	1.2
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.0065	0.026	0.035
Tetrachloroethene	0.0048	0.029	0.033	0.20
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: RFS-155-01-03 Lab ID#: 0711596A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120514	Date of Collection: 11/29/07
Dil. Factor:	1.75	Date of Analysis: 12/5/07 05:49 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.069	Not Detected
Methylene Chloride	0.35	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Chloroform	0.035	Not Detected	0.17	Not Detected
Benzene	0.088	0.36	0.28	1.1
1,2-Dichloroethane	0.035	Not Detected	0.14	Not Detected
Trichloroethene	0.0052	0.0071	0.028	0.038
Tetrachloroethene	0.0052	0.029	0.036	0.20
trans-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: RFS-478-01-03 Lab ID#: 0711596A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120515	Date of Collection: 11/29/07
Dil. Factor:	1.68	Date of Analysis: 12/5/07 08:19 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	0.092	0.16	0.45
Benzene	0.084	0.68	0.27	2.2
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.21	0.027	1.1
Tetrachloroethene	0.0050	0.015	0.034	0.10
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

	ŕ	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: RFS-478-02-03 Lab ID#: 0711596A-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120516	Date of Collection: 11/29/07
Dil. Factor:	1.52	Date of Analysis: 12/5/07 10:29 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.060	Not Detected
Methylene Chloride	0.30	0.96	1.0	3.3
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.042	0.15	0.21
Benzene	0.076	0.44	0.24	1.4
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.013	0.024	0.071
Tetrachloroethene	0.0046	0.014	0.031	0.092
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: RFS-478-03-03 Lab ID#: 0711596A-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120517	Date of Collection: 11/29/07
Dil. Factor:	1.55	Date of Analysis: 12/5/07 11:43 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
Methylene Chloride	0.31	0.42	1.1	1.5
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	0.032	0.15	0.16
Benzene	0.078	0.42	0.25	1.3
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.0098	0.025	0.052
Tetrachloroethene	0.0046	0.013	0.032	0.088
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: RFS-478-03-03 Lab Duplicate

Lab ID#: 0711596A-12AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a120521 1.55	Date of Collection: 11/29/07 Date of Analysis: 12/6/07 02:25 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1.1-Dichloroethene	0.016	Not Detected	0.061	Not Detected

0.016 0.016	Not Detected Not Detected	0.040	Not Detected
0.016	Not Detected		
	Not Detected	0.061	Not Detected
0.31	0.42	1.1	1.4
0.031	Not Detected	0.12	Not Detected
0.031	0.030 J	0.15	0.15
0.078	0.42	0.25	1.3
0.031	Not Detected	0.12	Not Detected
0.0046	0.0082	0.025	0.044
0.0046	0.013	0.032	0.089
0 004	N (D ()	0.40	Not Detected
	0.078 0.031 0.0046 0.0046	0.078 0.42 0.031 Not Detected 0.0046 0.0082 0.0046 0.013	0.078 0.42 0.25 0.031 Not Detected 0.12 0.0046 0.0082 0.025

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: RFS-FLS-01-03 Lab ID#: 0711596A-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120518	Date of Collection: 11/29/07
Dil. Factor:	1.49	Date of Analysis: 12/6/07 12:21 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.038	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.059	Not Detected
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.037	0.14	0.18
Benzene	0.074	0.57	0.24	1.8
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0045	0.0074	0.024	0.040
Tetrachloroethene	0.0045	0.014	0.030	0.095
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	89	70-130

Client Sample ID: RFS-FLS-01-03 Lab Duplicate

Lab ID#: 0711596A-13AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dill I dotto!!	Rpt. Limit	Amount	Rpt. Limit	Amount
Dil. Factor:	1.49		Date of Analysis: 12	2/6/07 03·04 AM
File Name:	a120522		Date of Collection:	11/29/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.038	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.059	Not Detected
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.037	0.14	0.18
Benzene	0.074	0.57	0.24	1.8
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0045	0.0062	0.024	0.033
Tetrachloroethene	0.0045	0.014	0.030	0.099
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

	·	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	90	70-130	

Client Sample ID: RFS-TB-01-03 Lab ID#: 0711596A-14A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120519	Date of Collection: 11/29/07
Dil. Factor:	1.00	Date of Analysis: 12/6/07 01:00 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	84	70-130

Client Sample ID: Lab Blank Lab ID#: 0711596A-15A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a120506 1.00		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected

Container Type: NA - Not Applicable

trans-1,2-Dichloroethene

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	89	70-130

Not Detected

0.079

Not Detected

0.020

Client Sample ID: CCV Lab ID#: 0711596A-16A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a120502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/5/07 08:34 AM

Compound	%Recovery
Vinyl Chloride	109
1,1-Dichloroethene	89
Methylene Chloride	98
cis-1,2-Dichloroethene	92
Chloroform	90
Benzene	104
1,2-Dichloroethane	85
Trichloroethene	82
Tetrachloroethene	78
trans-1,2-Dichloroethene	99

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: LCS Lab ID#: 0711596A-17A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: a120503 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/5/07 09:14 AM

Compound	%Recovery
Vinyl Chloride	116
1,1-Dichloroethene	97
Methylene Chloride	104
cis-1,2-Dichloroethene	94
Chloroform	92
Benzene	102
1,2-Dichloroethane	86
Trichloroethene	81
Tetrachloroethene	79
trans-1,2-Dichloroethene	99

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	96	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0711431

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # UCB-RFS Air S1518.008.01

DATE RECEIVED: 11/21/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 12/06/2007

FRACTION # NAME TEST

01ARFS-UCB-01-03Modified TO-11A01AARFS-UCB-01-03 Lab DuplicateModified TO-11A02ALab BlankModified TO-11A03ALCSModified TO-11A

CERTIFIED BY:

Linda d. Fruman

DATE: <u>12/06/07</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004

NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0711431

One TO-11 Cartridge sample was received on November 21, 2007. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

A Temperature Blank was not included with the shipment. Temperature was measured on a representative sample and was not within 4 ± 2 °C. Coolant in the form of ice was present. Analysis proceeded.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-UCB-01-03

Lab ID#: 0711431-01A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	2.0	1.1

Client Sample ID: RFS-UCB-01-03 Lab Duplicate

Lab ID#: 0711431-01AA

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	2.0	1.1

Client Sample ID: RFS-UCB-01-03 Lab ID#: 0711431-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1121014 Date of Collection: 11/20/07
Dil. Factor: 1.00 Date of Analysis: 11/21/07 02:45 PM
Date of Extraction: 11/21/07

Rpt. Limit Rpt. Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	2.0	1.1

Client Sample ID: RFS-UCB-01-03 Lab Duplicate

Lab ID#: 0711431-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1121015 Date of Collection: 11/20/07
Dil. Factor: 1.00 Date of Analysis: 11/21/07 03:06 PM
Date of Extraction: 11/21/07

Rpt. Limit Rpt. Limit Amount Amount

Rpt. Limit Rpt. Limit Amount Amount (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.027 2.0 1.1

Client Sample ID: Lab Blank Lab ID#: 0711431-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1121004		Date of Collection: N	IA
Dil. Factor:	1.00		Date of Analysis: 11	1/21/07 11:16 AM
			Date of Extraction:	11/21/07
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Formaldehyde

Client Sample ID: LCS Lab ID#: 0711431-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1121005 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 11/21/07 11:37 AM

Date of Extraction: 11/21/07

Compound %Recovery

Formaldehyde 101

Air Sample Volume(L): 2000

Container Type: NA - Not Applicable

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0711596B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # S1518.008.01

FAX: PROJECT # S1518.008.01 RFS Air

DATE RECEIVED: 11/30/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 12/13/2007

FRACTION #	NAME	<u>TEST</u>
01A	RFS-163-01-03	Modified TO-11A
01AA	RFS-163-01-03 Lab Duplicate	Modified TO-11A
02A	RFS-163-02-03	Modified TO-11A
03A	RFS-163-02D-03	Modified TO-11A
04A	RFS-163-03-03	Modified TO-11A
05A	RFS-175-01-03	Modified TO-11A
06A	RFS-175-02-03	Modified TO-11A
07A	RFS-177-01-03	Modified TO-11A
08A	RFS-155-01-03	Modified TO-11A
09A	RFS-478-01-03	Modified TO-11A
10A	RFS-478-02-03	Modified TO-11A
11A	RFS-478-03-03	Modified TO-11A
12A	RFS-FLS-01-03	Modified TO-11A
13A	RFS-TB-01-03	Modified TO-11A
14A	Lab Blank	Modified TO-11A
15A	LCS	Modified TO-11A

CERTIFIED BY:

Linda d. Fruman

DATE: <u>12/13/07</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0711596B

Thirteen TO-11 Cartridge samples were received on November 30, 2007. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

The Chain of Custody (COC) information for sample RFS-TB-01-03 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Lab ID#: 0711596B-01A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	34	18
Client Sample ID: RFS-163-01-03 Lab I	Duplicate			
Lab ID#: 0711596B-01AA				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.027	34	18
Client Sample ID: RFS-163-02-03				
Lab ID#: 0711596B-02A				
V2	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	26	14
Client Sample ID: RFS-163-02D-03				
Lab ID#: 0711596B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	24	13
Client Sample ID: RFS-163-03-03				
Lab ID#: 0711596B-04A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.027	4.4	2.4
Client Sample ID: RFS-175-01-03				
- Lab ID#: 0711596B-05A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	19	11

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Rpt. Limit	Rpt. Limit	Amount	Amount (uG/m3)
			•
0.050	0.027	4.2	2.3
Rpt. Limit	Rpt. Limit	Amount	Amount
	(uG/m3)	(ug)	(uG/m3)
0.050	0.027	20	11
Rpt. Limit	Rpt. Limit	Amount	Amount
(ug)	(uG/m3)	(ug)	(uG/m3)
0.050	0.028	19	11
Rpt. Limit	Rpt. Limit	Amount	Amoun
(ug)	(uG/m3)	(ug)	(uG/m3)
0.050	0.027	30	16
Rpt. Limit	Rpt. Limit	Amount	Amoun
(ug)	(uG/m3)	(ug)	(uG/m3)
0.050	0.025	19	9.6
Rpt. Limit	Rpt. Limit	Amount	Amount
4	/O/O	()	(C/m-2)
(ug)	(uG/m3)	(ug)	(uG/m3)
	(ug) 0.050 Rpt. Limit (ug) 0.050 Rpt. Limit (ug) 0.050 Rpt. Limit (ug) 0.050 Rpt. Limit (ug) 0.050	Rpt. Limit	(ug) (uG/m3) (ug) 0.050 0.027 4.2 Rpt. Limit (ug) Rpt. Limit (ug/m3) Amount (ug) 0.050 0.027 20 Rpt. Limit (ug) Rpt. Limit (ug) Amount (ug) 0.050 0.028 19 Rpt. Limit (ug) Rpt. Limit (ug) Rpt. Limit (ug) 0.050 0.027 30 Rpt. Limit (ug) Rpt. Limit (ug) Amount (ug) 0.050 0.025 19 Rpt. Limit (ug) Rpt. Limit (ug) Rpt. Limit (ug) Amount (ug)

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-FLS-01-03

Lab ID#: 0711596B-12A

	Rpt. Limit	Rpt. Limit Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	3.3	1.9

Client Sample ID: RFS-TB-01-03

Lab ID#: 0711596B-13A

No Detections Were Found.

Client Sample ID: RFS-163-01-03 Lab ID#: 0711596B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1204005	Date of Collection: 11/29/07
Dil. Factor:	1.00	Date of Analysis: 12/4/07 11:28 AM
		Date of Extraction: 12/4/07

	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Compound	(ug)			
Formaldehyde	0.050	0.027	34	18

Client Sample ID: RFS-163-01-03 Lab Duplicate

Lab ID#: 0711596B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1204006 1.00		Date of Collection: 1 Date of Analysis: 12/		
			Date of Extraction: 12/4/07		
	Pnt Limit	Rnt Limit	Amount	Amount	

	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Compound	(ug)			
Formaldehyde	0.050	0.027	34	18

Client Sample ID: RFS-163-02-03 Lab ID#: 0711596B-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1204007 Date of Collection: 11/29/07

Dil. Factor: 1.00 Date of Analysis: 12/4/07 12:10 PM

Date of Extraction: 12/4/07

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-163-02D-03 Lab ID#: 0711596B-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

			Date of Extraction: 12/4/07		
Dil. Factor:	1.00	Date of Analysis: 12/4/07 12:31 PM			
File Name:	f1204008		Date of Collection: 1	11/29/07	

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	24	13

Client Sample ID: RFS-163-03-03 Lab ID#: 0711596B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1204009 Date of Collection: 11/29/07
Dil. Factor: 1.00 Date of Analysis: 12/4/07 12:52 PM
Date of Extraction: 12/4/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	4.4	2.4

Client Sample ID: RFS-175-01-03 Lab ID#: 0711596B-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1204010 Date of Collection: 11/29/07
Dil. Factor: 1.00 Date of Analysis: 12/4/07 01:13 PM
Date of Extraction: 12/4/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.028	19	11

Client Sample ID: RFS-175-02-03 Lab ID#: 0711596B-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1204011
 Date of Collection: 11/29/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/4/07 01:34 PM

 Date of Extraction: 12/4/07
 1.00

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.027	4.2	2.3

Client Sample ID: RFS-177-01-03 Lab ID#: 0711596B-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1204012
 Date of Collection: 11/29/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/4/07 01:55 PM

 Date of Extraction: 12/4/07

	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Compound	(ug)			
Formaldehyde	0.050	0.027	20	11

Client Sample ID: RFS-155-01-03 Lab ID#: 0711596B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1204013
 Date of Collection: 11/29/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/4/07 02:16 PM

 Date of Extraction: 12/4/07
 12/4/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.028	19	11

Client Sample ID: RFS-478-01-03 Lab ID#: 0711596B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1204014 Date of Collection: 11/29/07
Dil. Factor: 1.00 Date of Analysis: 12/4/07 02:36 PM
Date of Extraction: 12/4/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.027	30	16

Client Sample ID: RFS-478-02-03 Lab ID#: 0711596B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1204017 Date of Collection: 11/29/07
Dil. Factor: 1.00 Date of Analysis: 12/4/07 03:39 PM
Date of Extraction: 12/4/07

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-478-03-03 Lab ID#: 0711596B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1204026 Date of Collection: 11/29/07
Dil. Factor: 2.00 Date of Analysis: 12/4/07 06:47 PM
Date of Extraction: 12/4/07

Part Limit Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.10	0.056	74	41

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-FLS-01-03 Lab ID#: 0711596B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1204019		Date of Collection: 1	1/29/07
Dil. Factor:	1.00		Date of Analysis: 12	/4/07 04:21 PM
			Date of Extraction:	12/4/07
	Pnt Limit	Rnt Limit	Amount	Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	3.3	1.9

Air Sample Volume(L): 1760 Container Type: TO-11 Cartridge

Client Sample ID: RFS-TB-01-03 Lab ID#: 0711596B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1204020 1.00	Date of Collection: 11/29/07 Date of Analysis: 12/4/07 04:42 PM		
			Date of Extraction:	12/4/07
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Formaldehyde

Client Sample ID: Lab Blank Lab ID#: 0711596B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1204003		Date of Collection: N	IA
Dil. Factor:	1.00		Date of Analysis: 12	2/4/07 10:15 AM
			Date of Extraction:	12/4/07
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Formaldehyde

Client Sample ID: LCS Lab ID#: 0711596B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1204004 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 12/4/07 11:07 AM

Date of Extraction: 12/4/07

Compound %Recovery

Formaldehyde 103

Air Sample Volume(L): 2000

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0712242A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S1518.008.01 RFS Air Man

DATE RECEIVED: 12/13/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 12/28/2007

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	RFS-UCB-01-04	Modified TO-15 SIM	7.5 "Hg	5 psi
02A	RFS-163-01-04	Modified TO-15 SIM	7.0 "Hg	5 psi
03A	RFS-163-02-04	Modified TO-15 SIM	5.5 "Hg	5 psi
04A	RFS-163-02D-04	Modified TO-15 SIM	6.5 "Hg	5 psi
05A	RFS-163-03-04	Modified TO-15 SIM	2.5 "Hg	5 psi
06A	RFS-175-01-04	Modified TO-15 SIM	6.5 "Hg	5 psi
07A	RFS-175-02-04	Modified TO-15 SIM	6.0 "Hg	5 psi
08A	RFS-177-01-04	Modified TO-15 SIM	5.5 "Hg	5 psi
09A	RFS-155-01-04	Modified TO-15 SIM	7.0 "Hg	5 psi
10A	RFS-478-01-04	Modified TO-15 SIM	7.5 "Hg	5 psi
11A	RFS-478-02-04	Modified TO-15 SIM	3.5 "Hg	5 psi
11AA	RFS-478-02-04 Lab Duplicate	Modified TO-15 SIM	3.5 "Hg	5 psi
12A	RFS-478-03-04	Modified TO-15 SIM	12.5 "Hg	5 psi
13A	RFS-478-FL-04	Modified TO-15 SIM	0.5 "Hg	5 psi
14A	RFS-Trip blank-04	Modified TO-15 SIM	29.5 "Hg	5 psi
15A	Lab Blank	Modified TO-15 SIM	NA	NA
15B	Lab Blank	Modified TO-15 SIM	NA	NA

Continued on next page

WORK ORDER #: 0712242A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S1518.008.01 RFS Air Man

DATE RECEIVED: 12/13/2007 **CONTACT:** Kelly Buettner 12/28/2007

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
16A	CCV	Modified TO-15 SIM	NA	NA
16B	CCV	Modified TO-15 SIM	NA	NA
17A	LCS	Modified TO-15 SIM	NA	NA
17B	LCS	Modified TO-15 SIM	NA	NA

CERTIFIED BY:	Sinda d. Fruman	DATE:	12/28/07

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0712242A

Fourteen 6 Liter Summa Special (SIM Certified) samples were received on December 13, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample RFS-Trip blank-04 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

The Chain of Custody (COC) information for samples RFS-163-03-04 and RFS-175-01-04 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the samples.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-UCB-01-04

Lab ID#: 0712242A-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
Methylene Chloride	0.36	0.42	1.2	1.4	
Benzene	0.090	0.38	0.28	1.2	
Trichloroethene	0.0054	0.0054	0.029	0.029	
Tetrachloroethene	0.0054	0.021	0.036	0.14	

Client Sample ID: RFS-163-01-04

Lab ID#: 0712242A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.35	0.45	1.2	1.6
Chloroform	0.035	0.040	0.17	0.20
Benzene	0.088	0.27	0.28	0.86
Trichloroethene	0.0052	0.0054	0.028	0.029
Tetrachloroethene	0.0052	0.012	0.036	0.078

Client Sample ID: RFS-163-02-04

Lab ID#: 0712242A-03A

Commonad	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.33	0.41	1.1	1.4
Chloroform	0.033	0.036	0.16	0.17
Benzene	0.082	0.29	0.26	0.92
Trichloroethene	0.0049	0.0070	0.026	0.038
Tetrachloroethene	0.0049	0.013	0.033	0.088

Client Sample ID: RFS-163-02D-04

Lab ID#: 0712242A-04A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.34	0.42	1.2	1.4
Chloroform	0.034	0.034	0.17	0.16
Benzene	0.086	0.28	0.27	0.88
Trichloroethene	0.0051	0.0061	0.028	0.033
Tetrachloroethene	0.0051	0.012	0.035	0.080

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-03-04

Lab ID#: 0712242A-05A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.073	0.39	0.23	1.2
Trichloroethene	0.0044	0.0091	0.024	0.049
Tetrachloroethene	0.0044	0.016	0.030	0.11

Client Sample ID: RFS-175-01-04

Lab ID#: 0712242A-06A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.034	0.040	0.17	0.20
Benzene	0.086	0.32	0.27	1.0
Trichloroethene	0.0051	0.0072	0.028	0.038
Tetrachloroethene	0.0051	0.030	0.035	0.20

Client Sample ID: RFS-175-02-04

Lab ID#: 0712242A-07A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.084	0.38	0.27	1.2
Trichloroethene	0.0050	0.0085	0.027	0.046
Tetrachloroethene	0.0050	0.015	0.034	0.10

Client Sample ID: RFS-177-01-04

Lab ID#: 0712242A-08A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.033	0.13	0.16	0.63
Benzene	0.082	0.29	0.26	0.94
Trichloroethene	0.0049	0.021	0.026	0.11
Tetrachloroethene	0.0049	0.040	0.033	0.27

Client Sample ID: RFS-155-01-04

Lab ID#: 0712242A-09A

Lab 1D//. 0/12242/1-0//1					
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-155-01-04

Lab ID#: 0712242A-09A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.088	0.33	0.28	1.1
Tetrachloroethene	0.0052	0.024	0.036	0.16

Client Sample ID: RFS-478-01-04

Lab ID#: 0712242A-10A

Compound	Rpt. Limit	Amount	•	Amount
	(ppbv)	(ppbv)		(uG/m3)
Chloroform	0.036	0.068	0.17	0.33
Benzene	0.090	0.44	0.28	1.4
Trichloroethene	0.0054	0.16	0.029	0.86
Tetrachloroethene	0.0054	0.016	0.036	0.11

Client Sample ID: RFS-478-02-04

Lab ID#: 0712242A-11A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.30	0.78	1.0	2.7
Chloroform	0.030	0.036	0.15	0.17
Benzene	0.076	0.36	0.24	1.2
Trichloroethene	0.0046	0.0086	0.024	0.046
Tetrachloroethene	0.0046	0.016	0.031	0.11

Client Sample ID: RFS-478-02-04 Lab Duplicate

Lab ID#: 0712242A-11AA

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.30	0.80	1.0	2.8
Chloroform	0.030	0.036	0.15	0.18
Benzene	0.076	0.37	0.24	1.2
Trichloroethene	0.0046	0.0087	0.024	0.047
Tetrachloroethene	0.0046	0.014	0.031	0.098

Client Sample ID: RFS-478-03-04

Lab ID#: 0712242A-12A

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-478-03-04

Lab ID#: 0712242A-12A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.12	0.35	0.37	1.1
Trichloroethene	0.0069	0.010	0.037	0.054
Tetrachloroethene	0.0069	0.022	0.047	0.15

Client Sample ID: RFS-478-FL-04

Lab ID#: 0712242A-13A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ppbv) (uG/m3)	(uG/m3)
Chloroform	0.027	0.028	0.13	0.14
Benzene	0.068	0.39	0.22	1.2
Trichloroethene	0.0041	0.0058	0.022	0.031
Tetrachloroethene	0.0041	0.013	0.028	0.088

Client Sample ID: RFS-Trip blank-04

Lab ID#: 0712242A-14A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-04 Lab ID#: 0712242A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM

•		
Dil. Factor:	1.79	Date of Analysis: 12/17/07 10:29 PM
File Name:	a121717	Date of Collection: 12/12/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.071	Not Detected
Methylene Chloride	0.36	0.42	1.2	1.4
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
Chloroform	0.036	Not Detected	0.17	Not Detected
Benzene	0.090	0.38	0.28	1.2
1,2-Dichloroethane	0.036	Not Detected	0.14	Not Detected
Trichloroethene	0.0054	0.0054	0.029	0.029
Tetrachloroethene	0.0054	0.021	0.036	0.14
trans-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	91	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: RFS-163-01-04 Lab ID#: 0712242A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121718	Date of Collection: 12/12/07
Dil. Factor:	1.75	Date of Analysis: 12/17/07 11:14 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.069	Not Detected
Methylene Chloride	0.35	0.45	1.2	1.6
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Chloroform	0.035	0.040	0.17	0.20
Benzene	0.088	0.27	0.28	0.86
1,2-Dichloroethane	0.035	Not Detected	0.14	Not Detected
Trichloroethene	0.0052	0.0054	0.028	0.029
Tetrachloroethene	0.0052	0.012	0.036	0.078
trans-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: RFS-163-02-04 Lab ID#: 0712242A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121719	Date of Collection: 12/12/07
Dil. Factor:	1.64	Date of Analysis: 12/18/07 12:05 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
Methylene Chloride	0.33	0.41	1.1	1.4
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
Chloroform	0.033	0.036	0.16	0.17
Benzene	0.082	0.29	0.26	0.92
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected
Trichloroethene	0.0049	0.0070	0.026	0.038
Tetrachloroethene	0.0049	0.013	0.033	0.088
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: RFS-163-02D-04 Lab ID#: 0712242A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121721	Date of Collection: 12/12/07
Dil. Factor:	1.71	Date of Analysis: 12/18/07 01:42 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
Methylene Chloride	0.34	0.42	1.2	1.4
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
Chloroform	0.034	0.034	0.17	0.16
Benzene	0.086	0.28	0.27	0.88
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0051	0.0061	0.028	0.033
Tetrachloroethene	0.0051	0.012	0.035	0.080
trans-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: RFS-163-03-04 Lab ID#: 0712242A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM

		_	
Dil. Factor:	1.46		Date of Analysis: 12/18/07 03:58 AM
File Name:	a121723		Date of Collection: 12/12/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.037	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.058	Not Detected
Methylene Chloride	0.29	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.029	Not Detected	0.12	Not Detected
Chloroform	0.029	Not Detected	0.14	Not Detected
Benzene	0.073	0.39	0.23	1.2
1,2-Dichloroethane	0.029	Not Detected	0.12	Not Detected
Trichloroethene	0.0044	0.0091	0.024	0.049
Tetrachloroethene	0.0044	0.016	0.030	0.11
trans-1.2-Dichloroethene	0.029	Not Detected	0.12	Not Detected

	, 	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-175-01-04 Lab ID#: 0712242A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121724	Date of Collection: 12/12/07
Dil. Factor:	1.71	Date of Analysis: 12/18/07 04:37 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
Chloroform	0.034	0.040	0.17	0.20
Benzene	0.086	0.32	0.27	1.0
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0051	0.0072	0.028	0.038
Tetrachloroethene	0.0051	0.030	0.035	0.20
trans-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: RFS-175-02-04 Lab ID#: 0712242A-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

ļ	2 1 0.00.1	Post I tout	A	Date of Analysis: 12	A
	Dil. Factor:	1.68		Date of Analysis: 12	/18/07 05·59 PM
	File Name:	a121807		Date of Collection:	12/12/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	Not Detected	0.16	Not Detected
Benzene	0.084	0.38	0.27	1.2
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.0085	0.027	0.046
Tetrachloroethene	0.0050	0.015	0.034	0.10
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

	, 	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-177-01-04 Lab ID#: 0712242A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil. Factor:	1.64	Date of Analysis: 12/18/07 06:01 AM
File Name:	a121726	Date of Collection: 12/12/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
Chloroform	0.033	0.13	0.16	0.63
Benzene	0.082	0.29	0.26	0.94
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected
Trichloroethene	0.0049	0.021	0.026	0.11
Tetrachloroethene	0.0049	0.040	0.033	0.27
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: RFS-155-01-04 Lab ID#: 0712242A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121809	Date of Collection: 12/12/07
Dil. Factor:	1.75	Date of Analysis: 12/18/07 07:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.069	Not Detected
Methylene Chloride	0.35	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Chloroform	0.035	Not Detected	0.17	Not Detected
Benzene	0.088	0.33	0.28	1.1
1,2-Dichloroethane	0.035	Not Detected	0.14	Not Detected
Trichloroethene	0.0052	Not Detected	0.028	Not Detected
Tetrachloroethene	0.0052	0.024	0.036	0.16
trans-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: RFS-478-01-04 Lab ID#: 0712242A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121810	Date of Collection: 12/12/07
Dil. Factor:	1.79	Date of Analysis: 12/18/07 07:56 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.071	Not Detected
Methylene Chloride	0.36	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
Chloroform	0.036	0.068	0.17	0.33
Benzene	0.090	0.44	0.28	1.4
1,2-Dichloroethane	0.036	Not Detected	0.14	Not Detected
Trichloroethene	0.0054	0.16	0.029	0.86
Tetrachloroethene	0.0054	0.016	0.036	0.11
trans-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: RFS-478-02-04 Lab ID#: 0712242A-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121812	Date of Collection: 12/12/07
Dil. Factor:	1.52	Date of Analysis: 12/18/07 09:15 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.060	Not Detected
Methylene Chloride	0.30	0.78	1.0	2.7
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.036	0.15	0.17
Benzene	0.076	0.36	0.24	1.2
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.0086	0.024	0.046
Tetrachloroethene	0.0046	0.016	0.031	0.11
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: RFS-478-02-04 Lab Duplicate

Lab ID#: 0712242A-11AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

	But I louit	A	Dot Limit	A
Dil. Factor:	1.52		Date of Analysis: 12	2/18/07 10:35 PM
File Name:	a121813		Date of Collection:	12/12/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.060	Not Detected
Methylene Chloride	0.30	0.80	1.0	2.8
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.036	0.15	0.18
Benzene	0.076	0.37	0.24	1.2
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.0087	0.024	0.047
Tetrachloroethene	0.0046	0.014	0.031	0.098
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: RFS-478-03-04 Lab ID#: 0712242A-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121814	Date of Collection: 12/12/07
Dil. Factor:	2.30	Date of Analysis: 12/18/07 11:32 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.023	Not Detected	0.059	Not Detected
1,1-Dichloroethene	0.023	Not Detected	0.091	Not Detected
Methylene Chloride	0.46	Not Detected	1.6	Not Detected
cis-1,2-Dichloroethene	0.046	Not Detected	0.18	Not Detected
Chloroform	0.046	Not Detected	0.22	Not Detected
Benzene	0.12	0.35	0.37	1.1
1,2-Dichloroethane	0.046	Not Detected	0.19	Not Detected
Trichloroethene	0.0069	0.010	0.037	0.054
Tetrachloroethene	0.0069	0.022	0.047	0.15
trans-1,2-Dichloroethene	0.046	Not Detected	0.18	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: RFS-478-FL-04 Lab ID#: 0712242A-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121815	Date of Collection: 12/12/07
Dil. Factor:	1.36	Date of Analysis: 12/19/07 12:23 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.014	Not Detected	0.035	Not Detected
1,1-Dichloroethene	0.014	Not Detected	0.054	Not Detected
Methylene Chloride	0.27	Not Detected	0.94	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
Chloroform	0.027	0.028	0.13	0.14
Benzene	0.068	0.39	0.22	1.2
1,2-Dichloroethane	0.027	Not Detected	0.11	Not Detected
Trichloroethene	0.0041	0.0058	0.022	0.031
Tetrachloroethene	0.0041	0.013	0.028	0.088
trans-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: RFS-Trip blank-04 Lab ID#: 0712242A-14A

MODIFIED EPA METHOD TO-15 GC/MS SIM

Jiii i dotori	Pnt Limit	Amount	Pnt Limit	Amount
Dil. Factor:	1.00		Date of Analysis: 12	2/19/07 01·14 ΔM
File Name:	a121816		Date of Collection:	12/12/07

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	88	70-130

Client Sample ID: Lab Blank Lab ID#: 0712242A-15A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121709	Date of Collection: NA		
Dil. Factor:	1.00	Date of Analysis: 12/17/07 02:41 F		12/17/07 02:41 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chlorida	0.010	Not Dotoctod	0.026	Not Detected

Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 0712242A-15B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a121806 1.00	Date of Collection: NA Date of Analysis: 12/18/07 04:43 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected

0.0030

0.020

Container Type: NA - Not Applicable

Tetrachloroethene trans-1,2-Dichloroethene

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	

Not Detected

Not Detected

0.020

0.079

Not Detected

Not Detected

Client Sample ID: CCV Lab ID#: 0712242A-16A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121704	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/17/07 09:53 AM

Compound	%Recovery
Vinyl Chloride	100
1,1-Dichloroethene	98
Methylene Chloride	94
cis-1,2-Dichloroethene	112
Chloroform	98
Benzene	100
1,2-Dichloroethane	102
Trichloroethene	89
Tetrachloroethene	100
trans-1,2-Dichloroethene	105

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: CCV Lab ID#: 0712242A-16B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a121802	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/18/07 01:36 PM

Compound	%Recovery
Vinyl Chloride	97
1,1-Dichloroethene	98
Methylene Chloride	93
cis-1,2-Dichloroethene	106
Chloroform	98
Benzene	98
1,2-Dichloroethane	100
Trichloroethene	87
Tetrachloroethene	98
trans-1,2-Dichloroethene	104

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: LCS Lab ID#: 0712242A-17A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: a121703 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/17/07 09:16 AM

Compound	%Recovery
Vinyl Chloride	91
1,1-Dichloroethene	94
Methylene Chloride	90
cis-1,2-Dichloroethene	98
Chloroform	87
Benzene	88
1,2-Dichloroethane	91
Trichloroethene	78
Tetrachloroethene	88
trans-1,2-Dichloroethene	91

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCS Lab ID#: 0712242A-17B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: a121803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/18/07 02:15 PM

Compound	%Recovery
Vinyl Chloride	91
1,1-Dichloroethene	96
Methylene Chloride	92
cis-1,2-Dichloroethene	100
Chloroform	91
Benzene	90
1,2-Dichloroethane	95
Trichloroethene	80
Tetrachloroethene	90
trans-1,2-Dichloroethene	92

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	106	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0712242B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S1518.008.01 RFS Air Man

DATE RECEIVED: 12/13/2007 **CONTACT:** Kelly Buettner DATE COMPLETED: 12/28/2007

FRACTION #	NAME	<u>TEST</u>
01A	RFS-UCB-01-04	Modified TO-11A
01AA	RFS-UCB-01-04 Lab Duplicate	Modified TO-11A
02A	RFS-163-01-04	Modified TO-11A
03A	RFS-163-02-04	Modified TO-11A
04A	RFS-163-02D-04	Modified TO-11A
05A	RFS-163-03-04	Modified TO-11A
06A	RFS-175-01-04	Modified TO-11A
07A	RFS-175-02-04	Modified TO-11A
08A	RFS-177-01-04	Modified TO-11A
09A	RFS-155-01-04	Modified TO-11A
10A	RFS-478-01-04	Modified TO-11A
11A	RFS-478-02-04	Modified TO-11A
12A	RFS-478-03-04	Modified TO-11A
13A	RFS-478-FL-04	Modified TO-11A
14A	RFS-Trip blank-04	Modified TO-11A
15A	Lab Blank	Modified TO-11A
16A	LCS	Modified TO-11A

CERTIFIED BY:

Linda d. Fruman

DATE: 12/27/07

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0712242B

Fourteen TO-11 Cartridge samples were received on December 13, 2007. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

The Chain of Custody (COC) information for sample RFS-Trip blank-04 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-UCB-01-04				
Lab ID#: 0712242B-01A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	4.0	2.0
Client Sample ID: RFS-UCB-01-04 Lab	Duplicate			
Lab ID#: 0712242B-01AA				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.025	4.1	2.0
Client Sample ID: RFS-163-01-04				
Lab ID#: 0712242B-02A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	23	12
Client Sample ID: RFS-163-02-04				
Lab ID#: 0712242B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.026	21	11
Client Sample ID: RFS-163-02D-04				
Lab ID#: 0712242B-04A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.026	20	10
Client Sample ID: RFS-163-03-04				
Lab ID#: 0712242B-05A				
· · · · · · · · · · · · · · · · · · ·	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	3.6	1.8

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-175-01-04				
Lab ID#: 0712242B-06A				
Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount	Amount (uG/m3)
Compound	(ug)	· · · · · · · · · · · · · · · · · · ·	(ug)	, ,
Formaldehyde	0.050	0.028	13	7.4
Client Sample ID: RFS-175-02-04				
Lab ID#: 0712242B-07A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	3.7	1.9
Client Sample ID: RFS-177-01-04				
Lab ID#: 0712242B-08A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	27	15
Client Sample ID: RFS-155-01-04				
Lab ID#: 0712242B-09A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	16	8.8
Client Sample ID: RFS-478-01-04				
Lab ID#: 0712242B-10A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.025	26	13
i omialuenyue	0.000	0.023	20	13
Client Sample ID: RFS-478-02-04				
Lab ID#: 0712242B-11A				
_	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	16	8.6

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-478-03-04

Lab ID#: 0712242B-12A

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)	
Formaldehyde	0.075	0.038	59	30	_

Client Sample ID: RFS-478-FL-04

Lab ID#: 0712242B-13A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	3.3	1.8

Client Sample ID: RFS-Trip blank-04

Lab ID#: 0712242B-14A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-04 Lab ID#: 0712242B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214014 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 02:26 PM
Date of Extraction: 12/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	4.0	2.0

Air Sample Volume(L): 1980 Container Type: TO-11 Cartridge

Client Sample ID: RFS-UCB-01-04 Lab Duplicate

Lab ID#: 0712242B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1214015		Date of Collection:	12/12/07
Dil. Factor:	1.00		Date of Analysis: 12	2/14/07 02:47 PM
			Date of Extraction:	12/14/07
	Rpt. Limit	Rpt. Limit	Amount	Amount

Rpt. Limit Rpt. Limit Amount Amount (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.025 4.1 2.0

Air Sample Volume(L): 1980 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-01-04 Lab ID#: 0712242B-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214016 Date of Collection: 12/12/07

Dil. Factor: 1.00 Date of Analysis: 12/14/07 03:08 PM

Date of Extraction: 12/14/07

Part Limit Part Limit Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	23	12

Air Sample Volume(L): 1870 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-02-04 Lab ID#: 0712242B-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214017 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 03:29 PM
Date of Extraction: 12/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.026	21	11

Air Sample Volume(L): 1940 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-02D-04 Lab ID#: 0712242B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1214018 1.00		Date of Collection: Date of Analysis: 12	
			Date of Extraction:	12/14/07
	Rpt. Limit	Rpt. Limit	Amount	Amount

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.026
 20
 10

Air Sample Volume(L): 1940 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-03-04 Lab ID#: 0712242B-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214019 Date of Collection: 12/12/07

Dil. Factor: 1.00 Date of Analysis: 12/14/07 04:11 PM

Date of Extraction: 12/14/07

Pot Limit Ret Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	3.6	1.8

Air Sample Volume(L): 2020 Container Type: TO-11 Cartridge

Client Sample ID: RFS-175-01-04 Lab ID#: 0712242B-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214020 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 04:32 PM
Date of Extraction: 12/14/07

Rpt. Limit Rpt. Limit Amount Amount

Rpt. Limit Rpt. Limit Amount Amount (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.028 13 7.4

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-175-02-04 Lab ID#: 0712242B-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214021 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 04:53 PM
Date of Extraction: 12/14/07

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	3.7	1.9

Air Sample Volume(L): 1980 Container Type: TO-11 Cartridge

Client Sample ID: RFS-177-01-04 Lab ID#: 0712242B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214022 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 05:14 PM
Date of Extraction: 12/14/07

Rpt. Limit Rpt. Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	27	15

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-155-01-04 Lab ID#: 0712242B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214023 Date of Collection: 12/12/07

Dil. Factor: 1.00 Date of Analysis: 12/14/07 05:34 PM

Date of Extraction: 12/14/07

Part Limit Ret Limit Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	16	8.8

Air Sample Volume(L): 1870 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-01-04 Lab ID#: 0712242B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214026 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 06:37 PM
Date of Extraction: 12/14/07

Rpt. Limit Rpt. Limit Amount Amount

Rot. Limit Rpt. Limit Amount Amount (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.025 26 13

Air Sample Volume(L): 2020 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-02-04 Lab ID#: 0712242B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214027 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 06:58 PM
Date of Extraction: 12/14/07

Rpt. Limit Rpt. Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	16	8.6

Air Sample Volume(L): 1870 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-03-04 Lab ID#: 0712242B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214035 Date of Collection: 12/12/07
Dil. Factor: 1.50 Date of Analysis: 12/14/07 10:02 PM
Date of Extraction: 12/14/07

Rpt Limit Rpt Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.075	0.038	59	30

Air Sample Volume(L): 1950 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-FL-04 Lab ID#: 0712242B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214029 Date of Collection: 12/12/07
Dil. Factor: 1.00 Date of Analysis: 12/14/07 07:40 PM
Date of Extraction: 12/14/07

Rpt. Limit Rpt. Limit Amount Amount

Rot. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0283.31.8

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-Trip blank-04 Lab ID#: 0712242B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1214030 1.00		Date of Collection: Date of Analysis: 1:	
		Date of Extraction: 12/14/07		
Compound	Rɒt. Limit (ug)	Rpt. Limit Amount Amount (uG/m3) (ug) (uG/m3)		
Formaldehyde	0.050	0.025	Not Detected	Not Detected

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Client Sample ID: Lab Blank Lab ID#: 0712242B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1214003 1.00		Date of Collection: N	
		Date of Extraction: 12/14/07		
	Rpt. Limit	Rpt. Limit Amount Amount		
Compound	(ug)	(uG/m3) (ug) (uG/m3)		
Formaldehyde	0.050	0.025	Not Detected	Not Detected

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 0712242B-16A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1214005 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 12/14/07 11:18 AM

Date of Extraction: 12/14/07

Compound %Recovery

Formaldehyde 102

Air Sample Volume(L): 2000

Container Type: NA - Not Applicable

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

DATE COMPLETED:

AN ENVIRONMENTAL ANALYTICAL LABORATORY

01/07/2008

WORK ORDER #: 0712413A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S1518.008.01 RFS AIR MONITORING

DATE RECEIVED: 12/20/2007 **CONTACT:** Kelly Buettner

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A(on hold)	RFS-UCB-01-05	Modified TO-15 SIM	26.5 "Hg	5 psi
02A	RFS-163-01-05	Modified TO-15 SIM	7.5 "Hg	5 psi
03A	RFS-163-02-05	Modified TO-15 SIM	6.5 "Hg	5 psi
04A	RFS-163-02D-05	Modified TO-15 SIM	6.0 "Hg	5 psi
05A(on hold)	RFS-163-03-05	Modified TO-15 SIM	29.0 "Hg	5 psi
06A	RFS-175-01-05	Modified TO-15 SIM	16.5 "Hg	5 psi
07A	RFS-175-02-05	Modified TO-15 SIM	17.0 "Hg	5 psi
08A	RFS-177-01-05	Modified TO-15 SIM	8.0 "Hg	5 psi
09A	RFS-155-01-05	Modified TO-15 SIM	23.0 "Hg	5 psi
10A	RFS-478-01-05	Modified TO-15 SIM	8.5 "Hg	5 psi
11A	RFS-478-02-05	Modified TO-15 SIM	6.5 "Hg	5 psi
11AA	RFS-478-02-05 Lab Duplicate	Modified TO-15 SIM	6.5 "Hg	5 psi
12A(on hold)	RFS-478-03-05	Modified TO-15 SIM	29.5 "Hg	5 psi
13A	RFS-FLS-01-05	Modified TO-15 SIM	6.0 "Hg	5 psi
13AA	RFS-FLS-01-05 Lab Duplicate	Modified TO-15 SIM	6.0 "Hg	5 psi
14A	RFS-Trip Blank-05	Modified TO-15 SIM	29.5 "Hg	5 psi
15A	Lab Blank	Modified TO-15 SIM	NA	NA

Continued on next page

WORK ORDER #: 0712413A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S1518.008.01 RFS AIR MONITORING

DATE RECEIVED: 12/20/2007

DATE COMPLETED: 01/07/2008

CONTACT: Kelly Buettner

RECEIPT **FINAL** FRACTION# **NAME TEST** VAC./PRES. **PRESSURE** 15B Lab Blank Modified TO-15 SIM NA NA Modified TO-15 SIM **CCV** NA 16A NA 16B **CCV** Modified TO-15 SIM NA NA LCS Modified TO-15 SIM NA NA 17A 17B LCS Modified TO-15 SIM NA NA

CERTIFIED BY: DATE: 01/07/08

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0712413A

Fourteen 6 Liter Summa Special (SIM Certified) samples were received on December 20, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample RFS-175-02-05 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Samples RFS-175-01-05, RFS-175-02-05 and RFS-155-01-05 were received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Sample RFS-UCB-01-05, RFS-163-03-05 and RFS-478-03-05 was received with significant vacuum remaining in the canister. The client was notified and requested the sample be placed on hold.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-01-05

Lab ID#: 0712413A-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.48	0.80	1.7	2.8
Chloroform	0.048	0.067	0.23	0.33
Benzene	0.12	0.34	0.38	1.1
Trichloroethene	0.0072	0.016	0.039	0.084
Tetrachloroethene	0.0072	0.078	0.049	0.53

Client Sample ID: RFS-163-02-05

Lab ID#: 0712413A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.34	0.67	1.2	2.3
Chloroform	0.034	0.051	0.17	0.25
Benzene	0.086	0.32	0.27	1.0
Trichloroethene	0.0051	0.014	0.028	0.074
Tetrachloroethene	0.0051	0.026	0.035	0.18

Client Sample ID: RFS-163-02D-05

Lab ID#: 0712413A-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.34	0.68	1.2	2.4
Chloroform	0.034	0.050	0.16	0.24
Benzene	0.084	1.8	0.27	5.6
Trichloroethene	0.0050	0.025	0.027	0.13
Tetrachloroethene	0.0050	0.027	0.034	0.18

Client Sample ID: RFS-175-01-05

Lab ID#: 0712413A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.15	0.40	0.48	1.3
Trichloroethene	0.0089	0.014	0.048	0.074
Tetrachloroethene	0.0089	0.045	0.061	0.30

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-175-02-05

Lab ID#: 0712413A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount
				(uG/m3)
Benzene	0.15	0.42	0.49	1.3
Trichloroethene	0.0093	0.017	0.050	0.090
Tetrachloroethene	0.0093	0.029	0.063	0.20

Client Sample ID: RFS-177-01-05

Lab ID#: 0712413A-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.092	0.31	0.29	1.0
Trichloroethene	0.0055	0.032	0.030	0.17
Tetrachloroethene	0.0055	0.045	0.037	0.30

Client Sample ID: RFS-155-01-05

Lab ID#: 0712413A-09A

	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount
Compound				(uG/m3)
Benzene	0.29	0.49	0.92	1.6
Trichloroethene	0.017	0.017	0.092	0.092
Tetrachloroethene	0.017	0.041	0.12	0.28

Client Sample ID: RFS-478-01-05

Lab ID#: 0712413A-10A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.094	0.50	0.30	1.6
Trichloroethene	0.0056	0.18	0.030	0.94
Tetrachloroethene	0.0056	0.028	0.038	0.19

Client Sample ID: RFS-478-02-05

Lab ID#: 0712413A-11A

Lau 1Dπ. V/12-13A-11A				
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-478-02-05

Lab ID#: 0712413A-11A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Chloroform	0.034	0.050	0.17	0.24
Benzene	0.086	0.44	0.27	1.4
Trichloroethene	0.0051	0.026	0.028	0.14
Tetrachloroethene	0.0051	0.032	0.035	0.22

Client Sample ID: RFS-478-02-05 Lab Duplicate

Lab ID#: 0712413A-11AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Chloroform	0.034	0.060	0.17	0.29
Benzene	0.086	0.52	0.27	1.7
Trichloroethene	0.0051	0.030	0.028	0.16
Tetrachloroethene	0.0051	0.039	0.035	0.26

Client Sample ID: RFS-FLS-01-05

Lab ID#: 0712413A-13A

Rpt. Limit	Amount (ppby)	Rpt. Limit	Amount (uG/m3)
(ppbv)	(ppsv)	(uO/ilio)	(dO/illo)
0.34	0.33 J	1.2	1.1 J
0.084	0.38	0.27	1.2
0.0050	0.011	0.027	0.060
0.0050	0.025	0.034	0.17
	(ppbv) 0.34 0.084 0.0050	(ppbv) (ppbv) 0.34 0.33 J 0.084 0.38 0.0050 0.011	(ppbv) (ppbv) (uG/m3) 0.34 0.33 J 1.2 0.084 0.38 0.27 0.0050 0.011 0.027

Client Sample ID: RFS-FLS-01-05 Lab Duplicate

Lab ID#: 0712413A-13AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.084	0.36	0.27	1.2
Trichloroethene	0.0050	0.012	0.027	0.063
Tetrachloroethene	0.0050	0.025	0.034	0.17

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-Trip Blank-05

Lab ID#: 0712413A-14A

No Detections Were Found.

Client Sample ID: RFS-163-01-05 Lab ID#: 0712413A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123024 2.40		Date of Collection: 12/19/07 Date of Analysis: 12/31/07 06:06 AM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.024	Not Detected	0.061	Not Detected	
1,1-Dichloroethene	0.024	Not Detected	0.095	Not Detected	
Methylene Chloride	0.48	0.80	1.7	2.8	
cis-1,2-Dichloroethene	0.048	Not Detected	0.19	Not Detected	
Chloroform	0.048	0.067	0.23	0.33	
Benzene	0.12	0.34	0.38	1.1	
1,2-Dichloroethane	0.048	Not Detected	0.19	Not Detected	
Trichloroethene	0.0072	0.016	0.039	0.084	
Tetrachloroethene	0.0072	0.078	0.049	0.53	
trans-1,2-Dichloroethene	0.048	Not Detected	0.19	Not Detected	

Container Type: 6 Liter Summa Special (SIM Certified)

(0	• • • • • • • • • • • • • • • • •	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: RFS-163-02-05 Lab ID#: 0712413A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a122812 1.71	Date of Collection: 12/19/07 Date of Analysis: 12/28/07 09:24 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
Methylene Chloride	0.34	0.67	1.2	2.3
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
Chloroform	0.034	0.051	0.17	0.25
Benzene	0.086	0.32	0.27	1.0
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0051	0.014	0.028	0.074
Tetrachloroethene	0.0051	0.026	0.035	0.18
trans-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: RFS-163-02D-05 Lab ID#: 0712413A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a122814 1.68	Date of Collection: 12/19/07 Date of Analysis: 12/29/07 09:40 AM		,,.
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	0.68	1.2	2.4
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	0.050	0.16	0.24
Benzene	0.084	1.8	0.27	5.6
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.025	0.027	0.13
Tetrachloroethene	0.0050	0.027	0.034	0.18
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

	·	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: RFS-175-01-05 Lab ID#: 0712413A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a122816 2.98	Date of Collection: 12/19/07 Date of Analysis: 12/29/07 11:01 AM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.030	Not Detected	0.076	Not Detected
1,1-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Methylene Chloride	0.60	Not Detected	2.1	Not Detected
cis-1,2-Dichloroethene	0.060	Not Detected	0.24	Not Detected
Chloroform	0.060	0.064	0.29	0.31
Benzene	0.15	0.40	0.48	1.3
1,2-Dichloroethane	0.060	Not Detected	0.24	Not Detected
Trichloroethene	0.0089	0.014	0.048	0.074
Tetrachloroethene	0.0089	0.045	0.061	0.30

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	99	70-130	

Not Detected

0.24

Not Detected

0.060

Client Sample ID: RFS-175-02-05 Lab ID#: 0712413A-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123006 3.09	a123006 3.09		Date of Collection: 12/19/07 Date of Analysis: 12/30/07 02:27 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.031	Not Detected	0.079	Not Detected	
1,1-Dichloroethene	0.031	Not Detected	0.12	Not Detected	
Methylene Chloride	0.62	Not Detected	2.1	Not Detected	
cis-1,2-Dichloroethene	0.062	Not Detected	0.24	Not Detected	
Chloroform	0.062	Not Detected	0.30	Not Detected	
Benzene	0.15	0.42	0.49	1.3	
1,2-Dichloroethane	0.062	Not Detected	0.25	Not Detected	
Trichloroethene	0.0093	0.017	0.050	0.090	
Tetrachloroethene	0.0093	0.029	0.063	0.20	
trans-1.2-Dichloroethene	0.062	Not Detected	0.24	Not Detected	

Container Type: 6 Liter Summa Special (SIM Certified)

Сельши с турен с шист с шиште с ресии (с	• • • • • • • • • • • • • • • • •	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: RFS-177-01-05 Lab ID#: 0712413A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123007 1.83	Date of Collection: 12/19/07 Date of Analysis: 12/30/07 03:09 P		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.047	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.072	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.14	Not Detected
Chloroform	0.037	0.14	0.18	0.70
Benzene	0.092	0.31	0.29	1.0
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0055	0.032	0.030	0.17
Tetrachloroethene	0.0055	0.045	0.037	0.30
trans-1,2-Dichloroethene	0.037	Not Detected	0.14	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: RFS-155-01-05 Lab ID#: 0712413A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123008 5.74	Date of Collection: 12/19/07 Date of Analysis: 12/30/07 03:48 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.057	Not Detected	0.15	Not Detected
1,1-Dichloroethene	0.057	Not Detected	0.23	Not Detected
Methylene Chloride	1.1	Not Detected	4.0	Not Detected
cis-1,2-Dichloroethene	0.11	Not Detected	0.46	Not Detected
Chloroform	0.11	Not Detected	0.56	Not Detected
Benzene	0.29	0.49	0.92	1.6
1,2-Dichloroethane	0.11	Not Detected	0.46	Not Detected
Trichloroethene	0.017	0.017	0.092	0.092
Tetrachloroethene	0.017	0.041	0.12	0.28

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

Сельши с турен с шист с шиште с ресии (с	•••••••	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	

Not Detected

0.46

Not Detected

0.11

Client Sample ID: RFS-478-01-05 Lab ID#: 0712413A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123009 1.87	Date of Collection: 12/19/07 Date of Analysis: 12/30/07 04:27 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected
Chloroform	0.037	0.061	0.18	0.30
Benzene	0.094	0.50	0.30	1.6
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0056	0.18	0.030	0.94
Tetrachloroethene	0.0056	0.028	0.038	0.19
trans-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: RFS-478-02-05 Lab ID#: 0712413A-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123010 1.71	Date of Collection: 12/19/07 Date of Analysis: 12/30/07 05		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
Methylene Chloride	0.34	0.82	1.2	2.8
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
Chloroform	0.034	0.050	0.17	0.24
Benzene	0.086	0.44	0.27	1.4
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0051	0.026	0.028	0.14

Container Type: 6 Liter Summa Special (SIM Certified)

Tetrachloroethene

trans-1,2-Dichloroethene

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	

0.032

Not Detected

0.035

0.14

0.22

Not Detected

0.0051

0.034

Client Sample ID: RFS-478-02-05 Lab Duplicate Lab ID#: 0712413A-11AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a123011		Date of Collection: 1	12/19/07
Dil. Factor:	1.71		Date of Analysis: 12	2/30/07 06:14 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
Methylene Chloride	0.34	0.95	1.2	3.3
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
Chloroform	0.034	0.060	0.17	0.29
Benzene	0.086	0.52	0.27	1.7
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0051	0.030	0.028	0.16
Tetrachloroethene	0.0051	0.039	0.035	0.26
trans-1.2-Dichloroethene	0.034	Not Detected	0.14	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

Communication of the communica		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: RFS-FLS-01-05 Lab ID#: 0712413A-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123013 1.68							ate of Collection: 12/19/07 ate of Analysis: 12/30/07 07:43 PM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount				
	(ppby)	(ydag)	(uG/m3)	(uG/m3)				

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	0.33 J	1.2	1.1 J
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	Not Detected	0.16	Not Detected
Benzene	0.084	0.38	0.27	1.2
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.011	0.027	0.060
Tetrachloroethene	0.0050	0.025	0.034	0.17
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Special (SIM Certified)

_		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: RFS-FLS-01-05 Lab Duplicate Lab ID#: 0712413A-13AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123014 1.68		Date of Collection: 12/19/07 Date of Analysis: 12/30/07 08:3	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	Not Detected	0.16	Not Detected
Benzene	0.084	0.36	0.27	1.2

Not Detected

0.012

0.025

Not Detected

0.14

0.027

0.034

0.13

Not Detected

0.063

0.17

Not Detected

0.034

0.0050

0.0050

0.034

Container Type: 6 Liter Summa Special (SIM Certified)

1,2-Dichloroethane

Tetrachloroethene

trans-1,2-Dichloroethene

Trichloroethene

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-Trip Blank-05 Lab ID#: 0712413A-14A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123016 1.00			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	

Not Detected

0.079

Not Detected

0.020

Client Sample ID: Lab Blank Lab ID#: 0712413A-15A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a122806 1.00		Date of Collection: Note of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 0712413A-15B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a123005 1.00		Date of Collection: I Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

остания туротти тост фриовило		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: CCV Lab ID#: 0712413A-16A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a122802	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/28/07 11:33 AM

Compound	%Recovery
Vinyl Chloride	102
1,1-Dichloroethene	92
Methylene Chloride	91
cis-1,2-Dichloroethene	106
Chloroform	98
Benzene	101
1,2-Dichloroethane	104
Trichloroethene	89
Tetrachloroethene	100
trans-1,2-Dichloroethene	101

occurrence types the trees types and		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: CCV Lab ID#: 0712413A-16B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a123002	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/30/07 09:41 AM

Compound	%Recovery
Vinyl Chloride	88
1,1-Dichloroethene	92
Methylene Chloride	90
cis-1,2-Dichloroethene	105
Chloroform	96
Benzene	97
1,2-Dichloroethane	99
Trichloroethene	85
Tetrachloroethene	95
trans-1,2-Dichloroethene	101

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCS Lab ID#: 0712413A-17A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a122803	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/28/07 01:38 PM

Compound	%Recovery
Vinyl Chloride	99
1,1-Dichloroethene	101
Methylene Chloride	96
cis-1,2-Dichloroethene	106
Chloroform	98
Benzene	99
1,2-Dichloroethane	102
Trichloroethene	87
Tetrachloroethene	100
trans-1,2-Dichloroethene	101

The state of the s		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: LCS Lab ID#: 0712413A-17B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a123003	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/30/07 10:48 AM

Compound	%Recovery
Vinyl Chloride	104
1,1-Dichloroethene	103
Methylene Chloride	98
cis-1,2-Dichloroethene	109
Chloroform	101
Benzene	101
1,2-Dichloroethane	106
Trichloroethene	89
Tetrachloroethene	100
trans-1,2-Dichloroethene	103

Common Types III. The Types III.		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	100	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0712413B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S1518.008.01 RFS AIR MONITORING

DATE RECEIVED: 12/20/2007 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 01/02/2008

FRACTION #	NAME	<u>TEST</u>
01A	RFS-UCB-01-05	Modified TO-11A
01AA	RFS-UCB-01-05 Lab Duplicate	Modified TO-11A
02A	RFS-163-01-05	Modified TO-11A
03A	RFS-163-02-05	Modified TO-11A
04A	RFS-163-02D-05	Modified TO-11A
05A	RFS-175-01-05	Modified TO-11A
06A	RFS-175-02-05	Modified TO-11A
07A	RFS-177-01-05	Modified TO-11A
08A	RFS-155-01-05	Modified TO-11A
09A	RFS-478-01-05	Modified TO-11A
10A	RFS-478-02-05	Modified TO-11A
11A	RFS-478-03-05	Modified TO-11A
12A	RFS-FLS-01-05	Modified TO-11A
13A	RFS-Trip Blank-05	Modified TO-11A
14A	Lab Blank	Modified TO-11A
15A	LCS	Modified TO-11A

CERTIFIED BY:

Laboratory Director

DATE: 01/02/08

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0712413B

Thirteen TO-11 Cartridge samples were received on December 20, 2007. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

A Temperature Blank was not included with the shipment. Temperature was measured on a representative sample and was not within 4 ± 2 °C. Coolant in the form of blue ice was present. Analysis proceeded.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates

as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-UCB-01-05				
Lab ID#: 0712413B-01A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	3.1	1.7
Client Sample ID: RFS-UCB-01-05 Lab	Duplicate			
Lab ID#: 0712413B-01AA				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.028	3.1	1.7
Client Sample ID: RFS-163-01-05				
Lab ID#: 0712413B-02A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.027	34	19
Client Sample ID: RFS-163-02-05				
Lab ID#: 0712413B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	28	16
Client Sample ID: RFS-163-02D-05				
Lab ID#: 0712413B-04A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.028	25	14
Client Sample ID: RFS-175-01-05				
Lab ID#: 0712413B-05A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	19	11

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-175-02-05				
Lab ID#: 0712413B-06A				
Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount	Amount (uG/m3)
Compound	(ug)	· · · · · · · · · · · · · · · · · · ·	(ug)	•
Formaldehyde	0.050	0.028	2.5	1.4
Client Sample ID: RFS-177-01-05				
Lab ID#: 0712413B-07A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	37	21
Client Sample ID: RFS-155-01-05				
Lab ID#: 0712413B-08A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	28	15
Client Sample ID: RFS-478-01-05				
Lab ID#: 0712413B-09A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	35	20
Client Sample ID: RFS-478-02-05				
Lab ID#: 0712413B-10A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amoun (uG/m3
Formaldehyde	0.050	0.028	30	16
Client Sample ID: RFS-478-03-05				
•				
Lab ID#: 0712413B-11A	Rpt. Limit	Rpt. Limit	Amount	Amoun
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.10	0.055	78	43
· ···-·· , -·-	=			_

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-FLS-01-05

Lab ID#: 0712413B-12A

	Rpt. Limit	Rpt. Limit Amor	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.7	0.97

Client Sample ID: RFS-Trip Blank-05

Lab ID#: 0712413B-13A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-05 Lab ID#: 0712413B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1221011
 Date of Collection: 12/19/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/21/07 12:28 PM

 Date of Extraction: 12/21/07
 1.00

CompoundRpt. Limit
(ug)Rpt. Limit
(uG/m3)Amount
(ug)Amount
(ug)Formaldehyde0.0500.0283.11.7

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-UCB-01-05 Lab Duplicate

Lab ID#: 0712413B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1221012 1.00		Date of Collection: 1 Date of Analysis: 12	
			Date of Extraction:	12/21/07
	Rpt. Limit	Rpt. Limit	Amount	Amount

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.028
 3.1
 1.7

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-01-05 Lab ID#: 0712413B-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1221019 Date of Collection: 12/19/07

Dil. Factor: 1.00 Date of Analysis: 12/21/07 03:15 PM

Date of Extraction: 12/21/07

Compound	Rɒt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	34	19

Air Sample Volume(L): 1820 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-02-05 Lab ID#: 0712413B-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1221020 Date of Collection: 12/19/07

Dil. Factor: 1.00 Date of Analysis: 12/21/07 03:36 PM

Date of Extraction: 12/21/07

Rpt Limit Rpt Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	28	16

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-163-02D-05 Lab ID#: 0712413B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1221021		Date of Collection:	12/19/07
Dil. Factor:	1.00		Date of Analysis: 1	2/21/07 03:57 PM
			Date of Extraction:	12/21/07
	Rpt. Limit	Rpt. Limit	Amount	Amount

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.028
 25
 14

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-175-01-05 Lab ID#: 0712413B-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1221022
 Date of Collection: 12/19/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/21/07 04:18 PM

 Date of Extraction: 12/21/07
 1.00

	Rpt. Limit	Rpt. Limit Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.028	19	11

Air Sample Volume(L): 1810 Container Type: TO-11 Cartridge

Client Sample ID: RFS-175-02-05 Lab ID#: 0712413B-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1221023
 Date of Collection: 12/19/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/21/07 04:39 PM

 Date of Extraction: 12/21/07
 1.00

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	2.5	1.4

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-177-01-05 Lab ID#: 0712413B-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1221024
 Date of Collection: 12/19/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/21/07 05:00 PM

 Date of Extraction: 12/21/07

 Rpt. Limit
 Amount
 Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	37	21

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-155-01-05 Lab ID#: 0712413B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1221025
 Date of Collection: 12/19/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/21/07 05:20 PM

 Date of Extraction: 12/21/07

 Rpt. Limit
 Amount
 Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.027	28	15

Air Sample Volume(L): 1870 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-01-05 Lab ID#: 0712413B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1221026 Date of Collection: 12/19/07

Dil. Factor: 1.00 Date of Analysis: 12/21/07 05:41 PM

Date of Extraction: 12/21/07

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.028	35	20

Air Sample Volume(L): 1770 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-02-05 Lab ID#: 0712413B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1221029		Date of Collection:	12/10/07	
i ile ivalile.	11221029		Date of Collection.	12/19/07	
Dil. Factor:	1.00	1.00 Date of Analysis: 12/21/0			
			Date of Extraction: 12/21/07		
	Rpt. Limit	Rpt. Limit	Amount	Amount	

Rpt. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0283016

Air Sample Volume(L): 1810 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-03-05 Lab ID#: 0712413B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f1228005	f1228005 Date of Collection: 12/19/07		
Dil. Factor:	2.00	2.00 Date of Analysis: 12/28/07 09:31 Al Date of Extraction: 12/21/07		2/28/07 09:31 AM
				12/21/07
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	()	(uC/m2)	(1.m)	(u.C/m2)

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.10
 0.055
 78
 43

Air Sample Volume(L): 1810 Container Type: TO-11 Cartridge

Client Sample ID: RFS-FLS-01-05 Lab ID#: 0712413B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f1221031
 Date of Collection: 12/19/07

 Dil. Factor:
 1.00
 Date of Analysis: 12/21/07 07:26 PM

 Date of Extraction: 12/21/07

 Rpt Limit
 Amount
 Amount

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.028	1.7	0.97

Air Sample Volume(L): 1770 Container Type: TO-11 Cartridge

Client Sample ID: RFS-Trip Blank-05 Lab ID#: 0712413B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f1221032 1.00	Date of Collection: 12/19/07 Date of Analysis: 12/21/07 07:47 P		
Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.025	Not Detected	Not Detected

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Client Sample ID: Lab Blank Lab ID#: 0712413B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

f1221003 1.00		Date of Collection: NA Date of Analysis: 12/21/07 09:16 AM			
	Date of Extraction: 12/21/07				
Rpt. Limit	Rpt. Limit	Amount (ug)	Amount (uG/m3)		
			Not Detected		
	1.00	1.00 Rpt. Limit Rpt. Limit (ug) (uG/m3)	1.00 Date of Analysis: 12 Date of Extraction: Rpt. Limit Rpt. Limit Amount (ug) (uG/m3) (ug)		

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 0712413B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f1221004 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 12/21/07 09:37 AM

Date of Extraction: 12/21/07

Compound %Recovery

Formaldehyde 102

Air Sample Volume(L): 2000

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

DATE COMPLETED:

AN ENVIRONMENTAL ANALYTICAL LABORATORY

01/24/2008

WORK ORDER #: 0801142A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S158.008.01 RFS Air Monitoring

DATE RECEIVED: 01/11/2008 **CONTACT:** Kelly Buettner

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	RFS-UCB-01-06	Modified TO-15 SIM	4.0 "Hg	5 psi
02A	RFS-155-01-06	Modified TO-15 SIM	8.5 "Hg	5 psi
02AA	RFS-155-01-06 Lab Duplicate	Modified TO-15 SIM	8.5 "Hg	5 psi
03A	RFS-163-01-06	Modified TO-15 SIM	8.5 "Hg	5 psi
04A	RFS-163-02-06	Modified TO-15 SIM	6.5 "Hg	5 psi
05A	RFS-163-02D-06	Modified TO-15 SIM	5.5 "Hg	5 psi
06A	RFS-163-03-06	Modified TO-15 SIM	14.5 "Hg	5 psi
07A	RFS-175-01-06	Modified TO-15 SIM	6.0 "Hg	5 psi
08A	RFS-175-02-06	Modified TO-15 SIM	14.5 "Hg	5 psi
08AA	RFS-175-02-06 Lab Duplicate	Modified TO-15 SIM	14.5 "Hg	5 psi
09A	RFS-177-01-06	Modified TO-15 SIM	3.5 "Hg	5 psi
10A	RFS-478-02-06	Modified TO-15 SIM	5.0 "Hg	5 psi
11A	RFS-478-03-06	Modified TO-15 SIM	7.0 "Hg	5 psi
12A	RFS-FLS-01-06	Modified TO-15 SIM	18.5 "Hg	5 psi
13A	RFS-478-01-06	Modified TO-15 SIM	5.5 "Hg	5 psi
14A	Trip Blank	Modified TO-15 SIM	29.0 "Hg	5 psi
15A	Lab Blank	Modified TO-15 SIM	NA	NA

Continued on next page

WORK ORDER #: 0801142A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S158.008.01 RFS Air Monitoring

DATE RECEIVED: 01/11/2008 **CONTACT:** Kelly Buettner 01/24/2008

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
15B	Lab Blank	Modified TO-15 SIM	NA	NA
15C	Lab Blank	Modified TO-15 SIM	NA	NA
16A	CCV	Modified TO-15 SIM	NA	NA
16B	CCV	Modified TO-15 SIM	NA	NA
16C	CCV	Modified TO-15 SIM	NA	NA
17A	LCS	Modified TO-15 SIM	NA	NA
17B	LCS	Modified TO-15 SIM	NA	NA
17C	LCS	Modified TO-15 SIM	NA	NA

CERTIFIED BY: DATE: 01/24/08

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0801142A

Fourteen 6 Liter Summa Special (SIM Certified) samples were received on January 11, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	<pre><!--=30% RSD with 2 compounds allowed out to < 40% RSD</pre--></pre>	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The number of samples received did not match the information on the Chain of Custody (COC). Sample Trip Blank was added to the analytical request.

The Chain of Custody (COC) information for samples RFS-UCB-01-06, RFS-155-01-06, RFS-163-01-06, RFS-163-02-06, RFS-163-02D-06, RFS-163-03-06, RFS-175-01-06, RFS-175-02-06, RFS-177-01-06, RFS-478-02-06, RFS-478-03-06, RFS-FLS-01-06 and RFS-478-01-06 did not match the entries on the sample tags with regard to sample identification. Therefore the information on the COC was used to process and report the samples.

Sample RFS-FLS-01-06 was received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-UCB-01-06

Lab ID#: 0801142A-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.078	0.48	0.25	1.5
Trichloroethene	0.0046	0.028	0.025	0.15
Tetrachloroethene	0.0046	0.028	0.032	0.19

Client Sample ID: RFS-155-01-06

Lab ID#: 0801142A-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount		
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	_	
Benzene	0.094	0.80	0.30	2.5		
Trichloroethene	0.0056	0.026	0.030	0.14		
Tetrachloroethene	0.0056	0.038	0.038	0.26		

Client Sample ID: RFS-155-01-06 Lab Duplicate

Lab ID#: 0801142A-02AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.094	0.79	0.30	2.5
Trichloroethene	0.0056	0.026	0.030	0.14
Tetrachloroethene	0.0056	0.039	0.038	0.26

Client Sample ID: RFS-163-01-06

Lab ID#: 0801142A-03A

Compound	Rpt. Limit (ppbv)	Amount	Rpt. Limit	Amount
		(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.37	0.63	1.3	2.2
Chloroform	0.037	0.041	0.18	0.20
Benzene	0.094	0.39	0.30	1.2
Trichloroethene	0.0056	0.024	0.030	0.13
Tetrachloroethene	0.0056	0.025	0.038	0.17

Client Sample ID: RFS-163-02-06

Lab ID#: 0801142A-04A

Lau 1D#; 0001142A-04A					
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-02-06

Lab ID#: 0801142A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit	Amount
			(uG/m3)	(uG/m3)
Methylene Chloride	0.34	0.69	1.2	2.4
Chloroform	0.034	0.040	0.17	0.19
Benzene	0.086	0.40	0.27	1.3
Trichloroethene	0.0051	0.035	0.028	0.19
Tetrachloroethene	0.0051	0.029	0.035	0.20

Client Sample ID: RFS-163-02D-06

Lab ID#: 0801142A-05A

Compound	Rpt. Limit (ppbv)	Amount	Rpt. Limit	Amount
		(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.33	0.67	1.1	2.3
Chloroform	0.033	0.037	0.16	0.18
Benzene	0.082	0.38	0.26	1.2
Trichloroethene	0.0049	0.024	0.026	0.13
Tetrachloroethene	0.0049	0.020	0.033	0.14

Client Sample ID: RFS-163-03-06

Lab ID#: 0801142A-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount		
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	_	
Benzene	0.13	0.35	0.41	1.1		
Trichloroethene	0.0078	0.028	0.042	0.15		
Tetrachloroethene	0.0078	0.018	0.053	0.12		

Client Sample ID: RFS-175-01-06

Lab ID#: 0801142A-07A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.017	0.025	0.043	0.064
Chloroform	0.034	0.043	0.16	0.21
Benzene	0.084	0.41	0.27	1.3
Trichloroethene	0.0050	0.025	0.027	0.13
Tetrachloroethene	0.0050	0.046	0.034	0.31

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-175-02-06

Lab ID#: 0801142A-08A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.13	0.35	0.41	1.1
Trichloroethene	0.0078	0.032	0.042	0.17
Tetrachloroethene	0.0078	0.020	0.053	0.14

Client Sample ID: RFS-175-02-06 Lab Duplicate

Lab ID#: 0801142A-08AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.13	0.34	0.41	1.1
Trichloroethene	0.0078	0.030	0.042	0.16
Tetrachloroethene	0.0078	0.019	0.053	0.13

Client Sample ID: RFS-177-01-06

Lab ID#: 0801142A-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.030	0.056	0.15	0.27
Benzene	0.076	0.34	0.24	1.1
Trichloroethene	0.0046	0.046	0.024	0.25
Tetrachloroethene	0.0046	0.040	0.031	0.27

Client Sample ID: RFS-478-02-06

Lab ID#: 0801142A-10A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.32	0.80	1.1	2.8
Chloroform	0.032	0.042	0.16	0.21
Benzene	0.080	0.43	0.26	1.4
Trichloroethene	0.0048	0.059	0.026	0.32
Tetrachloroethene	0.0048	0.17	0.033	1.2

Client Sample ID: RFS-478-03-06

Lab ID#: 0801142A-11A

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-478-03-06

Lab ID#: 0801142A-11A

	Rɒt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.35	0.63	1.2	2.2
Benzene	0.088	0.37	0.28	1.2
Trichloroethene	0.0052	0.023	0.028	0.12
Tetrachloroethene	0.0052	0.016	0.036	0.11

Client Sample ID: RFS-FLS-01-06

Lab ID#: 0801142A-12A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.18	0.47	0.56	1.5
Trichloroethene	0.010	0.048	0.056	0.26
Tetrachloroethene	0.010	0.023	0.071	0.15

Client Sample ID: RFS-478-01-06

Lab ID#: 0801142A-13A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
cis-1,2-Dichloroethene	0.033	0.050	0.13	0.20
Chloroform	0.033	0.060	0.16	0.29
Benzene	0.082	1.3	0.26	4.0
Trichloroethene	0.0049	0.21	0.026	1.1
Tetrachloroethene	0.0049	0.023	0.033	0.16

Client Sample ID: Trip Blank

Lab ID#: 0801142A-14A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-06 Lab ID#: 0801142A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011714 1.55	Date of Collection: 1/10/08 Date of Analysis: 1/17/08 06:03 F		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
Methylene Chloride	0.31	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	Not Detected	0.15	Not Detected
Benzene	0.078	0.48	0.25	1.5
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.028	0.025	0.15
Tetrachloroethene	0.0046	0.028	0.032	0.19
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected

Сельшин турого — по томини ороски (с	•••••••	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: RFS-155-01-06 Lab ID#: 0801142A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: a011715 Dil. Factor: 1.87		Date of Collection: 1/10/08 Date of Analysis: 1/17/08 06:42 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected
Chloroform	0.037	Not Detected	0.18	Not Detected
Benzene	0.094	0.80	0.30	2.5
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0056	0.026	0.030	0.14
Tetrachloroethene	0.0056	0.038	0.038	0.26

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	99	70-130	

Not Detected

0.15

Not Detected

Client Sample ID: RFS-155-01-06 Lab Duplicate Lab ID#: 0801142A-02AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011716 1.87			.,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected
Methylene Chloride	0.37	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected
Chloroform	0.037	Not Detected	0.18	Not Detected
Benzene	0.094	0.79	0.30	2.5
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0056	0.026	0.030	0.14
Tetrachloroethene	0.0056	0.039	0.038	0.26

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

Сельшин турого — по томини ороски (с	• • • • • • • • • • • • • • • • •	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	

Not Detected

0.15

Not Detected

Client Sample ID: RFS-163-01-06 Lab ID#: 0801142A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011718 1.87	Date of Collection: 1/10/ Date of Analysis: 1/17/0		.,,
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.019	Not Detected	0.048	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.074	Not Detected
Methylene Chloride	0.37	0.63	1.3	2.2
cis-1,2-Dichloroethene	0.037	Not Detected	0.15	Not Detected
Chloroform	0.037	0.041	0.18	0.20
Benzene	0.094	0.39	0.30	1.2
1,2-Dichloroethane	0.037	Not Detected	0.15	Not Detected
Trichloroethene	0.0056	0.024	0.030	0.13
Tetrachloroethene	0.0056	0.025	0.038	0.17

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

Солишно турого = 1101 Синина Сресии (С	• • • • • • • • • • • • • • • • •	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	

Not Detected

0.15

Not Detected

Client Sample ID: RFS-163-02-06 Lab ID#: 0801142A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011719 1.71	*******		Date of Collection: 1/10/08 Date of Analysis: 1/18/08 07:55 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected	
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected	
Methylene Chloride	0.34	0.69	1.2	2.4	
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected	
Chloroform	0.034	0.040	0.17	0.19	
Benzene	0.086	0.40	0.27	1.3	
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected	
Trichloroethene	0.0051	0.035	0.028	0.19	
Tetrachloroethene	0.0051	0.029	0.035	0.20	
trans-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected	

,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-163-02D-06 Lab ID#: 0801142A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011720 1.64			ction: 1/10/08 /sis: 1/18/08 08:34 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected	
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected	
Methylene Chloride	0.33	0.67	1.1	2.3	
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected	
Chloroform	0.033	0.037	0.16	0.18	
Benzene	0.082	0.38	0.26	1.2	
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected	
Trichloroethene	0.0049	0.024	0.026	0.13	
Tetrachloroethene	0.0049	0.020	0.033	0.14	
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected	

Остания турого Сантина оросна (С		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: RFS-163-03-06 Lab ID#: 0801142A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011812 2.59	Date of Collection: 1/10/08 Date of Analysis: 1/18/08 05:29 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.026	Not Detected	0.066	Not Detected
1,1-Dichloroethene	0.026	Not Detected	0.10	Not Detected
Methylene Chloride	0.52	Not Detected	1.8	Not Detected
cis-1,2-Dichloroethene	0.052	Not Detected	0.20	Not Detected
Chloroform	0.052	Not Detected	0.25	Not Detected
Benzene	0.13	0.35	0.41	1.1
1,2-Dichloroethane	0.052	Not Detected	0.21	Not Detected
Trichloroethene	0.0078	0.028	0.042	0.15
Tetrachloroethene	0.0078	0.018	0.053	0.12

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

Солишно турого = 1101 Синина Сресии (С	• • • • • • • • • • • • • • • • •	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	

Not Detected

0.20

Not Detected

Client Sample ID: RFS-175-01-06 Lab ID#: 0801142A-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011813 1.68	Date of Collection: 1/10/08 Date of Analysis: 1/18/08 06:06 PI		.,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	0.025	0.043	0.064
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	0.043	0.16	0.21
Benzene	0.084	0.41	0.27	1.3
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.025	0.027	0.13
Tetrachloroethene	0.0050	0.046	0.034	0.31

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Not Detected

0.13

Not Detected

Client Sample ID: RFS-175-02-06 Lab ID#: 0801142A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011814 2.59	Date of Collection: 1/10/08 Date of Analysis: 1/18/08 06:47 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.026	Not Detected	0.066	Not Detected
1,1-Dichloroethene	0.026	Not Detected	0.10	Not Detected
Methylene Chloride	0.52	Not Detected	1.8	Not Detected
cis-1,2-Dichloroethene	0.052	Not Detected	0.20	Not Detected
Chloroform	0.052	Not Detected	0.25	Not Detected
Benzene	0.13	0.35	0.41	1.1
1,2-Dichloroethane	0.052	Not Detected	0.21	Not Detected
Trichloroethene	0.0078	0.032	0.042	0.17
Tetrachloroethene	0.0078	0.020	0.053	0.14

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Not Detected

0.20

Not Detected

Client Sample ID: RFS-175-02-06 Lab Duplicate

Lab ID#: 0801142A-08AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011815 2.59	Date of Collection: 1/10/08 Date of Analysis: 1/18/08 07:39 PI		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.026	Not Detected	0.066	Not Detected
1,1-Dichloroethene	0.026	Not Detected	0.10	Not Detected
Methylene Chloride	0.52	Not Detected	1.8	Not Detected
cis-1,2-Dichloroethene	0.052	Not Detected	0.20	Not Detected
Chloroform	0.052	Not Detected	0.25	Not Detected
Benzene	0.13	0.34	0.41	1.1
1,2-Dichloroethane	0.052	Not Detected	0.21	Not Detected
Trichloroethene	0.0078	0.030	0.042	0.16
Tetrachloroethene	0.0078	0.019	0.053	0.13
trans-1,2-Dichloroethene	0.052	Not Detected	0.20	Not Detected

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: RFS-177-01-06 Lab ID#: 0801142A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011816 1.52	Date of Collection: 1/10/08 Date of Analysis: 1/18/08 08:18 PM		.,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.060	Not Detected
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.056	0.15	0.27
Benzene	0.076	0.34	0.24	1.1
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.046	0.024	0.25

0.0046

0.030

Container Type: 6 Liter Summa Special (SIM Certified)

Tetrachloroethene

trans-1,2-Dichloroethene

,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

0.040

Not Detected

0.031

0.12

0.27

Not Detected

Client Sample ID: RFS-478-02-06 Lab ID#: 0801142A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011817 1.61			of Collection: 1/10/08 of Analysis: 1/18/08 09:00 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected	
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected	
Methylene Chloride	0.32	0.80	1.1	2.8	
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected	
Chloroform	0.032	0.042	0.16	0.21	
Benzene	0.080	0.43	0.26	1.4	
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected	
Trichloroethene	0.0048	0.059	0.026	0.32	
Tetrachloroethene	0.0048	0.17	0.033	1.2	
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected	

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: RFS-478-03-06 Lab ID#: 0801142A-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011819 1.75	Date of Collection: 1/10/08 Date of Analysis: 1/18/08 10:19 P		.,
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.069	Not Detected
Methylene Chloride	0.35	0.63	1.2	2.2
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Chloroform	0.035	Not Detected	0.17	Not Detected
Benzene	0.088	0.37	0.28	1.2
1,2-Dichloroethane	0.035	Not Detected	0.14	Not Detected
Trichloroethene	0.0052	0.023	0.028	0.12
Tetrachloroethene	0.0052	0.016	0.036	0.11

Container Type: 6 Liter Summa Special (SIM Certified)

trans-1,2-Dichloroethene

,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	104	70-130	

Not Detected

0.14

Not Detected

Client Sample ID: RFS-FLS-01-06 Lab ID#: 0801142A-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a012006 3.50	*** ****		Date of Collection: 1/10/08 Date of Analysis: 1/20/08 02:30 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.035	Not Detected	0.089	Not Detected	
1,1-Dichloroethene	0.035	Not Detected	0.14	Not Detected	
Methylene Chloride	0.70	Not Detected	2.4	Not Detected	
cis-1,2-Dichloroethene	0.070	Not Detected	0.28	Not Detected	
Chloroform	0.070	Not Detected	0.34	Not Detected	
Benzene	0.18	0.47	0.56	1.5	
1,2-Dichloroethane	0.070	Not Detected	0.28	Not Detected	
Trichloroethene	0.010	0.048	0.056	0.26	
Tetrachloroethene	0.010	0.023	0.071	0.15	
trans-1,2-Dichloroethene	0.070	Not Detected	0.28	Not Detected	

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: RFS-478-01-06 Lab ID#: 0801142A-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a012007 1.64		Date of Collection: Date of Analysis: 1	.,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.033	0.050	0.13	0.20
Chloroform	0.033	0.060	0.16	0.29
Benzene	0.082	1.3	0.26	4.0
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected
Trichloroethene	0.0049	0.21	0.026	1.1
Tetrachloroethene	0.0049	0.023	0.033	0.16
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected

	, 	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: Trip Blank Lab ID#: 0801142A-14A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a012020 1.00		Date of Collection: Note of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

Сельши с турен с шист с шиште с ресии (с	•••••••	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: Lab Blank Lab ID#: 0801142A-15A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011707 1.00		Date of Collection: I Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

останов туротта тост фрасция		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 0801142A-15B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a011806 1.00		Date of Collection: I Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

Commission Type The Control of the C		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: Lab Blank Lab ID#: 0801142A-15C

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a012005 1.00		Date of Collection: I	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

21.		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: CCV Lab ID#: 0801142A-16A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a011703	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/17/08 10:16 AM

Compound	%Recovery
Vinyl Chloride	90
1,1-Dichloroethene	92
Methylene Chloride	89
cis-1,2-Dichloroethene	100
Chloroform	91
Benzene	100
1,2-Dichloroethane	98
Trichloroethene	92
Tetrachloroethene	97
trans-1,2-Dichloroethene	102

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: CCV Lab ID#: 0801142A-16B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a011802	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/18/08 09:48 AM

Compound	%Recovery
Vinyl Chloride	84
1,1-Dichloroethene	100
Methylene Chloride	92
cis-1,2-Dichloroethene	100
Chloroform	89
Benzene	94
1,2-Dichloroethane	93
Trichloroethene	85
Tetrachloroethene	92
trans-1,2-Dichloroethene	96

остания туротти тост фриовило		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: CCV Lab ID#: 0801142A-16C

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: a012002 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 1/20/08 10:34 AM

Compound	%Recovery
Vinyl Chloride	82
1,1-Dichloroethene	93
Methylene Chloride	87
cis-1,2-Dichloroethene	94
Chloroform	85
Benzene	88
1,2-Dichloroethane	88
Trichloroethene	78
Tetrachloroethene	82
trans-1,2-Dichloroethene	89

остания туротти тост фриовило		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCS Lab ID#: 0801142A-17A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a011704	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/17/08 10:56 AM

Compound	%Recovery
Vinyl Chloride	90
1,1-Dichloroethene	106
Methylene Chloride	98
cis-1,2-Dichloroethene	105
Chloroform	95
Benzene	102
1,2-Dichloroethane	101
Trichloroethene	96
Tetrachloroethene	99
trans-1,2-Dichloroethene	102

уретин постиривания		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: LCS Lab ID#: 0801142A-17B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a011803	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/18/08 10:27 AM

Compound	%Recovery
Vinyl Chloride	103
1,1-Dichloroethene	114
Methylene Chloride	103
cis-1,2-Dichloroethene	113
Chloroform	100
Benzene	106
1,2-Dichloroethane	107
Trichloroethene	101
Tetrachloroethene	104
trans-1,2-Dichloroethene	108

occurrence ryperior recomplished		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: LCS Lab ID#: 0801142A-17C

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012003	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/20/08 11:26 AM

Compound	%Recovery
Vinyl Chloride	98
1,1-Dichloroethene	109
Methylene Chloride	99
cis-1,2-Dichloroethene	110
Chloroform	100
Benzene	101
1,2-Dichloroethane	105
Trichloroethene	93
Tetrachloroethene	97
trans-1,2-Dichloroethene	104

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	100	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0801142B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Doug Herlocker

 Tetra Tech
 Tetra Tech

 106 N. 6th. St.
 106 N. 6th. St.

 Suite 202
 Suite 202

 Boise, ID 83702
 Boise, ID 83702

PHONE: 208-343-4085 **P.O.** # 1024638

FAX: PROJECT # S158.008.01 RFS Air Monitoring

DATE RECEIVED: 01/11/2008 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 01/25/2008

FRACTION#	NAME	<u>TEST</u>
01A	RFS-UCB-01-06	Modified TO-11A
01AA	RFS-UCB-01-06 Lab Duplicate	Modified TO-11A
02A	RFS-155-01-06	Modified TO-11A
03A	RFS-163-01-06	Modified TO-11A
04A	RFS-163-02-06	Modified TO-11A
05A	RFS-163-02D-06	Modified TO-11A
06A	RFS-163-03-06	Modified TO-11A
07A	RFS-175-01-06	Modified TO-11A
08A	RFS-175-02-06	Modified TO-11A
09A	RFS-177-01-06	Modified TO-11A
10A	RFS-478-01-06	Modified TO-11A
11A	RFS-478-02-06	Modified TO-11A
12A	RFS-478-03-06	Modified TO-11A
13A	RFS-FLS-01-06	Modified TO-11A
14A	Trip Blank	Modified TO-11A
15A	Lab Blank	Modified TO-11A
16A	LCS	Modified TO-11A

CERTIFIED BY:

Linda d. Fruman

DATE: 01/25/08

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0801142B

Fourteen TO-11 Cartridge samples were received on January 11, 2008. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

The number of samples received did not match the information on the Chain of Custody (COC). Sample Trip Blank was added to the analytical request.

The Chain of Custody (COC) information for samples RFS-UCB-01-06, RFS-155-01-06, RFS-163-01-06, RFS-163-02-06, RFS-163-02D-06, RFS-163-03-06, RFS-175-01-06, RFS-175-02-06, RFS-177-01-06, RFS-478-01-06, RFS-478-02-06, RFS-478-03-06 and RFS-FLS-01-06 did not match the entries on the sample tags with regard to sample identification. Therefore the information on the COC was used to process and report the samples.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m³ was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.

- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-UCB-01-06				
Lab ID#: 0801142B-01A				
O	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.023	9.6	4.4
Client Sample ID: RFS-UCB-01-06 Lab	Duplicate			
Lab ID#: 0801142B-01AA				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.023	9.2	4.3
Client Sample ID: RFS-155-01-06				
Lab ID#: 0801142B-02A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.023	35	16
Client Sample ID: RFS-163-01-06				
Lab ID#: 0801142B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.022	36	16
Client Sample ID: RFS-163-02-06				
Lab ID#: 0801142B-04A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	28	14
Client Sample ID: RFS-163-02D-06				
Lab ID#: 0801142B-05A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	31	16
i official defry de	0.000	0.020	01	

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-163-03-06				
Lab ID#: 0801142B-06A				
Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount	Amount (uG/m3)
	(ug)	· · · · · · · · · · · · · · · · · · ·	(ug)	· · · · · ·
Formaldehyde	0.050	0.022	1.9	0.84
Client Sample ID: RFS-175-01-06				
Lab ID#: 0801142B-07A				
_	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.023	17	7.7
Client Sample ID: RFS-175-02-06				
Lab ID#: 0801142B-08A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.022	2.1	0.94
Client Sample ID: RFS-177-01-06				
Lab ID#: 0801142B-09A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.024	40	19
Client Sample ID: RFS-478-01-06				
Lab ID#: 0801142B-10A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.022	29	13
CW 4 G 1 VD DVG 450 62 63				
Client Sample ID: RFS-478-02-06				
Lab ID#: 0801142B-11A	D 4 11 14	Bert Harris	A	A
Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.025	23	12

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-478-03-06

Lab ID#: 0801142B-12A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.10	0.045	78	35

Client Sample ID: RFS-FLS-01-06

Lab ID#: 0801142B-13A

0	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.6	0.92

Client Sample ID: Trip Blank

Lab ID#: 0801142B-14A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-06 Lab ID#: 0801142B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114006		Date of Collection:	1/10/08
Dil. Factor:	1.00			
			Date of Extraction:	1/11/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.023	9.6	4.4

Client Sample ID: RFS-UCB-01-06 Lab Duplicate

Lab ID#: 0801142B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114007		Date of Collection:	1/10/08	
Dil. Factor:	1.00		Date of Analysis: 1/14/08 10:49 AM		
			Date of Extraction:	1/11/08	
	Rpt. Limit	Rpt. Limit	Amount	Amount	

Rpt. Limit Rpt. Limit Amount Amount Compound (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.023 9.2 4.3

Client Sample ID: RFS-155-01-06 Lab ID#: 0801142B-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114008		Date of Collection:	1/10/08
Dil. Factor:	1.00		Date of Analysis: 1/	14/08 11:09 AM
			Date of Extraction:	1/11/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.023	35	16

Client Sample ID: RFS-163-01-06 Lab ID#: 0801142B-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114009		Date of Collection:	1/10/08	
Dil. Factor:	1.00		Date of Analysis: 1/14/08 11:30 AM		
			Date of Extraction:	1/11/08	
	Rpt. Limit	Rpt. Limit	Amount	Amount	

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.022
 36
 16

Client Sample ID: RFS-163-02-06 Lab ID#: 0801142B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114010		Date of Collection:	1/10/08	
Dil. Factor:	1.00		Date of Analysis: 1/14/08 11:51 AM		
			Date of Extraction:	1/11/08	
	Rnt Limit	Rpt. Limit	Amount	Amount	

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
	(ug)			
Formaldehyde	0.050	0.025	28	14

Client Sample ID: RFS-163-02D-06 Lab ID#: 0801142B-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0114011 Date of Collection: 1/10/08

Dil. Factor: 1.00 Date of Analysis: 1/14/08 12:12 PM

Date of Extraction: 1/11/08

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	31	16

Client Sample ID: RFS-163-03-06 Lab ID#: 0801142B-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f0114012
 Date of Collection: 1/10/08

 Dil. Factor:
 1.00
 Date of Analysis: 1/14/08 12:33 PM

 Date of Extraction: 1/11/08
 1/11/08

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.022	1.9	0.84

Client Sample ID: RFS-175-01-06 Lab ID#: 0801142B-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f0114013
 Date of Collection: 1/10/08

 Dil. Factor:
 1.00
 Date of Analysis: 1/14/08 12:54 PM

 Date of Extraction: 1/11/08

	Rpt. Limit	Rpt. Limit	Amount	Amount (uG/m3)
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.023	17	7.7

Client Sample ID: RFS-175-02-06 Lab ID#: 0801142B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0114014 Date of Collection: 1/10/08

Dil. Factor: 1.00 Date of Analysis: 1/14/08 01:15 PM

Date of Extraction: 1/11/08

Registration: Part Limit Amount Amount

Compound	Rpt. Limit	Rpt. Limit Amount (uG/m3) (ug)	Amount	
	(ug)		(ug)	(uG/m3)
Formaldehyde	0.050	0.022	2.1	0.94

Client Sample ID: RFS-177-01-06 Lab ID#: 0801142B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0114017 Date of Collection: 1/10/08
Dil. Factor: 1.00 Date of Analysis: 1/14/08 02:17 PM
Date of Extraction: 1/11/08

	Rpt. Limit	Rpt. Limit	mit Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.024	40	19

Client Sample ID: RFS-478-01-06 Lab ID#: 0801142B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114018		Date of Collection:	1/10/08	
Dil. Factor:	1.00		Date of Analysis: 1/14/08 02:38 PM		
			Date of Extraction:	1/11/08	
	Pnt Limit	Rnt Limit	Amount	Amount	

Compound	Rpt. Limit	Rpt. Limit	Amount (ug)	Amount (uG/m3)
	(ug)	(uG/m3)		
Formaldehyde	0.050	0.022	29	13

Client Sample ID: RFS-478-02-06 Lab ID#: 0801142B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0114019 Date of Collection: 1/10/08
Dil. Factor: 1.00 Date of Analysis: 1/14/08 02:59 PM
Date of Extraction: 1/11/08

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.025	23	12

Client Sample ID: RFS-478-03-06 Lab ID#: 0801142B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114005		Date of Collection:	1/10/08
Dil. Factor:	2.00		Date of Analysis: 1/	
			Date of Extraction:	1/11/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

Compound (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.10 0.045 78 35

Client Sample ID: RFS-FLS-01-06 Lab ID#: 0801142B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0114020		Date of Collection:	1/10/08	
Dil. Factor:	1.00		Date of Analysis: 1/14/08 03:20 PM		
		Date of Extraction: 1/11/08			
	Pnt Limit	Rnt Limit	Amount	Amount	

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.6	0.92

Client Sample ID: Trip Blank Lab ID#: 0801142B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0114021 1.00		Date of Collection: N	
Dii. I detoi.	1.00	Date of Analysis: 1/14/08 03:41 PM Date of Extraction: 1/11/08		
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Formaldehyde

Client Sample ID: Lab Blank Lab ID#: 0801142B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0114003 1.00		Date of Collection: NA Date of Analysis: 1/14/08 09:25 AM		
			Date of Extraction:	1/11/08	
	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)	

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Formaldehyde

Client Sample ID: LCS Lab ID#: 0801142B-16A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0114004 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 1/14/08 09:46 AM

Date of Extraction: 1/11/08

Compound %Recovery

Formaldehyde 104

Air Sample Volume(L): 2000

Container Type: NA - Not Applicable

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0801429A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Jason Brodersen

Tetra Tech
106 N. 6th. St.
135 Main Street
Suite 202
Suite 1800

Boise, ID 83702 San Francisco, CA 94105

PHONE: 208-343-4085 **P.O.** # 1024639

FAX: PROJECT # S1518.008.01 RFS AIR MONITORING

DATE RECEIVED: 01/25/2008 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 02/07/2008

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	RFS-UCB-01-07	Modified TO-15 SIM	5.0 "Hg	5 psi
02A	RFS-163-01-07	Modified TO-15 SIM	5.0 "Hg	5 psi
03A	RFS-163-02-07	Modified TO-15 SIM	4.5 "Hg	5 psi
04A	RFS-163-02D-07	Modified TO-15 SIM	5.5 "Hg	5 psi
05A	RFS-163-03-07	Modified TO-15 SIM	6.0 "Hg	5 psi
06A	RFS-175-01-07	Modified TO-15 SIM	3.5 "Hg	5 psi
07A	RFS-175-02-07	Modified TO-15 SIM	9.5 "Hg	5 psi
08A	RFS-177-01-07	Modified TO-15 SIM	6.0 "Hg	5 psi
09A	RFS-155-01-07	Modified TO-15 SIM	3.5 "Hg	5 psi
10A	RFS-478-01-07	Modified TO-15 SIM	0.0 "Hg	5 psi
10AA	RFS-478-01-07 Lab Duplicate	Modified TO-15 SIM	0.0 "Hg	5 psi
11A	RFS-478-02-07	Modified TO-15 SIM	3.0 "Hg	5 psi
11AA	RFS-478-02-07 Lab Duplicate	Modified TO-15 SIM	3.0 "Hg	5 psi
12A	RFS-478-03-07	Modified TO-15 SIM	6.5 "Hg	5 psi
13A	RFS-FLS-01-07	Modified TO-15 SIM	0.0 "Hg	5 psi
13AA	RFS-FLS-01-07 Lab Duplicate	Modified TO-15 SIM	0.0 "Hg	5 psi
14A	TRIP BLANK	Modified TO-15 SIM	28.5 "Hg	5 psi

Continued on next page

WORK ORDER #: 0801429A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Jason Brodersen

Tetra Tech
106 N. 6th. St.
135 Main Street
Suite 202
Suite 1800

Boise, ID 83702 San Francisco, CA 94105

PHONE: 208-343-4085 **P.O.** # 1024639

FAX: PROJECT # S1518.008.01 RFS AIR MONITORING

DATE RECEIVED: 01/25/2008 **CONTACT:** Kelly Buettner 02/07/2008

			RECEIPT	FINAL
FRACTION#	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
15A	Lab Blank	Modified TO-15 SIM	NA	NA
15B	Lab Blank	Modified TO-15 SIM	NA	NA
16A	CCV	Modified TO-15 SIM	NA	NA
16B	CCV	Modified TO-15 SIM	NA	NA
17A	LCS	Modified TO-15 SIM	NA	NA
17B	LCS	Modified TO-15 SIM	NA	NA

CERTIFIED BY: DATE: 02/07/08

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0801429A

Fourteen 6 Liter Summa Special (SIM Certified) samples were received on January 25, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	<pre><!--=30% RSD with 2 compounds allowed out to < 40% RSD</pre--></pre>	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.

- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-UCB-01-07

Lab ID#: 0801429A-01A

	Rpt. Limit	Amount	Rpt. Limit (uG/m3)	Amount (uG/m3)
Compound	(ppbv)	(ppbv)		
Benzene	0.080	0.24	0.26	0.76
Trichloroethene	0.0048	0.0053	0.026	0.028
Tetrachloroethene	0.0048	0.010	0.033	0.068

Client Sample ID: RFS-163-01-07

Lab ID#: 0801429A-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.32	0.38	1.1	1.3
Chloroform	0.032	0.051	0.16	0.25
Benzene	0.080	0.20	0.26	0.62
Trichloroethene	0.0048	0.0086	0.026	0.046
Tetrachloroethene	0.0048	0.0091	0.033	0.062
i eti adi ildi deti lelle	3.00+0	0.0001	0.000	0.

Client Sample ID: RFS-163-02-07

Lab ID#: 0801429A-03A

Rpt. Limit	Amount	Rpt. Limit	Amount (uG/m3)
(ppbv)	(ppbv)	(uG/m3)	
0.32	0.40	1.1	1.4
0.032	0.032	0.15	0.16
0.079	0.21	0.25	0.67
0.0047	0.0076	0.025	0.041
0.0047	0.013	0.032	0.091
	(ppbv) 0.32 0.032 0.079 0.0047	(ppbv) (ppbv) 0.32 0.40 0.032 0.032 0.079 0.21 0.0047 0.0076	(ppbv) (ppbv) (uG/m3) 0.32 0.40 1.1 0.032 0.032 0.15 0.079 0.21 0.25 0.0047 0.0076 0.025

Client Sample ID: RFS-163-02D-07

Lab ID#: 0801429A-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount (uG/m3)
Compound	(ppbv)	(ppbv)	(uG/m3)	
Methylene Chloride	0.33	0.40	1.1	1.4
Benzene	0.082	0.21	0.26	0.68
Trichloroethene	0.0049	0.0079	0.026	0.042
Tetrachloroethene	0.0049	0.010	0.033	0.071

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-03-07

Lab ID#: 0801429A-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.084	0.19	0.27	0.60
Trichloroethene	0.0050	0.0077	0.027	0.041
Tetrachloroethene	0.0050	0.011	0.034	0.077

Client Sample ID: RFS-175-01-07

Lab ID#: 0801429A-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.076	0.21	0.24	0.68
Trichloroethene	0.0046	0.0074	0.024	0.040
Tetrachloroethene	0.0046	0.024	0.031	0.16

Client Sample ID: RFS-175-02-07

Lab ID#: 0801429A-07A

	Rpt. Limit	pt. Limit Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.098	0.19	0.31	0.60
Tetrachloroethene	0.0059	0.010	0.040	0.069

Client Sample ID: RFS-177-01-07

Lab ID#: 0801429A-08A

	Rpt. Limit	Rpt. Limit Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.034	0.065	0.16	0.32
Benzene	0.084	0.19	0.27	0.59
Trichloroethene	0.0050	0.028	0.027	0.15
Tetrachloroethene	0.0050	0.023	0.034	0.16

Client Sample ID: RFS-155-01-07

Lab ID#: 0801429A-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.076	0.23	0.24	0.72
Trichloroethene	0.0046	0.0081	0.024	0.044

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-155-01-07

Lab ID#: 0801429A-09A

Tetrachloroethene 0.0046 0.018 0.031 0.12

Client Sample ID: RFS-478-01-07

Lab ID#: 0801429A-10A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount (uG/m3)
	(ppbv)	(ppbv)	(uG/m3)	
Chloroform	0.027	0.042	0.13	0.21
Benzene	0.067	0.26	0.21	0.82
Trichloroethene	0.0040	0.089	0.022	0.48
Tetrachloroethene	0.0040	0.054	0.027	0.36

Client Sample ID: RFS-478-01-07 Lab Duplicate

Lab ID#: 0801429A-10AA

	Rpt. Limit	Rpt. Limit Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Compound	(ppbv)			
Chloroform	0.027	0.042	0.13	0.20
Benzene	0.067	0.26	0.21	0.83
Trichloroethene	0.0040	0.087	0.022	0.46
Tetrachloroethene	0.0040	0.051	0.027	0.35

Client Sample ID: RFS-478-02-07

Lab ID#: 0801429A-11A

Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
0.30	0.48	1.0	1.7
0.030	0.034	0.14	0.16
0.074	0.24	0.24	0.78
0.0045	0.016	0.024	0.084
0.0045	0.040	0.030	0.27
	(ppbv) 0.30 0.030 0.074 0.0045	(ppbv) (ppbv) 0.30 0.48 0.030 0.034 0.074 0.24 0.0045 0.016	(ppbv) (ppbv) (uG/m3) 0.30 0.48 1.0 0.030 0.034 0.14 0.074 0.24 0.24 0.0045 0.016 0.024

Client Sample ID: RFS-478-02-07 Lab Duplicate

Lab ID#: 0801429A-11AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.30	0.50	1.0	1.7
Chloroform	0.030	0.034	0.14	0.16

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-478-02-07 Lab Duplicate

Lab ID#: 0801429A-11AA

 Benzene
 0.074
 0.23
 0.24
 0.73

 Trichloroethene
 0.0045
 0.016
 0.024
 0.086

 Tetrachloroethene
 0.0045
 0.042
 0.030
 0.29

Client Sample ID: RFS-478-03-07

Lab ID#: 0801429A-12A

Compound	Rpt. Limit	Rpt. Limit Amount (ppbv) (ppbv)	Rpt. Limit	Amount (uG/m3)
	(ppbv)		(uG/m3)	
Benzene	0.086	0.20	0.27	0.65
Trichloroethene	0.0051	0.0084	0.028	0.045
Tetrachloroethene	0.0051	0.014	0.035	0.092

Client Sample ID: RFS-FLS-01-07

Lab ID#: 0801429A-13A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.067	0.20	0.21	0.65
Trichloroethene	0.0040	0.0073	0.022	0.039
Tetrachloroethene	0.0040	0.015	0.027	0.10

Client Sample ID: RFS-FLS-01-07 Lab Duplicate

Lab ID#: 0801429A-13AA

	Rpt. Limit	Rpt. Limit Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.067	0.20	0.21	0.63
Trichloroethene	0.0040	0.0085	0.022	0.045
Tetrachloroethene	0.0040	0.014	0.027	0.096

Client Sample ID: TRIP BLANK

Lab ID#: 0801429A-14A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-07 Lab ID#: 0801429A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM

	B (11 %	A	D (11.11	A
Dil. Factor:	1.61		Date of Analysis: 1/	28/08 10:10 PM
File Name:	a012817		Date of Collection:	1/24/08

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	Not Detected	0.16	Not Detected
Benzene	0.080	0.24	0.26	0.76
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.0053	0.026	0.028
Tetrachloroethene	0.0048	0.010	0.033	0.068
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

	•	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: RFS-163-01-07 Lab ID#: 0801429A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012818	Date of Collection: 1/24/08
Dil. Factor:	1.61	Date of Analysis: 1/28/08 11:35 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
Methylene Chloride	0.32	0.38	1.1	1.3
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.051	0.16	0.25
Benzene	0.080	0.20	0.26	0.62
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0048	0.0086	0.026	0.046
Tetrachloroethene	0.0048	0.0091	0.033	0.062
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-163-02-07 Lab ID#: 0801429A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012819	Date of Collection: 1/24/08
Dil. Factor:	1.58	Date of Analysis: 1/29/08 12:51 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
Methylene Chloride	0.32	0.40	1.1	1.4
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
Chloroform	0.032	0.032	0.15	0.16
Benzene	0.079	0.21	0.25	0.67
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.0047	0.0076	0.025	0.041
Tetrachloroethene	0.0047	0.013	0.032	0.091
trans-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected

Container Type: 6 Liter Summa Special (SIM Certified)

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-163-02D-07 Lab ID#: 0801429A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012820	Date of Collection: 1/24/08
Dil. Factor:	1.64	Date of Analysis: 1/29/08 01:52 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
Methylene Chloride	0.33	0.40	1.1	1.4
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
Chloroform	0.033	Not Detected	0.16	Not Detected
Benzene	0.082	0.21	0.26	0.68
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected
Trichloroethene	0.0049	0.0079	0.026	0.042
Tetrachloroethene	0.0049	0.010	0.033	0.071
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: RFS-163-03-07 Lab ID#: 0801429A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012821	Date of Collection: 1/24/08
Dil. Factor:	1.68	Date of Analysis: 1/29/08 02:53 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	Not Detected	0.16	Not Detected
Benzene	0.084	0.19	0.27	0.60
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.0077	0.027	0.041
Tetrachloroethene	0.0050	0.011	0.034	0.077
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: RFS-175-01-07 Lab ID#: 0801429A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012822	Date of Collection: 1/24/08
Dil. Factor:	1.52	Date of Analysis: 1/29/08 03:45 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.060	Not Detected
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	Not Detected	0.15	Not Detected
Benzene	0.076	0.21	0.24	0.68
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.0074	0.024	0.040
Tetrachloroethene	0.0046	0.024	0.031	0.16
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

	, 	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-175-02-07 Lab ID#: 0801429A-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM

	=		_
Dil. Factor:	1.96	Date of Analysis: 1/	29/08 04:33 AM
File Name:	a012823	Date of Collection:	1/24/08

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.020	Not Detected	0.050	Not Detected
1,1-Dichloroethene	0.020	Not Detected	0.078	Not Detected
Methylene Chloride	0.39	Not Detected	1.4	Not Detected
cis-1,2-Dichloroethene	0.039	Not Detected	0.16	Not Detected
Chloroform	0.039	Not Detected	0.19	Not Detected
Benzene	0.098	0.19	0.31	0.60
1,2-Dichloroethane	0.039	Not Detected	0.16	Not Detected
Trichloroethene	0.0059	Not Detected	0.032	Not Detected
Tetrachloroethene	0.0059	0.010	0.040	0.069
trans-1,2-Dichloroethene	0.039	Not Detected	0.16	Not Detected

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: RFS-177-01-07 Lab ID#: 0801429A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012824	Date of Collection: 1/24/08
Dil. Factor:	1.68	Date of Analysis: 1/29/08 05:40 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
Chloroform	0.034	0.065	0.16	0.32
Benzene	0.084	0.19	0.27	0.59
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0050	0.028	0.027	0.15
Tetrachloroethene	0.0050	0.023	0.034	0.16
trans-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected

	·	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: RFS-155-01-07 Lab ID#: 0801429A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012825	Date of Collection: 1/24/08
Dil. Factor:	1.52	Date of Analysis: 1/29/08 07:48 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.060	Not Detected
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	Not Detected	0.15	Not Detected
Benzene	0.076	0.23	0.24	0.72
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.0081	0.024	0.044
Tetrachloroethene	0.0046	0.018	0.031	0.12
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

	·	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-478-01-07 Lab ID#: 0801429A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM

			_
Dil. Factor:	1.34	Date of Analysis: 1/29/08 05:32 PM	
File Name:	a012908	Date of Collection: 1/24/08	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.053	Not Detected
Methylene Chloride	0.27	Not Detected	0.93	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
Chloroform	0.027	0.042	0.13	0.21
Benzene	0.067	0.26	0.21	0.82
1,2-Dichloroethane	0.027	Not Detected	0.11	Not Detected
Trichloroethene	0.0040	0.089	0.022	0.48
Tetrachloroethene	0.0040	0.054	0.027	0.36
trans-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: RFS-478-01-07 Lab Duplicate

Lab ID#: 0801429A-10AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a012909 1.34	Date of Collection: 1/24/08 Date of Analysis: 1/29/08 06:13 P		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.053	Not Detected
Methylene Chloride	0.27	Not Detected	0.93	Not Detected

1,1-Dichloroethene	0.013	Not Detected	0.053	Not Detected
Methylene Chloride	0.27	Not Detected	0.93	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
Chloroform	0.027	0.042	0.13	0.20
Benzene	0.067	0.26	0.21	0.83
1,2-Dichloroethane	0.027	Not Detected	0.11	Not Detected
Trichloroethene	0.0040	0.087	0.022	0.46
Tetrachloroethene	0.0040	0.051	0.027	0.35
trans-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: RFS-478-02-07 Lab ID#: 0801429A-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM

		_	
Dil. Factor:	1.49		Date of Analysis: 1/29/08 07:40 PM
File Name:	a012910		Date of Collection: 1/24/08

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.038	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.059	Not Detected
Methylene Chloride	0.30	0.48	1.0	1.7
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.034	0.14	0.16
Benzene	0.074	0.24	0.24	0.78
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0045	0.016	0.024	0.084
Tetrachloroethene	0.0045	0.040	0.030	0.27
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: RFS-478-02-07 Lab Duplicate

Lab ID#: 0801429A-11AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil. Factor:	1.49 Rpt, Limit	Amount	Date of Analysis: 1/	/30/08 12:37 AM Amount
Dil. Factor:	1.49			
File Name:	a012916		Date of Collection:	1/24/08

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.015	Not Detected	0.038	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.059	Not Detected
Methylene Chloride	0.30	0.50	1.0	1.7
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
Chloroform	0.030	0.034	0.14	0.16
Benzene	0.074	0.23	0.24	0.73
1,2-Dichloroethane	0.030	Not Detected	0.12	Not Detected
Trichloroethene	0.0045	0.016	0.024	0.086
Tetrachloroethene	0.0045	0.042	0.030	0.29
trans-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: RFS-478-03-07 Lab ID#: 0801429A-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012917	Date of Collection: 1/24/08
Dil. Factor:	1.71	Date of Analysis: 1/30/08 01:53 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
Methylene Chloride	0.34	Not Detected	1.2	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
Chloroform	0.034	Not Detected	0.17	Not Detected
Benzene	0.086	0.20	0.27	0.65
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected
Trichloroethene	0.0051	0.0084	0.028	0.045
Tetrachloroethene	0.0051	0.014	0.035	0.092
trans-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: RFS-FLS-01-07 Lab ID#: 0801429A-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012918	Date of Collection: 1/24/08
Dil. Factor:	1.34	Date of Analysis: 1/30/08 03:06 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.053	Not Detected
Methylene Chloride	0.27	Not Detected	0.93	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
Chloroform	0.027	Not Detected	0.13	Not Detected
Benzene	0.067	0.20	0.21	0.65
1,2-Dichloroethane	0.027	Not Detected	0.11	Not Detected
Trichloroethene	0.0040	0.0073	0.022	0.039
Tetrachloroethene	0.0040	0.015	0.027	0.10
trans-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: RFS-FLS-01-07 Lab Duplicate

Lab ID#: 0801429A-13AA

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012919		Date of Collection:	1/24/08
Dil. Factor:	1.34		Date of Analysis: 1/	/30/08 04:18 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.053	Not Detected
Methylene Chloride	0.27	Not Detected	0.93	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
Chloroform	0.027	Not Detected	0.13	Not Detected
Benzene	0.067	0.20	0.21	0.63
1,2-Dichloroethane	0.027	Not Detected	0.11	Not Detected
Trichloroethene	0.0040	0.0085	0.022	0.045
Tetrachloroethene	0.0040	0.014	0.027	0.096
trans-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected

	, 	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: TRIP BLANK Lab ID#: 0801429A-14A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:			Date of Collection: Date of Analysis:	ion: 1/24/08 s: 1/30/08 04:57 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected	
1 1-Dichloroethene	0.010	Not Detected	0.040	Not Detected	

Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: Lab Blank Lab ID#: 0801429A-15A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a012806 1.00	Date of Collection: NA Date of Analysis: 1/28/08 12:		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: Lab Blank Lab ID#: 0801429A-15B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	a012905 1.00	2012		of Collection: NA of Analysis: 1/29/08 02:42 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected	
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected	
Methylene Chloride	0.20	Not Detected	0.69	Not Detected	
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected	
Chloroform	0.020	Not Detected	0.098	Not Detected	
Benzene	0.050	Not Detected	0.16	Not Detected	
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected	
Trichloroethene	0.0030	Not Detected	0.016	Not Detected	
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected	

Container Type: NA - Not Applicable

trans-1,2-Dichloroethene

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Not Detected

0.079

Not Detected

0.020

Client Sample ID: CCV Lab ID#: 0801429A-16A

MODIFIED EPA METHOD TO-15 GC/MS SIM

ı			
	File Name:	a012802	Date of Collection: NA
	Dil. Factor:	1.00	Date of Analysis: 1/28/08 09:36 AM

Compound	%Recovery
Vinyl Chloride	121
1,1-Dichloroethene	97
Methylene Chloride	94
cis-1,2-Dichloroethene	121
Chloroform	95
Benzene	106
1,2-Dichloroethane	101
Trichloroethene	94
Tetrachloroethene	118
trans-1,2-Dichloroethene	102

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: CCV Lab ID#: 0801429A-16B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012902	Date of Collection: NA
The Name.	a012902	Date of Collection. NA
Dil. Factor:	1.00	Date of Analysis: 1/29/08 11:24 AM

Compound	%Recovery
Vinyl Chloride	103
1,1-Dichloroethene	100
Methylene Chloride	98
cis-1,2-Dichloroethene	125
Chloroform	97
Benzene	109
1,2-Dichloroethane	102
Trichloroethene	96
Tetrachloroethene	122
trans-1,2-Dichloroethene	106

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCS Lab ID#: 0801429A-17A

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012803	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/28/08 10:19 AM

Compound	%Recovery
Vinyl Chloride	99
1,1-Dichloroethene	103
Methylene Chloride	93
cis-1,2-Dichloroethene	104
Chloroform	94
Benzene	97
1,2-Dichloroethane	103
Trichloroethene	90
Tetrachloroethene	97
trans-1,2-Dichloroethene	98

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCS Lab ID#: 0801429A-17B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	a012903	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/29/08 12:03 PM

Compound	%Recovery
Vinyl Chloride	94
1,1-Dichloroethene	99
Methylene Chloride	92
cis-1,2-Dichloroethene	100
Chloroform	92
Benzene	96
1,2-Dichloroethane	101
Trichloroethene	89
Tetrachloroethene	95
trans-1,2-Dichloroethene	96

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	105	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0801429B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Jason Brodersen

Tetra TechTetra Tech106 N. 6th. St.135 Main StreetSuite 202Suite 1800

Boise, ID 83702 San Francisco, CA 94105

PHONE: 208-343-4085 **P.O.** # 1024639

FAX: PROJECT # S1518.008.01 RFS AIR MONITORING

DATE RECEIVED: 01/25/2008 CONTACT: Kelly Buettner 02/05/2008

FRACTION #	NAME	<u>TEST</u>
01A	RFS-UCB-01-07	Modified TO-11A
01AA	RFS-UCB-01-07 Lab Duplicate	Modified TO-11A
02A	RFS-163-01-07	Modified TO-11A
03A	RFS-163-02-07	Modified TO-11A
04A	RFS-163-02D-07	Modified TO-11A
05A	RFS-163-03-07	Modified TO-11A
06A	RFS-175-01-07	Modified TO-11A
07A	RFS-175-02-07	Modified TO-11A
08A	RFS-177-01-07	Modified TO-11A
09A	RFS-155-01-07	Modified TO-11A
10A	RFS-478-01-07	Modified TO-11A
11A	RFS-478-02-07	Modified TO-11A
12A	RFS-478-03-07	Modified TO-11A
13A	RFS-FLS-01-07	Modified TO-11A
14A	TRIP BLANK	Modified TO-11A
15A	Lab Blank	Modified TO-11A
16A	LCS	Modified TO-11A

CERTIFIED BY:

Linda d. Fruman

DATE: 02/01/08

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0801429B

Fourteen TO-11 Cartridge samples were received on January 25, 2008. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

A Temperature Blank was included with the shipment. Temperature was measured and was not within 4±2 °C. Coolant in the form of blue ice was present. Analysis proceeded.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-UCB-01-07				
Lab ID#: 0801429B-01A				
0	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.4	0.77
Client Sample ID: RFS-UCB-01-07 Lab	Duplicate			
Lab ID#: 0801429B-01AA				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.028	1.5	0.83
Client Sample ID: RFS-163-01-07				
Lab ID#: 0801429B-02A				
Lau 1Dπ. V0V1427D-V2A	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	26	15
Client Sample ID: RFS-163-02-07				
Lab ID#: 0801429B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.026	26	14
Client Sample ID: RFS-163-02D-07				
Lab ID#: 0801429B-04A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.026	20	10
Client Sample ID: RFS-163-03-07				
Lab ID#: 0801429B-05A				
22 0001.272 0011	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	0.90	0.48

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-175-01-07				
Lab ID#: 0801429B-06A				
Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount	Amount (uG/m3)
Compound	(ug)	· · · · · · · · · · · · · · · · · · ·	(ug)	•
Formaldehyde	0.050	0.028	12	6.4
Client Sample ID: RFS-175-02-07				
Lab ID#: 0801429B-07A				
_	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.2	0.69
Client Sample ID: RFS-177-01-07				
Lab ID#: 0801429B-08A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	27	15
Client Sample ID: RFS-155-01-07				
Lab ID#: 0801429B-09A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	29	16
Client Sample ID: RFS-478-01-07				
Lab ID#: 0801429B-10A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
			· ·	
Formaldehyde	0.050	0.028	20	11
Client Sample ID: RFS-478-02-07				
Lab ID#: 0801429B-11A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	23	13

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-478-03-07

Lab ID#: 0801429B-12A

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)	
Formaldehyde	0.10	0.056	70	39	-

Client Sample ID: RFS-FLS-01-07

Lab ID#: 0801429B-13A

	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount
Compound				(uG/m3)
Formaldehyde	0.050	0.028	0.86	0.47

Client Sample ID: TRIP BLANK

Lab ID#: 0801429B-14A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-07 Lab ID#: 0801429B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0125015		Date of Collection:	1/24/08	
Dil. Factor:	1.00		Date of Analysis: 1/25/08 02:31 PM		
		Date of Extraction: 1/25/08			
	Pnt Limit	Rnt Limit	Amount	Amount	

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.4	0.77

Client Sample ID: RFS-UCB-01-07 Lab Duplicate

Lab ID#: 0801429B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0125016		Date of Collection:	1/24/08	
Dil. Factor:	1.00		Date of Analysis: 1/25/08 02:52 PM		
			Date of Extraction:	1/25/08	
	Rpt. Limit	Rpt. Limit	Amount	Amount	

Rpt. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0281.50.83

Client Sample ID: RFS-163-01-07 Lab ID#: 0801429B-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125017 Date of Collection: 1/24/08
Dil. Factor: 1.00 Date of Analysis: 1/25/08 03:13 PM
Date of Extraction: 1/25/08

	Rpt. Limit	Rpt. Limit Rpt. Limit (ug) (uG/m3)	Amount (ug)	Amount
Compound	(ug)			(uG/m3)
Formaldehyde	0.050	0.028	26	15

Client Sample ID: RFS-163-02-07 Lab ID#: 0801429B-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125018 Date of Collection: 1/24/08
Dil. Factor: 1.00 Date of Analysis: 1/25/08 03:33 PM
Date of Extraction: 1/25/08

Rpt. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0262614

Client Sample ID: RFS-163-02D-07 Lab ID#: 0801429B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0125019		Date of Collection: 1	
Dil. Factor:	1.00		Date of Analysis: 1/2	
			Date of Extraction: 1	1/25/08
	Pnt Limit	Rnt Limit	Amount	Amount

	Rpt. Limit	Rpt. Limit	Amount (ug)	Amount (uG/m3)
Compound	(ug)	(uG/m3)		
Formaldehyde	0.050	0.026	20	10

Client Sample ID: RFS-163-03-07 Lab ID#: 0801429B-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

 File Name:
 f0125020
 Date of Collection: 1/24/08

 Dil. Factor:
 1.00
 Date of Analysis: 1/25/08 04:15 PM

 Date of Extraction: 1/25/08

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	0.90	0.48

Client Sample ID: RFS-175-01-07 Lab ID#: 0801429B-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125021 Date of Collection: 1/24/08
Dil. Factor: 1.00 Date of Analysis: 1/25/08 04:36 PM
Date of Extraction: 1/25/08

Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount (ug)	Amount
	(ug)			(uG/m3)
Formaldehyde	0.050	0.028	12	6.4

Client Sample ID: RFS-175-02-07 Lab ID#: 0801429B-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125022 Date of Collection: 1/24/08
Dil. Factor: 1.00 Date of Analysis: 1/25/08 04:57 PM
Date of Extraction: 1/25/08

Pot Limit Part Limit Amount

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-177-01-07 Lab ID#: 0801429B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0125023		Date of Collection: 1/24/08		
Dil. Factor:	1.00		Date of Analysis: 1/25/08 05:18 PM		
			Date of Extraction: 1/25/08		
	Rpt. Limit	Rpt. Limit	Amount	Amount	

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-155-01-07 Lab ID#: 0801429B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125026 Date of Collection: 1/24/08
Dil. Factor: 1.00 Date of Analysis: 1/25/08 06:21 PM
Date of Extraction: 1/25/08

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.050	0.028	29	16

Client Sample ID: RFS-478-01-07 Lab ID#: 0801429B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125027 Date of Collection: 1/24/08

Dil. Factor: 1.00 Date of Analysis: 1/25/08 06:41 PM

Date of Extraction: 1/25/08

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	20	11

Client Sample ID: RFS-478-02-07 Lab ID#: 0801429B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125028 Date of Collection: 1/24/08
Dil. Factor: 1.00 Date of Analysis: 1/25/08 07:02 PM
Date of Extraction: 1/25/08

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	23	13

Client Sample ID: RFS-478-03-07 Lab ID#: 0801429B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125014 Date of Collection: 1/24/08
Dil. Factor: 2.00 Date of Analysis: 1/25/08 02:10 PM
Date of Extraction: 1/25/08

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehvde	0.10	0.056	70	39

Client Sample ID: RFS-FLS-01-07 Lab ID#: 0801429B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125029 Date of Collection: 1/24/08
Dil. Factor: 1.00 Date of Analysis: 1/25/08 07:23 PM
Date of Extraction: 1/25/08

Rpt. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0280.860.47

Client Sample ID: TRIP BLANK Lab ID#: 0801429B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0125030 1.00	Date of Collection: 1/24/08 Date of Analysis: 1/25/08 07:44 PM		
			Date of Extraction:	1/25/08
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Formaldehyde

Client Sample ID: Lab Blank Lab ID#: 0801429B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0125003 1.00		Date of Collection: N Date of Analysis: 1/	
			Date of Extraction:	1/25/08
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000

Formaldehyde

Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 0801429B-16A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0125004 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 1/25/08 10:28 AM

Date of Extraction: 1/25/08

Compound %Recovery

Formaldehyde 101

Air Sample Volume(L): 2000

Container Type: NA - Not Applicable

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

DATE COMPLETED:

AN ENVIRONMENTAL ANALYTICAL LABORATORY

02/21/2008

WORK ORDER #: 0802124A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Jason Brodersen

Tetra Tech
106 N. 6th. St.
135 Main Street
Suite 202
Suite 1800

Boise, ID 83702 San Francisco, CA 94105

PHONE: 208-389-1030 **P.O.** # 1024639

FAX: PROJECT # 51518.008.01 RFS Air Mon

DATE RECEIVED: 02/07/2008 **CONTACT:** Kelly Buettner

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	RFS-UCB-01-08	Modified TO-15 SIM	3.5 "Hg	5 psi
01B	RFS-UCB-01-08	Modified TO-15 SIM	3.5 "Hg	5 psi
02A	RFS-163-01-08	Modified TO-15 SIM	9.0 "Hg	5 psi
02B	RFS-163-01-08	Modified TO-15 SIM	9.0 "Hg	5 psi
03A	RFS-163-02-08	Modified TO-15 SIM	7.0 "Hg	5 psi
03AA	RFS-163-02-08 Lab Duplicate	Modified TO-15 SIM	7.0 "Hg	5 psi
03B	RFS-163-02-08	Modified TO-15 SIM	7.0 "Hg	5 psi
03BB	RFS-163-02-08 Lab Duplicate	Modified TO-15 SIM	7.0 "Hg	5 psi
04A	RFS-163-03-08	Modified TO-15 SIM	4.0 "Hg	5 psi
04B	RFS-163-03-08	Modified TO-15 SIM	4.0 "Hg	5 psi
05A	RFS-175-01-08	Modified TO-15 SIM	2.0 "Hg	5 psi
05B	RFS-175-01-08	Modified TO-15 SIM	2.0 "Hg	5 psi
06A	RFS-175-02-08	Modified TO-15 SIM	2.0 "Hg	5 psi
06B	RFS-175-02-08	Modified TO-15 SIM	2.0 "Hg	5 psi
07A	RFS-177-01-08	Modified TO-15 SIM	5.5 "Hg	5 psi
07B	RFS-177-01-08	Modified TO-15 SIM	5.5 "Hg	5 psi
08A	RFS-155-01-08	Modified TO-15 SIM	4.0 "Hg	5 psi

Continued on next page

WORK ORDER #: 0802124A

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Jason Brodersen

Tetra Tech
106 N. 6th. St.
135 Main Street
Suite 202
Suite 1800

Boise, ID 83702 San Francisco, CA 94105

PHONE: 208-389-1030 **P.O.** # 1024639

FAX: PROJECT # 51518.008.01 RFS Air Mon

DATE RECEIVED: 02/07/2008

CONTACT: Kelly Buettner 02/21/2008

FINAL RECEIPT FRACTION# **NAME TEST** VAC./PRES. **PRESSURE** 08B RFS-155-01-08 Modified TO-15 SIM 4.0 "Hg 5 psi Modified TO-15 SIM 6.5 "Hg 09A RFS-478-01-08 5 psi 09B 6.5 "Hg RFS-478-01-08 Modified TO-15 SIM 5 psi 10A RFS-478-02-08 Modified TO-15 SIM 4.0 "Hg 5 psi Modified TO-15 SIM 10B 4.0 "Hg 5 psi RFS-478-02-08 11A RFS-478-03-08 Modified TO-15 SIM 5.0 "Hg 5 psi Modified TO-15 SIM 11B RFS-478-03-08 5.0 "Hg 5 psi 12A RFS-280-01-08 Modified TO-15 SIM 4.5 "Hg 5 psi 12B RFS-280-01-08 Modified TO-15 SIM 4.5 "Hg 5 psi 29.5 "Hg 13A RFS-Trip Blank Modified TO-15 SIM 5 psi RFS-Trip Blank 13B Modified TO-15 SIM 29.5 "Hg 5 psi 14A Lab Blank Modified TO-15 SIM NA NA 14B Lab Blank Modified TO-15 SIM NA NA 15A **CCV** Modified TO-15 SIM NA NA 15B **CCV** Modified TO-15 SIM NA NA 16A LCS Modified TO-15 SIM NA NA 16B **LCS** Modified TO-15 SIM NA NA

CERTIFIED BY:

Sinda d. Fruman

02/21/08

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Tetra Tech Workorder# 0802124A

Thirteen 6 Liter Summa Special (SIM Certified) samples were received on February 07, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not

performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: RFS-UCB-01-08

Lab ID#: 0802124A-01A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-08

Lab ID#: 0802124A-01B

	Rpt. Limit	Amount	Rpt. Limit	Amount (uG/m3)
Compound	(ppbv)	(ppbv)	(uG/m3)	
Chloroform	0.030	0.030	0.15	0.15
Benzene	0.076	0.37	0.24	1.2
Trichloroethene	0.0046	0.0085	0.024	0.046
Tetrachloroethene	0.0046	0.017	0.031	0.12

Client Sample ID: RFS-163-01-08

Lab ID#: 0802124A-02A

Commonwed	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.38	0.95	1.3	3.3

Client Sample ID: RFS-163-01-08

Lab ID#: 0802124A-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Chloroform	0.038	0.084	0.19	0.41
Benzene	0.096	0.38	0.30	1.2
1,2-Dichloroethane	0.038	0.042	0.15	0.17
Trichloroethene	0.0057	0.011	0.031	0.058
Tetrachloroethene	0.0057	0.020	0.039	0.13

Client Sample ID: RFS-163-02-08

Lab ID#: 0802124A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.35	0.83	1.2	2.9

Client Sample ID: RFS-163-02-08 Lab Duplicate

Lab ID#: 0802124A-03AA

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: RFS-163-02-08 Lab Duplicate

Lab ID#: 0802124A-03AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Methylene Chloride	0.35	0.88	1.2	3.0	

Client Sample ID: RFS-163-02-08

Lab ID#: 0802124A-03B

		Amount	Rpt. Limit	Amount (uG/m3)
Compound		(ppbv)	(uG/m3)	
Chloroform	0.035	0.063	0.17	0.31
Benzene	0.088	0.39	0.28	1.2
1,2-Dichloroethane	0.035	0.035	0.14	0.14
Trichloroethene	0.0052	0.012	0.028	0.064
Tetrachloroethene	0.0052	0.022	0.036	0.15

Client Sample ID: RFS-163-02-08 Lab Duplicate

Lab ID#: 0802124A-03BB

	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit	Amount
Compound			(uG/m3)	(uG/m3)
Chloroform	0.035	0.064	0.17	0.31
Benzene	0.088	0.38	0.28	1.2
1,2-Dichloroethane	0.035	0.036	0.14	0.15
Trichloroethene	0.0052	0.010	0.028	0.054
Tetrachloroethene	0.0052	0.025	0.036	0.17

Client Sample ID: RFS-163-03-08

Lab ID#: 0802124A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Methylene Chloride	0.31	0.38	1.1	1.3	

Client Sample ID: RFS-163-03-08

Lab ID#: 0802124A-04B

Compound	Rpt. Limit	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount
	(ppbv)			(uG/m3)
Chloroform	0.031	0.034	0.15	0.17
Benzene	0.078	0.31	0.25	1.0

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-163-03-08

Lab ID#: 0802124A-04B

 Trichloroethene
 0.0046
 0.010
 0.025
 0.054

 Tetrachloroethene
 0.0046
 0.021
 0.032
 0.14

Client Sample ID: RFS-175-01-08

Lab ID#: 0802124A-05A

No Detections Were Found.

Client Sample ID: RFS-175-01-08

Lab ID#: 0802124A-05B

Compound	Rpt. Limit	Amount	Rpt. Limit (uG/m3)	Amount (uG/m3)
	(ppbv)	(ppbv)		
Vinyl Chloride	0.014	0.020	0.037	0.052
Chloroform	0.029	0.060	0.14	0.30
Benzene	0.072	0.44	0.23	1.4
Trichloroethene	0.0043	0.0092	0.023	0.049

Client Sample ID: RFS-175-02-08

Lab ID#: 0802124A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)

Client Sample ID: RFS-175-02-08

Lab ID#: 0802124A-06B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.072	0.31	0.23	1.0
Trichloroethene	0.0043	0.0093	0.023	0.050
Tetrachloroethene	0.0043	0.020	0.029	0.13

Client Sample ID: RFS-177-01-08

Lab ID#: 0802124A-07A

No Detections Were Found.

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-177-01-08

Lab ID#: 0802124A-07B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount
				(uG/m3)
Chloroform	0.033	0.14	0.16	0.67
Benzene	0.082	0.32	0.26	1.0
Trichloroethene	0.0049	0.036	0.026	0.19
Tetrachloroethene	0.0049	0.028	0.033	0.19

Client Sample ID: RFS-155-01-08

Lab ID#: 0802124A-08A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.31	0.30 J	1.1	1.0 J

Client Sample ID: RFS-155-01-08

Lab ID#: 0802124A-08B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount
				(uG/m3)
Chloroform	0.031	0.037	0.15	0.18
Benzene	0.078	0.38	0.25	1.2
Trichloroethene	0.0046	0.010	0.025	0.056
Tetrachloroethene	0.0046	0.030	0.032	0.20

Client Sample ID: RFS-478-01-08

Lab ID#: 0802124A-09A

Compound	Rpt. Limit	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount
	(ppbv)			(uG/m3)
Methylene Chloride	0.34	0.41	1.2	1.4

Client Sample ID: RFS-478-01-08

Lab ID#: 0802124A-09B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.034	0.12	0.17	0.58
Benzene	0.086	0.50	0.27	1.6
Trichloroethene	0.0051	0.18	0.028	0.99
Tetrachloroethene	0.0051	0.024	0.035	0.16

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: RFS-478-02-08

Lab ID#: 0802124A-10A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
Methylene Chloride	0.31	1.2	1.1	4.0	

Client Sample ID: RFS-478-02-08

Lab ID#: 0802124A-10B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.031	0.056	0.15	0.27
Benzene	0.078	0.53	0.25	1.7
Trichloroethene	0.0046	0.017	0.025	0.090
Tetrachloroethene	0.0046	0.066	0.032	0.45

Client Sample ID: RFS-478-03-08

Lab ID#: 0802124A-11A

No Detections Were Found.

Client Sample ID: RFS-478-03-08

Lab ID#: 0802124A-11B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.032	0.095	0.16	0.46
Benzene	0.080	0.41	0.26	1.3
1,2-Dichloroethane	0.032	0.037	0.13	0.15
Trichloroethene	0.0048	0.0076	0.026	0.041
Tetrachloroethene	0.0048	0.025	0.033	0.17

Client Sample ID: RFS-280-01-08

Lab ID#: 0802124A-12A

No Detections Were Found.

Client Sample ID: RFS-280-01-08

Lab ID#: 0802124A-12B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: RFS-280-01-08

Lab ID#: 0802124A-12B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Chloroform	0.032	0.058	0.15	0.29
Benzene	0.079	0.30	0.25	0.96
Trichloroethene	0.0047	0.0085	0.025	0.046
Tetrachloroethene	0.0047	0.022	0.032	0.15

Client Sample ID: RFS-Trip Blank

Lab ID#: 0802124A-13A

No Detections Were Found.

Client Sample ID: RFS-Trip Blank

Lab ID#: 0802124A-13B

No Detections Were Found.

Toluene-d8

4-Bromofluorobenzene

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: RFS-UCB-01-08 Lab ID#: 0802124A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021910		Date of Collection:	_, ., ., .
Dil. Factor:	1.52		Date of Analysis: 2	2/19/08 02:40 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.30	Not Detected	1.0	Not Detected
Container Type: 6 Liter Summ	na Special (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1.2-Dichloroethane-d4		98		70-130

95

102

70-130

70-130

Client Sample ID: RFS-UCB-01-08 Lab ID#: 0802124A-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM

MODIFIED EPA METHOD TO-15 GC/MS SIM				
z021910sim 1.52				
Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
0.015	Not Detected	0.039	Not Detected	
0.015	Not Detected	0.060	Not Detected	
0.030	Not Detected	0.12	Not Detected	
0.030	0.030	0.15	0.15	
0.076	0.37	0.24	1.2	
0.030	Not Detected	0.12	Not Detected	
0.0046	0.0085	0.024	0.046	
0.0046	0.017	0.031	0.12	
0.030	Not Detected	0.12	Not Detected	
a Special (SIM Certified)				
			Method	
	%Recovery		Limits	
	100		70-130	
	100		70-130	
	99		70-130	
	z021910sim 1.52 Rpt. Limit (ppbv) 0.015 0.015 0.030 0.030 0.076 0.030 0.0046 0.0046 0.0046 0.030	Z021910sim	Date of Collection: Date of Analysis: 2	

Client Sample ID: RFS-163-01-08 Lab ID#: 0802124A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021911		Date of Collection: 2		
Dil. Factor:	1.91		Date of Analysis: 2/19/08 03:32		
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
Methylene Chloride	0.38	0.95	1.3	3.3	

Container Type: 6 Liter Summa Special (SIM Certified)

	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	100	70-130

4-Bromofluorobenzene

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: RFS-163-01-08 Lab ID#: 0802124A-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM

MODIFIED EPA METHOD TO-15 GC/MS SIM				
File Name: Dil. Factor:	z021911sim 1.91		Date of Collection: Date of Analysis: 2	_,,,,,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.019	Not Detected	0.049	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.076	Not Detected
cis-1,2-Dichloroethene	0.038	Not Detected	0.15	Not Detected
Chloroform	0.038	0.084	0.19	0.41
Benzene	0.096	0.38	0.30	1.2
1,2-Dichloroethane	0.038	0.042	0.15	0.17
Trichloroethene	0.0057	0.011	0.031	0.058
Tetrachloroethene	0.0057	0.020	0.039	0.13
trans-1,2-Dichloroethene	0.038	Not Detected	0.15	Not Detected
Container Type: 6 Liter Summ	a Special (SIM Certified)			
-	·			Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		99		70-130
Toluene-d8		102		70-130

96

70-130

Client Sample ID: RFS-163-02-08 Lab ID#: 0802124A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021912		Date of Collection: 2	
Dil. Factor:	1.75	Date of Analysis: 2/19/08		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.35	0.83	1.2	2.9

Container Type: 6 Liter Summa Special (SIM Certified)

,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: RFS-163-02-08 Lab Duplicate

Lab ID#: 0802124A-03AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021913			
Dil. Factor:	1.75	Date of Analysis: 2/19/08 05:25		19/08 05:25 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.35	0.88	1.2	3.0

Container Type: 6 Liter Summa Special (SIM Certified)

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	92	70-130
4-Bromofluorobenzene	99	70-130

4-Bromofluorobenzene

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: RFS-163-02-08 Lab ID#: 0802124A-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM

	MODIFIED EPA ME 1.	HOD 10-15 GC/MS	SHVI	
File Name: Dil. Factor:	z021912sim 1.75		Date of Collection: Date of Analysis: 2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.069	Not Detected
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Chloroform	0.035	0.063	0.17	0.31
Benzene	0.088	0.39	0.28	1.2
1,2-Dichloroethane	0.035	0.035	0.14	0.14
Trichloroethene	0.0052	0.012	0.028	0.064
Tetrachloroethene	0.0052	0.022	0.036	0.15
trans-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Container Type: 6 Liter Summ	a Special (SIM Certified)			
Surrogates	•	%Recovery		Method Limits
1,2-Dichloroethane-d4		101		70-130
Toluene-d8		101		70-130

100

70-130

4-Bromofluorobenzene

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: RFS-163-02-08 Lab Duplicate

Lab ID#: 0802124A-03BB

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	z021913sim 1.75		Date of Collection: Date of Analysis: 2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	Not Detected	0.069	Not Detected
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Chloroform	0.035	0.064	0.17	0.31
Benzene	0.088	0.38	0.28	1.2
1,2-Dichloroethane	0.035	0.036	0.14	0.15
Trichloroethene	0.0052	0.010	0.028	0.054
Tetrachloroethene	0.0052	0.025	0.036	0.17
trans-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
Container Type: 6 Liter Summ	na Special (SIM Certified)			
Surrogates	·	%Recovery		Method Limits
1,2-Dichloroethane-d4		100		70-130
Toluene-d8		100		70-130

96

70-130

Client Sample ID: RFS-163-03-08 Lab ID#: 0802124A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021914	2021914 Date of Collection: 2/6/08		
Dil. Factor:	1.55	Date of Analysis: 2/19/08 06:12 PI		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methylene Chloride	0.31	0.38	1.1	1.3

Container Type: 6 Liter Summa Special (SIM Certified)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: RFS-163-03-08 Lab ID#: 0802124A-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM

	MODIFIED EPA METI	HOD TO-13 GC/MS	SHVI	
File Name: Dil. Factor:	z021914sim 1.55		Date of Collection: Date of Analysis: 2	_,,,,,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	0.034	0.15	0.17
Benzene	0.078	0.31	0.25	1.0
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.010	0.025	0.054
Tetrachloroethene	0.0046	0.021	0.032	0.14
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Container Type: 6 Liter Summa	Special (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		100		70-130
Toluene-d8		103		70-130
4-Bromofluorobenzene		102		70-130

4-Bromofluorobenzene

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: RFS-175-01-08 Lab ID#: 0802124A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Dil. Factor:	1.44		Date of Collection: Date of Analysis: 2	_, _, _,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.29	Not Detected	1.0	Not Detected
Container Type: 6 Liter Summ	a Special (SIM Certified)			
Surrogates		%Recovery		Method Limits

122

70-130

Client Sample ID: RFS-175-01-08 Lab ID#: 0802124A-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM

	WODITED ETA WET		<u></u>	
File Name:	z021915sim		Date of Collection:	2/6/08
Dil. Factor:	1.44	Date of Analysis: 2/19/08 0		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.014	0.020	0.037	0.052
1,1-Dichloroethene	0.014	Not Detected	0.057	Not Detected
cis-1,2-Dichloroethene	0.029	Not Detected	0.11	Not Detected
Chloroform	0.029	0.060	0.14	0.30
Benzene	0.072	0.44	0.23	1.4
1,2-Dichloroethane	0.029	Not Detected	0.12	Not Detected
Trichloroethene	0.0043	0.0092	0.023	0.049
Tetrachloroethene	0.0043	Not Detected	0.029	Not Detected
trans-1,2-Dichloroethene	0.029	Not Detected	0.11	Not Detected
Container Type: 6 Liter Summa	Special (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		96		70-130
Toluene-d8		97		70-130
4-Bromofluorobenzene		114		70-130

Client Sample ID: RFS-175-02-08 Lab ID#: 0802124A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021916 Date of Collection: 2/6/08			
Dil. Factor:	1.44	Date of Analysis: 2/19/08 07:53 P		19/08 07:53 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.29	0.29	1.0	1.0

Container Type: 6 Liter Summa Special (SIM Certified)

		wetnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: RFS-175-02-08 Lab ID#: 0802124A-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	z021916sim 1.44		Date of Collection: 2/6/08 Date of Analysis: 2/19/08 07:53 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.014	Not Detected	0.037	Not Detected	
1,1-Dichloroethene	0.014	Not Detected	0.057	Not Detected	
cis-1,2-Dichloroethene	0.029	Not Detected	0.11	Not Detected	
Chloroform	0.029	0.034	0.14	0.16	
Benzene	0.072	0.31	0.23	1.0	
1,2-Dichloroethane	0.029	Not Detected	0.12	Not Detected	
Trichloroethene	0.0043	0.0093	0.023	0.050	
Tetrachloroethene	0.0043	0.020	0.029	0.13	
trans-1,2-Dichloroethene	0.029	Not Detected	0.11	Not Detected	
Container Type: 6 Liter Summ	a Special (SIM Certified)				
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		97		70-130	
Toluene-d8		100		70-130	
4-Bromofluorobenzene		99		70-130	

4-Bromofluorobenzene

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: RFS-177-01-08 Lab ID#: 0802124A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	z021919 1.64		Date of Collection: 2/6/08 Date of Analysis: 2/19/08 10:42 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.33	Not Detected	1.1	Not Detected
Container Type: 6 Liter Sumr	na Special (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		95		70-130
Toluene-d8		90		70-130

107

70-130

Client Sample ID: RFS-177-01-08 Lab ID#: 0802124A-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM

MODIFIED EPA METHOD TO-15 GC/MS SIM				
File Name: Dil. Factor:	z021919sim 1.64		Date of Collection: 2/6/08 Date of Analysis: 2/19/08 10:42 PM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
Chloroform	0.033	0.14	0.16	0.67
Benzene	0.082	0.32	0.26	1.0
1,2-Dichloroethane	0.033	Not Detected	0.13	Not Detected
Trichloroethene	0.0049	0.036	0.026	0.19
Tetrachloroethene	0.0049	0.028	0.033	0.19
trans-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
Container Type: 6 Liter Summ	a Special (SIM Certified)			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		98		70-130
Toluene-d8		98		70-130
4-Bromofluorobenzene		103		70-130

Client Sample ID: RFS-155-01-08 Lab ID#: 0802124A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	z021920 1.55		Date of Collection: 2/6/08 Date of Analysis: 2/19/08 11:27 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.31	0.30 J	1.1	1.0 J

J = Estimated value.

Container Type: 6 Liter Summa Special (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: RFS-155-01-08 Lab ID#: 0802124A-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM

	MODIFIED EPA METE	10D TO-15 GC/MS	SIM	
File Name: Dil. Factor:	z021920sim 1.55			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	0.037	0.15	0.18
Benzene	0.078	0.38	0.25	1.2
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.0046	0.010	0.025	0.056
Tetrachloroethene	0.0046	0.030	0.032	0.20
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Container Type: 6 Liter Summ	na Special (SIM Certified)			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4	·	100		70-130
Toluene-d8		103		70-130
4-Bromofluorobenzene		100		70-130

Client Sample ID: RFS-478-01-08 Lab ID#: 0802124A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	z021921 1.71		Date of Collection: 2/6/08 Date of Analysis: 2/20/08 12:15 A	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.34	0.41	1.2	1.4

Container Type: 6 Liter Summa Special (SIM Certified)

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	93	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: RFS-478-01-08 Lab ID#: 0802124A-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM

MODIFIED EPA METHOD TO-15 GC/MS SIM					
File Name: Dil. Factor:	z021921sim 1.71			Date of Collection: 2/6/08 Date of Analysis: 2/20/08 12:15 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected	
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected	
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected	
Chloroform	0.034	0.12	0.17	0.58	
Benzene	0.086	0.50	0.27	1.6	
1,2-Dichloroethane	0.034	Not Detected	0.14	Not Detected	
Trichloroethene	0.0051	0.18	0.028	0.99	
Tetrachloroethene	0.0051	0.024	0.035	0.16	
trans-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected	
Container Type: 6 Liter Summ	na Special (SIM Certified)				
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		103		70-130	
Toluene-d8		100		70-130	
4-Bromofluorobenzene		101		70-130	

Client Sample ID: RFS-478-02-08 Lab ID#: 0802124A-10A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	z021922 1.55			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.31	1.2	1.1	4.0

Container Type: 6 Liter Summa Special (SIM Certified)

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: RFS-478-02-08 Lab ID#: 0802124A-10B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	z021922sim 1.55			Date of Collection: 2/6/08 Date of Analysis: 2/20/08 01:07 AM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected	
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected	
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected	
Chloroform	0.031	0.056	0.15	0.27	
Benzene	0.078	0.53	0.25	1.7	
1,2-Dichloroethane	0.031	Not Detected	0.12	Not Detected	
Trichloroethene	0.0046	0.017	0.025	0.090	
Tetrachloroethene	0.0046	0.066	0.032	0.45	
trans-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected	
Container Type: 6 Liter Summ	a Special (SIM Certified)				
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		98		70-130	
Toluene-d8		101		70-130	
4-Bromofluorobenzene		102		70-130	

Client Sample ID: RFS-478-03-08 Lab ID#: 0802124A-11A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021923		Date of Collection: 2/6/08		
Dil. Factor:	1.61	Date of Analysis:		2/20/08 02:09 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Methylene Chloride	0.32	Not Detected	1.1	Not Detected	
Container Type: 6 Liter Summa	a Special (SIM Certified)				
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		96		70-130	
Toluene-d8		96		70-130	
4-Bromofluorobenzene		105		70-130	

Client Sample ID: RFS-478-03-08 Lab ID#: 0802124A-11B

MODIFIED EPA METHOD TO-15 GC/MS SIM

MODIFIED EFA METHOD TO-15 GC/MS SIVI				
File Name: Dil. Factor:	z021923sim 1.61			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Chloroform	0.032	0.095	0.16	0.46
Benzene	0.080	0.41	0.26	1.3
1,2-Dichloroethane	0.032	0.037	0.13	0.15
Trichloroethene	0.0048	0.0076	0.026	0.041
Tetrachloroethene	0.0048	0.025	0.033	0.17
trans-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Container Type: 6 Liter Summa	Special (SIM Certified)			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		103		70-130
Toluene-d8		104		70-130
4-Bromofluorobenzene		101		70-130

Client Sample ID: RFS-280-01-08 Lab ID#: 0802124A-12A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021924		Date of Collection:	2/6/08
Dil. Factor:	1.58		Date of Analysis: 2	2/20/08 02:59 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.32	Not Detected	1.1	Not Detected
Container Type: 6 Liter Summa	a Special (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		98		70-130
Toluene-d8		93		70-130
4-Bromofluorobenzene		100		70-130

Client Sample ID: RFS-280-01-08 Lab ID#: 0802124A-12B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	z021924sim 1.58			Date of Collection: 2/6/08 Date of Analysis: 2/20/08 02:59 AM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected	
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected	
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected	
Chloroform	0.032	0.058	0.15	0.29	
Benzene	0.079	0.30	0.25	0.96	
1,2-Dichloroethane	0.032	Not Detected	0.13	Not Detected	
Trichloroethene	0.0047	0.0085	0.025	0.046	
Tetrachloroethene	0.0047	0.022	0.032	0.15	
trans-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected	
Container Type: 6 Liter Summ	a Special (SIM Certified)				
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		101		70-130	
Toluene-d8		101		70-130	
4-Bromofluorobenzene		99		70-130	

Client Sample ID: RFS-Trip Blank Lab ID#: 0802124A-13A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	z021925 1.00		Date of Collection: 2/6/08 Date of Analysis: 2/20/08 03:47 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
Container Type: 6 Liter Summa	a Special (SIM Certified)			Mathad
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		97		70-130
Toluene-d8		96		70-130
4-Bromofluorobenzene		89		70-130

Client Sample ID: RFS-Trip Blank Lab ID#: 0802124A-13B

MODIFIED EPA METHOD TO-15 GC/MS SIM

	WOODI HED EI M WIE I	10 10 10 00,111		
File Name:	z021925sim		Date of Collection:	2/6/08
Dil. Factor:	1.00		Date of Analysis: 2	/20/08 03:47 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Container Type: 6 Liter Summa	Special (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		106		70-130
Toluene-d8		100		70-130
4-Bromofluorobenzene		89		70-130

Client Sample ID: Lab Blank Lab ID#: 0802124A-14A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	z021907 1.00		Date of Collection: I	· ·
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
Container Type: NA - Not Applicable				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		94		70-130
Toluene-d8		96		70-130
4-Bromofluorobenzene		100		70-130

Client Sample ID: Lab Blank Lab ID#: 0802124A-14B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	z021907sim 1.00	TO 13 GAMES	Date of Collection: I	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.0030	Not Detected	0.016	Not Detected
Tetrachloroethene	0.0030	Not Detected	0.020	Not Detected
trans-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Container Type: NA - Not Applical	ole			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		96		70-130
Toluene-d8		99		70-130
4-Bromofluorobenzene		95		70-130

Client Sample ID: CCV Lab ID#: 0802124A-15A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	z021904	Date of Collection: NA
		24.0 0. 00.000.011.12.1
Dil. Factor:	1.00	Date of Analysis: 2/19/08 09:21 AM
Din i dotoi i	1.00	Date of Allarysis. 2/10/00 05.21 All

Compound	%Recovery
Methylene Chloride	111

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	109	70-130	

Client Sample ID: CCV Lab ID#: 0802124A-15B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	z021904sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/19/08 09:21 AM

Compound	%Recovery
Vinyl Chloride	110
1,1-Dichloroethene	107
cis-1,2-Dichloroethene	113
Chloroform	99
Benzene	109
1,2-Dichloroethane	114
Trichloroethene	112
Tetrachloroethene	114
trans-1,2-Dichloroethene	110

21 bb		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCS Lab ID#: 0802124A-16A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: z021905 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/19/08 10:07 AM

Compound%RecoveryMethylene Chloride122

21 bb		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: LCS Lab ID#: 0802124A-16B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name:	z021905sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/19/08 10:07 AM

Compound	%Recovery
Vinyl Chloride	108
1,1-Dichloroethene	120
cis-1,2-Dichloroethene	113
Chloroform	104
Benzene	114
1,2-Dichloroethane	122
Trichloroethene	115
Tetrachloroethene	121
trans-1,2-Dichloroethene	114

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	103	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

DATE COMPLETED:

AN ENVIRONMENTAL ANALYTICAL LABORATORY

02/21/2008

WORK ORDER #: 0802124B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Jason Brodersen

Tetra TechTetra Tech106 N. 6th. St.135 Main StreetSuite 202Suite 1800

Boise, ID 83702 San Francisco, CA 94105

PHONE: 208-389-1030 **P.O.** # 1024639

FAX: PROJECT # 51518.008.01 RFS Air Mon

DATE RECEIVED: 02/07/2008 **CONTACT:** Kelly Buettner

FRACTION #	NAME	<u>TEST</u>
01A	RFS-UCB-01-08	Modified TO-11A
01AA	RFS-UCB-01-08 Lab Duplicate	Modified TO-11A
02A	RFS-163-01-08	Modified TO-11A
02AA	RFS-163-01-08 Lab Duplicate	Modified TO-11A
03A	RFS-163-02-08	Modified TO-11A
04A	RFS-163-02D-08	Modified TO-11A
05A	RFS-163-03-08	Modified TO-11A
06A	RFS-175-01-08	Modified TO-11A
07A	RFS-175-02-08	Modified TO-11A
08A	RFS-177-01-08	Modified TO-11A
09A	RFS-155-01-08	Modified TO-11A
10A	RFS-478-01-08	Modified TO-11A
11A	RFS-478-02-08	Modified TO-11A
12A	RFS-478-03-08	Modified TO-11A
13A	RFS-280-01-08	Modified TO-11A
14A	RFS-Trip Blank	Modified TO-11A
15A	Lab Blank	Modified TO-11A

Continued on next page

WORK ORDER #: 0802124B

Work Order Summary

CLIENT: Mr. Doug Herlocker BILL TO: Mr. Jason Brodersen

Tetra Tech
106 N. 6th. St.
135 Main Street
Suite 202
Suite 1800

Boise, ID 83702 San Francisco, CA 94105

PHONE: 208-389-1030 **P.O.** # 1024639

FAX: PROJECT # 51518.008.01 RFS Air Mon

DATE RECEIVED: 02/07/2008

CONTACT: Kelly Buettner 02/21/2008

FRACTION # NAME TEST

16A LCS Modified TO-11A

CERTIFIED BY: DATE: 02/21/08

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/07, Expiration date: 06/30/08

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-11A Tetra Tech Workorder# 0802124B

Fourteen TO-11 Cartridge samples were received on February 07, 2008. The laboratory performed analysis via modified Method TO-11A using reverse phase High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. The method involves eluting the sorbent tubes with acetonitrile using a gravity feed technique. Method modifications taken to run these samples include:

Requirement	TO-11A	ATL Modifications
ACN Purity Check	Contribution of analytes from ACN determined as described Sections 9.1.1 and 9.1.2 of Compendium TO-11A.	Total contribution of analytes from ACN and cartridge combined is determined.
Initial Calibration Curve (ICAL)	Multi-point using linear regression performed every 6 months; r^2 > 0.999	Multi-point using average Response Factor; % RSD = 10 %. Re-calibration if daily cal. fails, major maintenance, or column change. Linear regression is performed when requested.</td
Blank Subtraction	Average blank concentrations calculated. Blank value subtracted from sample result.	One Lab Blank is analyzed per batch; no blank subtraction performed on samples.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 2.0 m3 was assumed for all QC samples.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-UCB-01-08				
Lab ID#: 0802124B-01A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.1	0.63
Client Sample ID: RFS-UCB-01-08 Lab	Duplicate			
Lab ID#: 0802124B-01AA				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	1.3	0.72
Client Sample ID: RFS-163-01-08				
Lab ID#: 0802124B-02A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	30	16
Client Sample ID: RFS-163-01-08 Lab l	Duplicate			
Lab ID#: 0802124B-02AA				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	30	16
Client Sample ID: RFS-163-02-08				
Lab ID#: 0802124B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	25	14
Client Sample ID: RFS-163-02D-08				
Lab ID#: 0802124B-04A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	25	14
.				

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-163-03-08				
Lab ID#: 0802124B-05A				
Compound	Rpt. Limit	Rpt. Limit (uG/m3)	Amount	Amount (uG/m3)
	(ug)	· · · · · · · · · · · · · · · · · · ·	(ug)	` '
Formaldehyde	0.050	0.028	1.4	0.76
Client Sample ID: RFS-175-01-08				
Lab ID#: 0802124B-06A				
_	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	12	6.4
Client Sample ID: RFS-175-02-08				
Lab ID#: 0802124B-07A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	1.4	0.77
Client Sample ID: RFS-177-01-08				
Lab ID#: 0802124B-08A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.028	30	17
Client Sample ID: RFS-155-01-08				
Lab ID#: 0802124B-09A				
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.027	25	13
CN - 4 C 1. ID. DEC 470 64 69				
Client Sample ID: RFS-478-01-08				
Lab ID#: 0802124B-10A	D 4 11 14	Bert Harris	A	A
Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
Formaldehyde	0.050	0.027	26	14

Summary of Detected Compounds AMBIENT AIR: EPA METHOD TO-11A HPLC

Client Sample ID: RFS-478-02-08

Lab ID#: 0802124B-11A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	26	14

Client Sample ID: RFS-478-03-08

Lab ID#: 0802124B-12A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.10	0.056	76	42

Client Sample ID: RFS-280-01-08

Lab ID#: 0802124B-13A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	1.5	0.79

Client Sample ID: RFS-Trip Blank

Lab ID#: 0802124B-14A

No Detections Were Found.

Client Sample ID: RFS-UCB-01-08 Lab ID#: 0802124B-01A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0208006		Date of Collection:	2/6/08
Dil. Factor:	1.00		Date of Analysis: 2/	/8/08 10:13 AM
			Date of Extraction:	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

Rpt. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0281.10.63

Client Sample ID: RFS-UCB-01-08 Lab Duplicate

Lab ID#: 0802124B-01AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0208007 1.00	Date of Collection: 2/6/08 Date of Analysis: 2/8/08 10:34 AM		
			Date of Extraction:	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount
_				

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.028
 1.3
 0.72

Client Sample ID: RFS-163-01-08 Lab ID#: 0802124B-02A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0208008 1.00		Date of Collection: 2	
			Date of Extraction:	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.027
 30
 16

Client Sample ID: RFS-163-01-08 Lab Duplicate

Lab ID#: 0802124B-02AA

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0208009 1.00		Date of Collection: 2/5	
			Date of Extraction: 2	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

 Compound
 (ug)
 (uG/m3)
 (ug)
 (uG/m3)

 Formaldehyde
 0.050
 0.027
 30
 16

Client Sample ID: RFS-163-02-08 Lab ID#: 0802124B-03A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0208010 Date of Collection: 2/6/08
Dil. Factor: 1.00 Date of Analysis: 2/8/08 11:36 AM
Date of Extraction: 2/8/08

Rpt. Limit Rpt. Limit Amount Amount

Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-163-02D-08 Lab ID#: 0802124B-04A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0208011		Date of Collection:	2/6/08	
Dil. Factor:	1.00		Date of Analysis: 2/8/08 11:57 AM		
		Date of Extraction: 2/8/08			
	Rpt. Limit	Rpt. Limit	Amount	Amount	

Rot. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0282514

Client Sample ID: RFS-163-03-08 Lab ID#: 0802124B-05A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0208014		Date of Collection:	2/6/08
Dil. Factor:	1.00	Date of Analysis: 2/8/08 01:00 PM		
			Date of Extraction:	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

Compound	Rɒt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-175-01-08 Lab ID#: 0802124B-06A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0208015 Date of Collection: 2/6/08
Dil. Factor: 1.00 Date of Analysis: 2/8/08 01:21 PM
Date of Extraction: 2/8/08

Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-175-02-08 Lab ID#: 0802124B-07A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0208016 Date of Collection: 2/6/08
Dil. Factor: 1.00 Date of Analysis: 2/8/08 01:42 PM
Date of Extraction: 2/8/08

Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)

Client Sample ID: RFS-177-01-08 Lab ID#: 0802124B-08A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0208017 Date of Collection: 2/6/08
Dil. Factor: 1.00 Date of Analysis: 2/8/08 02:03 PM
Date of Extraction: 2/8/08

Rpt. Limit Rpt. Limit Amount Amount

Rot. Limit Rpt. Limit Amount Amount (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.028 30 17

Client Sample ID: RFS-155-01-08 Lab ID#: 0802124B-09A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0208018		Date of Collection: 2/6/08		
Dil. Factor:	1.00		Date of Analysis: 2/8/08 02:24 PM		
		Date of Extraction: 2/8/08			
	Rpt. Limit	Rpt. Limit	Amount	Amount	

CompoundRpt. Limit
(ug)Rpt. Limit
(uG/m3)Amount
(ug)Amount
(ug/m3)Formaldehyde0.0500.0272513

Client Sample ID: RFS-478-01-08 Lab ID#: 0802124B-10A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0208019		Date of Collection:	2/6/08
Dil. Factor:	1.00		Date of Analysis: 2	/8/08 02:44 PM
			Date of Extraction:	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

Rpt. Limit Rpt. Limit Amount Amount (ug) (uG/m3) (ug) (uG/m3)

Formaldehyde 0.050 0.027 26 14

Air Sample Volume(L): 1840 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-02-08 Lab ID#: 0802124B-11A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0208020 Date of Collection: 2/6/08

Dil. Factor: 1.00 Date of Analysis: 2/8/08 03:05 PM

Date of Extraction: 2/8/08

Rot. Limit
CompoundRpt. Limit
(ug)Amount
(uG/m3)Amount
(ug)Amount
(uG/m3)Formaldehyde0.0500.0272614

Air Sample Volume(L): 1870 Container Type: TO-11 Cartridge

Client Sample ID: RFS-478-03-08 Lab ID#: 0802124B-12A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name:	f0208005		Date of Collection:	2/6/08
Dil. Factor:	2.00		Date of Analysis: 2/	
			Date of Extraction:	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount

CompoundRpt. Limit
(ug)Rpt. Limit
(uG/m3)Amount
(ug)Amount
(ug)Formaldehyde0.100.0567642

Air Sample Volume(L): 1800 Container Type: TO-11 Cartridge

Client Sample ID: RFS-280-01-08 Lab ID#: 0802124B-13A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0208021 Date of Collection: 2/6/08

Dil. Factor: 1.00 Date of Analysis: 2/8/08 03:26 PM

Date of Extraction: 2/8/08

Reg. Limit Reg. Limit Amount Amount

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
Formaldehyde	0.050	0.027	1.5	0.79

Air Sample Volume(L): 1870 Container Type: TO-11 Cartridge

Client Sample ID: RFS-Trip Blank Lab ID#: 0802124B-14A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0208022 1.00		Date of Collection: Date of Analysis: 2	
			Date of Extraction:	2/8/08
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: TO-11 Cartridge

Formaldehyde

Client Sample ID: Lab Blank Lab ID#: 0802124B-15A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: Dil. Factor:	f0208003 1.00		Date of Collection: N Date of Analysis: 2/ Date of Extraction:	/8/08 09:10 AM
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ua)	(uG/m3)	(ua)	(uG/m3)

0.025

Not Detected

Not Detected

0.050

Air Sample Volume(L): 2000 Container Type: NA - Not Applicable

Formaldehyde

Client Sample ID: LCS Lab ID#: 0802124B-16A

AMBIENT AIR: EPA METHOD TO-11A HPLC

File Name: f0208004 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 2/8/08 09:31 AM

Date of Extraction: 2/8/08

Compound %Recovery

Formaldehyde 103

Air Sample Volume(L): 2000

Container Type: NA - Not Applicable

Douglas Herlocker, QEP TetraTech 106 N. 6th Street Suite 200 Boise, ID 83702 February 5, 2008

Mr. Herlocker,

Below is the summary report for the second batch of Teflon filters. I have included a discussion of the filter handling and analysis methods, followed by the results for this batch.

TEFLON FILTER HANDLING AND FILTER PACK PREPARATION

Filter packs are assembled and disassembled in accordance with DRI SOP 2-112.2, Filter Pack Assembly.

All samples received at DRI for analysis are logged on the day that they are received following the procedure described in the DRI Shipping and Receiving SOP, 2-113.2.

Any unusual deposits or filter conditions should be noted on the sample list. These conditions include, but are not limited to:

- scratches or smudges
- holes
- wet spots
- foreign particles (e.g., insects, metal shavings, hair, etc.)

Damage to the filters after receipt at DRI must be noted as such. The conditions of the samples must be documented so that an accurate assessment of analytical quality can be made.

FILTER ANALYSIS

Gravimetric Analysis

Gravimetric analysis is performed in accordance with DRI SOP 2-114.2, as summarized below:

Unexposed and exposed Teflon-membrane filters are equilibrated at a temperature of 21.5 ± 1.5 °C and a relative humidity of $35 \pm 5\%$ for a minimum of 24 hours prior to weighing. Weighing is performed on a Mettler MT-5 electro microbalance with ± 0.001 mg sensitivity. The charge on each filter is neutralized by exposure to a polonium source for 30 seconds before the filter is placed on the balance pan. The balance is calibrated with a 200 mg Class S weight and the tare is set prior to weighing each batch of filters. After every 10 filters are weighed, the calibration and tare are re-checked. If the results of

these performance tests deviate from specifications by more than ± 5 mg, the balance is re-calibrated.

All initial filter weights are checked by an independent technician. Samples are reweighed if these check-weights do not agree with the original weights within ± 0.010 mg. At least 30% of the exposed filter weights are checked by an independent technician. Samples are re-weighed if these check-weights do not agree with the original weights within ± 0.015 mg. Pre- and post-weights, check weights, and re-weights (if required) are recorded on data sheets and are directly entered into a data base via an RS232 connection. All weights are entered by filter number into the DRI aerosol data base.

Elements by XRF

Elemental analysis by energy dispersive x-ray fluorescence is performed in accordance with DRI SOP 2-209.2 as summarized below:

After gravimetric analysis, samples collected on the Teflon-membrane filters were analyzed by energy dispersive X-ray fluorescence (ED-XRF, PanAlytical Epsilon 5) for the following 51 elements: sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca), scandium (Sc) titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), selenium (Se), bromine (Br), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), palladium (Pd), silver (Ag), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), cesium (Cs), barium (Ba), lanthanum (La), Cerium (Ce), samarium (Sm), europium (Eu), terbium (Tb), hafnium (Hf), tantalum (Ta), wolfram (W), iridium (Ir), gold (Au), mercury (Hg), thallium (Tl), lead (Pb), and uranium (U).

Calibration is performed using thin film standards from Micromatter Inc. A multielement thin film standard is analyzed periodically to monitor for calibration drift.

BATCH 02 SPECIFIC RESULTS

Batch 02 consists of three shipments of exposed filters that were received from the field on 11/30/2007, 12/13/2007 and 12/20/2007. The batch total is 41 filters. Examination of the field data sheets indicated that the sampling went well, with no problems reported. The PM10 mass and arsenic concentration data in micrograms per filter are shown below. Arsenic was not detected on any of the filters from this batch.

	PM10	Arsenic
TID	Mass	Concentration
DHPT028	-14.000	0.0000
DHPT029	66.000	0.0000
DHPT031	2.000	0.0000
DHPT032	67.000	0.0000
DHPT033	31.000	0.0000
DHPT034	24.000	0.0000
DHPT035	21.000	0.0000

DHPT036	118.000	0.0000
DHPT037	46.000	0.0000
DHPT038	135.000	0.0000
DHPT039	66.000	0.0000
DHPT040	69.000	0.0000
DHPT041	101.000	0.0000
DHPT042	79.000	0.0000
DHPT043	41.000	0.0000
DHPT044	165.000	0.0000
DHPT045	50.000	0.0000
DHPT046	12.000	0.0000
DHPT047	2.000	0.0000
DHPT048	-1.000	0.0000
DHPT049	65.000	0.0000
DHPT051	40.000	0.0000
DHPT052	69.000	0.0000
DHPT053	17.000	0.0000
DHPT054	49.000	0.0000
DHPT055	10.000	0.0000
DHPT056	33.000	0.0000
DHPT057	41.000	0.0000
DHPT058	116.000	0.0000
DHPT059	34.000	0.0000
DHPT060	-10.000	0.0000
DHPT061	15.000	0.0000
DHPT062	124.000	0.0000
DHPT063	57.000	0.0000
DHPT064	133.000	0.0000
DHPT065	37.000	0.0000
DHPT066	63.000	0.0000
DHPT067	74.000	0.0000
DHPT068	82.000	0.0000
DHPT069	68.000	0.0000
DHPT070	144.000	0.0000

Please let me know if I may be of further assistance.

Regards,

Steven D. Kohl

Associate Research Scientist

Desert Research Institute

Douglas Herlocker, QEP TetraTech 106 N. 6th Street Suite 200 Boise, ID 83702 March 21, 2008

Mr. Herlocker.

Below is the summary report for the second batch of Teflon filters. I have included a discussion of the filter handling and analysis methods, followed by the results for this batch.

TEFLON FILTER HANDLING AND FILTER PACK PREPARATION

Filter packs are assembled and disassembled in accordance with DRI SOP 2-112.2, Filter Pack Assembly.

All samples received at DRI for analysis are logged on the day that they are received following the procedure described in the DRI Shipping and Receiving SOP, 2-113.2.

Any unusual deposits or filter conditions should be noted on the sample list. These conditions include, but are not limited to:

- scratches or smudges
- holes
- wet spots
- foreign particles (e.g., insects, metal shavings, hair, etc.)

Damage to the filters after receipt at DRI must be noted as such. The conditions of the samples must be documented so that an accurate assessment of analytical quality can be made.

FILTER ANALYSIS

Gravimetric Analysis

Gravimetric analysis is performed in accordance with DRI SOP 2-114.2, as summarized below:

Unexposed and exposed Teflon-membrane filters are equilibrated at a temperature of 21.5 ± 1.5 °C and a relative humidity of $35 \pm 5\%$ for a minimum of 24 hours prior to weighing. Weighing is performed on a Mettler MT-5 electro microbalance with ± 0.001 mg sensitivity. The charge on each filter is neutralized by exposure to a polonium source for 30 seconds before the filter is placed on the balance pan. The balance is calibrated with a 200 mg Class S weight and the tare is set prior to weighing each batch of filters. After every 10 filters are weighed, the calibration and tare are re-checked. If the results of these performance tests deviate from specifications by more than ± 5 mg, the balance is re-calibrated.

All initial filter weights are checked by an independent technician. Samples are re-weighed if these check-weights do not agree with the original weights within ± 0.010 mg. At least 30%

of the exposed filter weights are checked by an independent technician. Samples are reweighed if these check-weights do not agree with the original weights within ± 0.015 mg. Preand post-weights, check weights, and re-weights (if required) are recorded on data sheets and are directly entered into a data base via an RS232 connection. All weights are entered by filter number into the DRI aerosol data base.

Elements by XRF

Elemental analysis by energy dispersive x-ray fluorescence is performed in accordance with DRI SOP 2-209.2 as summarized below:

After gravimetric analysis, samples collected on the Teflon-membrane filters were analyzed by energy dispersive X-ray fluorescence (ED-XRF, PanAlytical Epsilon 5) for the following 51 elements: sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca), scandium (Sc) titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), selenium (Se), bromine (Br), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), palladium (Pd), silver (Ag), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), cesium (Cs), barium (Ba), lanthanum (La), Cerium (Ce), samarium (Sm), europium (Eu), terbium (Tb), hafnium (Hf), tantalum (Ta), wolfram (W), iridium (Ir), gold (Au), mercury (Hg), thallium (Tl), lead (Pb), and uranium (U).

Calibration is performed using thin film standards from Micromatter Inc. A multielement thin film standard is analyzed periodically to monitor for calibration drift.

BATCH 03 SPECIFIC RESULTS

Batch 03 consists of three shipments of exposed filters that were received from the field on 1/11/2008, 1/25/2008 and 2/7/2008. The batch total is 44 filters. Examination of the field data sheets indicated that the sampling went well, with no problems reported. The PM10 mass and arsenic concentration data in micrograms per filter are shown below. Arsenic was not detected above the uncertainty on any of the filters from this batch.

	PM10	Arsenic
TID	Mass	Concentration
DHPT071	93.000	0.0000
DHPT072	173.000	0.0000
DHPT073	41.000	0.0000
DHPT074	17.000	0.0000
DHPT075	59.000	0.0000
DHPT076	69.000	0.0000
DHPT077	81.000	0.0000
DHPT078	180.000	0.0000
DHPT079	79.000	0.0000
DHPT080	115.000	0.0000
DHPT081	89.000	0.0000
DHPT082	-4.000	0.0000
DHPT083	164.000	0.0000
DHPT084	-14.000	0.0000

-11.000	0.0000
-9.000	0.0000
-8.000	0.0000
-3.000	0.0000
-15.000	0.0000
-15.000	0.0000
11.000	0.0000
11.000	0.0000
4.000	0.0000
28.000	0.0000
18.000	0.0000
23.000	0.0000
12.000	0.0000
12.000	0.0000
69.000	0.0000
3.000	0.0000
22.000	0.0000
30.000	0.0000
81.000	0.0000
23.000	0.0000
10.000	0.0000
88.000	0.0000
32.000	0.0000
93.000	0.0012
21.000	0.0000
44.000	0.0000
55.000	0.0000
33.000	0.0000
12.000	0.0000
17.000	0.0000
	-9.000 -8.000 -3.000 -15.000 -15.000 11.000 11.000 4.000 28.000 12.000 12.000 69.000 3.000 22.000 30.000 81.000 23.000 10.000 88.000 32.000 93.000 21.000 44.000 55.000 33.000 12.000

Please let me know if I may be of further assistance.

Regards,

Steven D. Kohl Associate Research Scientist Desert Research Institute