Implementation Summary Report for a Time-Critical Removal Action at Two Campfire Locations in the Western Transition Area

University of California, Berkeley Richmond Field Station, Richmond, California

February 23, 2009

Prepared for
Office of Environment, Health and Safety
University of California, Berkeley
317 University Hall, No. 1150
Berkeley, California 94720

Prepared by

1999 Harrison Street, Suite 500 Oakland, California 94612

TABLE OF CONTENTS

ACRO	NYMS	AND ABBREVIATIONS	ii
1.0	INTRO	ODUCTION	.1
2.0		BACKGROUND	
3.0		OVAL ACTION ACTIVITIES AND RESULTS	
5.0	3.1	SITE PREPARATION	
	3.2	SOIL EXCAVATION	.4
	3.3	CONFIRMATION SAMPLING	.5
	3.4	BACKFILLING	.6
	3.5	WASTE CHARACTERIZATION AND DISPOSAL	.6
	3.6	WASTE DISPOSAL	.7
4.0	SUMN	MARY	.8
5.0	REFE	RENCES	.9

FIGURES

- 1 SITE LOCATION MAP
- 2 TCRA EXCAVATION AND CONFIRMATION SAMPLING LOCATIONS

APPENDICES

- A TCRA EXCAVATION PHOTO LOG
- B CONFIRMATION SAMPLING RESULTS
- C DEPARTMENT OF TOXIC SUBSTANCES CONTROL APPROVAL FOR MATH SCIENCES RESEARCH INSTITUTE STOCKPILE
- D SOIL BIN CONTENTS CHARACTERIZATION SAMPLING RESULTS
- E WASTE PROFILE SHEETS AND MANIFESTS

ACRONYMS AND ABBREVIATIONS

§ Section

40 CFR Title 40, Code of Federal Regulations

Ca-HSC California Health and Safety Code

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

DTSC Department of Toxic Substances Control

mg/kg Milligrams per kilogram

MSRI Math Sciences Research Institute

PAH Polyaromatic hydrocarbons

PSC PSC Environmental

RFS Richmond Field Station

TCRA Time-critical removal action

Tetra Tech EM Inc.

UC Berkeley University of California, Berkeley

WTA Western Transition Area

1.0 INTRODUCTION

This report describes a time-critical removal action (TCRA) carried out on behalf of The Regents of the University of California (UC) in accordance with the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), Site Investigation and Remediation Order, Docket No. ISE-RAO 06/07-004, dated September 15, 2006. The TCRA was conducted on October 1, 2008, at two campfire locations in the Western Transition Area (WTA) at the University of California, Berkeley (UC Berkeley), Richmond Field Station (RFS), Richmond, California.

This summary report presents (1) the RFS site history and background of the WTA, (2) the regulatory history and reasons for performing the TCRA, (3) actions taken during the TCRA, and (4) the results. The report appendices provide background information and data for the TCRA, including photo documentation (Appendix A), confirmation sampling results (Appendix B), the DTSC approval of backfill soil (Appendix C), waste characterization results (Appendix D), and final disposal manifests (Appendix E).

2.0 SITE BACKGROUND

This section discusses the site history, background, and regulatory framework for the TCRA.

The RFS property is owned by The Regents of the University of California and is located at 1301 South 46th Street in Richmond, California, in western Contra Costa County. RFS is bordered by Meade Street, off Interstate 580, to the north; by South 46th Street to the east; by the East Bay Regional District Bay Trail to the south; and by Meeker Slough and Regatta Boulevard to the west. Residences, public areas, and commercial facilities are within a 1-mile radius of RFS. Prior to UC's purchase of the RFS property, the California Cap Company used the property for manufacturing of explosives from the late 1800s until 1948. In 1950, UC purchased the property primarily for research facilities for the UC Berkeley College of Engineering; later, other campus departments used portions of RFS.

The 170-acre property consists of four main areas:

- 96 acres of uplands, used for academic institutional activities
- approximately 7.5 acres of tidal salt marsh
- 5.5 acres of marsh-edge habitat and transition area
- approximately 61 acres south of the East Bay Regional Park District's Bay Trail, known as the outboard area, consisting of tidal mud flats, marsh, and open water

The two campfire locations are located in the transition area and adjacent to Meeker Slough.

The WTA comprises mostly non-native ruderal habitat, which creates a transition zone between the upland areas and the Western Stege Marsh. The area consists of about 5 feet of fill material placed onto a former tidal mudflat beginning in the late 1950s.

In January 2008, on behalf of UC Berkeley, Tetra Tech collected surface soil samples in the WTA to evaluate the potential human health risk posed to workers performing weed abatement in the area. During the sampling activities, two small adjacent areas were identified (designated as Campfire Areas I and II) which appeared to be the result of previous, unauthorized campfires (samples WTAA-001 and WTAA-002; see Figure 1). The two small areas contained visual surficial ash and debris such as empty cans and bottles. The two areas are located within the WTA, which is surrounded by a fence, restricting access.

A review of the soil sample results from the two campfire locations indicated elevated concentrations of polychlorinated biphenyls (PCB), which could potentially pose a risk to on-site workers conducting weed abatement or other work at the site. On May 16 and July 10, 2008, UC Berkeley representatives met with DTSC staff to discuss the PCB

concentrations reported in soil samples from the two campfire areas. DTSC agreed that a TCRA was necessary to remove the PCBs in soil at the two campfire locations and that the TCRA would be conducted under the authority of the DTSC Site Investigation and Remediation Order, Docket No. ISE-RAO 06/07-004, dated September 15, 2006. This removal action was designed to be consistent with *California Health and Safety Code* (Ca-HSC) Section (§) 25356.1 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) § 104(a). The potential threats to public health or welfare and the environment posed by the site prior to the TCRA are discussed in the TCRA Memorandum (Tetra Tech 2008).

3.0 REMOVAL ACTION ACTIVITIES AND RESULTS

This section describes the TCRA activities. UC Berkeley contracted with PSC Environmental (PSC) to perform all excavation activities. 4LEAF, Inc. (4LEAF) performed oversight, and Tetra Tech collected soil confirmation samples from the excavation. 4LEAF contracted with Muir Consulting, Inc. to perform a land survey of the final excavation boundary and soil confirmation sample locations (see Figure 2).

3.1 SITE PREPARATION

PSC mobilized equipment to the site, including four, 1-cubic yard soil containers and hand shovels, as well as water jugs and hand pumps for dust suppression. PSC's staff wore Level D personal protective equipment (PPE) during the excavation activities and were required to wash their work boots and remove all PPE and dispose of the PPE in the waste bins.

3.2 SOIL EXCAVATION

All excavation activities for the TCRA took place on October 1, 2008. The extent of the two campfire areas were identified visually. The proposed excavations were intended to fully remove visual ash and debris unless the extent of debris exceeded the TCRA depth and volume limits. The depth limit each site was 2 feet and/or a combined total volume limit of 4 cubic yards of excavated material.

Removal activities consisted of using hand tools to excavate PCB-containing soil at the two campfire locations. Before beginning work, PSC and 4LEAF staff conducted a tailgate safety meeting to go over PSC's Health and Safety Plan and to remind on-site workers about potential physical and chemical hazards and dust suppression requirements. The excavation was completed using hand-held tools, in accordance with the TCRA Memorandum (Tetra Tech 2008). Dust emissions were minimized during the excavation by spraying water from a jug with a hand pump.

PSC began the work by excavating at Campfire Area I. Campfire Area I was excavated to depths between 1 and 1.5 feet below ground surface (bgs), where the soil was found to be free of ashes or other debris. All excavation spoils (approximately 1 cubic yard) were placed in a container.

PSC then began excavating Campfire Area II. The surficial ash was well defined; however, the surrounding soil was littered with debris. During the course of the excavation, glass bottles and metallic objects were unearthed (see Appendix A, photographs 6 through 10). As the excavation depth neared 2 feet bgs, 3 cubic yards of excavation spoils were generated. The maximum excavation volume limit of 4 cubic yards of soil was achieved and the excavation was halted. Visible debris remained at the excavation sidewalls.

Following the excavation activities, PSC transported the four, 1-cubic yard soil containers to the fenced hazardous waste accumulation area at Building 120 for temporary storage until the results for the bin contents' samples were received to characterize the material for off-site disposal. The container contents were sampled and profiled for waste characterization as discussed in Section 3.5.

DTSC staff performed a site visit on October 2, 2008 to observe the excavation sites. DTSC staff verbally approved the two sites to be backfilled with clean soils from the on-site Math Sciences Research Institute (MSRI) soil stockpile as outlined in Section 3.5.

3.3 CONFIRMATION SAMPLING

The excavations were completed to meet the TCRA objective of removing soil with visible ash and debris, with an approximate maximum volume of 4 cubic yards. At the completion of the excavations, Tetra Tech staff collected five confirmation soil samples at the sidewalls and bottoms of the excavation areas (see Figure 2). Four samples were collected from Campfire Area I and one sample was collected from the bottom of Campfire Area II. These soil samples were delivered to a state-certified laboratory for analysis of PCBs and metals. The soil confirmation sample results are summarized in the table below, and the complete laboratory analytical results are provided in Appendix B.

Confirmation samples were collected from the sidewalls and bottom of the excavations by scraping a few centimeters of soil away from the surface at each soil sample location prior to collecting the samples. The underlying soil was then scraped with a decontaminated spoon and placed into a clean 8-ounce wide-mouth glass jar provided by the analytical laboratory. All sample locations were demarcated by placing a survey flag marked with each sample number. The soil confirmation sample locations were later surveyed by a licensed land surveyor from Muir Consulting, Inc. to document the exact sample locations (see Figure 2).

Total PCB Confirmation Sampling Results

Sample Id	Sample Location	PCB Concentration (mg/kg)	
RFS-WTAA-001-CONF01	Campfire Area I, bottom	2.80	
RFS-WTAA-001-CONF02	Campfire Area I, sidewall	2.07	
RFS-WTAA-001-CONF03	Campfire Area I, sidewall	4.30	
RFS-WTAA-001-CONF04	Campfire Area I, sidewall	6.24	
RFS-WTAA-002-CONF05	Campfire Area II, bottom	0.89	

On October 2, 2008, the campus Office of Environment, Health and Safety requested radiological sampling assistance from Jim Reese of ERS Solutions. Mr. Reese completed a radiation meter survey using a Geiger Muller detector, collected swipes of debris for analysis using a liquid scintillation counter, and soil samples for analysis by gamma spectroscopy. No radiation or radioactive materials in excess of background were found.

3.4 BACKFILLING

The two campfire area excavations were backfilled using clean materials from the MSRI soil stockpile, which was generated from grading conducted during the construction of the new MSRI on the UC Berkeley Central Campus. The MSRI soil stockpile was sampled in June 2006 using the guidelines set forth in the DTSC fact sheet, "Information Advisory, Clean Imported Fill Material" (DTSC 2001). An additional composite soil sample was collected by Tetra Tech from the MSRI stockpile on October 4, 2007, for analysis of polyaromatic hydrocarbons (PAH) by EPA 8270C SIM Method in order to obtain lower detection limits than were achieved for the June 2006 sample. DTSC reviewed the stockpile soil sample results and approved the use of the MSRI stockpile as clean backfill for the TCRA excavation (see Appendix C). At the request of DTSC, each of the excavations were first lined with clear 6 mil plastic to demarcate the extent of each excavation and then backfilled with the MSRI soil by RFS staff on October 23, 2008.

3.5 Waste Characterization

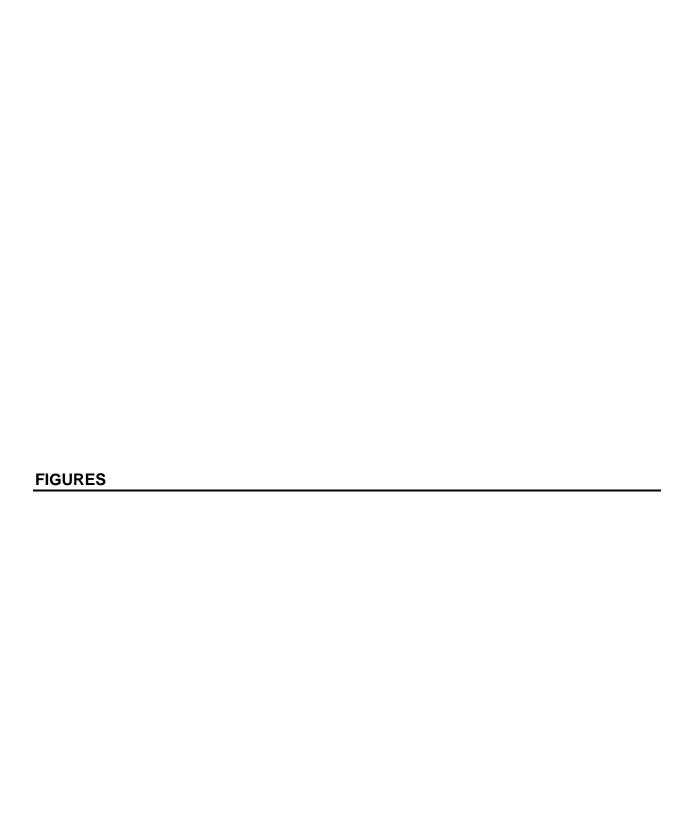
The soil and materials excavated during the TCRA activities were separated into four During the excavation activities, three multi-incremental samples for waste characterization were collected by Tetra Tech staff: one sample from the soil excavated from Campfire Area I, and two samples from the soil excavated from Campfire Area II. Each multi-incremental sample was made up of 50 discrete soil samples collected per the multi-incremental/decision unit sampling method (Hawaii State Department of Health 2008). The soil was sampled incrementally during the excavation process, using a disposable scoop to take material from the shovels prior to the excavated soil being placed in the four containers. The 50 incremental samples were then combined in a decontaminated stainless steel bowl and the composite sample was collected and placed in a clean 8-ounce jar. The samples were submitted to Curtis & Tompkins, a statecertified laboratory, for analysis of metals, semivolatile organic compounds, pesticides, PCBs, and TPH. In addition, one discrete waste characterization sample, RFS-WTAA-002-WASTE02, was analyzed for volatile organic compounds (VOC) and purgeable total petroleum hydrocarbons (TPH), and was taken from one of the three containers with soil from Campfire Area II.

The sample analysis results were compared with hazardous and nonhazardous waste disposal criteria and presented to the landfill (See Appendix D). The one container with soil from Area I was profiled as TSCA waste due to the PCB concentration (80.4 mg/kg) found in the January 2008 site investigation sample. The three soil bins from Area II

were profiled as Class I RCRA-hazardous waste due to concentrations of lead, mercury, silver, heptachlor and chlordane.

3.6 WASTE DISPOSAL

On December 15, 2008, the four bins containing soil were manifested under the approved waste profile and transported off site by 21st Century Environmental Management of Nevada, LLC to the Burlington Environmental, LLC Kent Facility in Kent, Washington. Appendix E provides the approved waste profile and waste manifests.

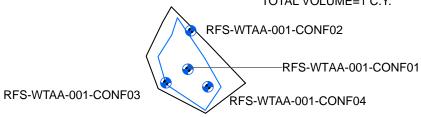

4.0 SUMMARY

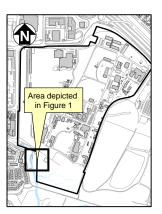
The TCRA was successfully completed under the DTSC Site Investigation and Remediation Order, Docket No. ISE-RAO 06/07-004, dated September 15, 2006. This removal action was consistent with Ca-HSC § 25356.1 and CERCLA § 104(a). All wastes generated during excavation activities were profiled as hazardous waste and were manifested and transported off site for disposal to the Burlington Environmental, LLC Kent Facility in Kent, Washington for disposal at Class I landfills.

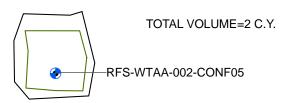
On October 23, 2008, RFS maintenance staff lined the excavation areas with clear 6 mil plastic and backfilled the TCRA excavation areas using the clean, DTSC-approved MSRI soil that was stockpiled on site.

5.0 REFERENCES

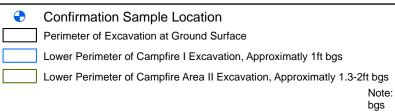
- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2001. "Information Advisory, Clean Imported Fill Material."
- Hawaii State Department of Health. 2008. "Technical Guidance Manual for the Implementation of the Hawaii State Contingency Plan: Section 4, Soil Sample Collection Approaches." October 22.
- Tetra Tech EM Inc. (Tetra Tech) 2008. "Memorandum for a Time-Critical Removal Action at Two Campfire Locations in the Western Transition Area, University of California, Berkeley, Richmond Field Station, Richmond, California." July 11.






Campfire Area I

TOTAL VOLUME=1 C.Y.



Campfire Area II

TETRA TECH EM INC.

Richmond Field Station University of California, Berkeley FIGURE 2

TCRA EXCAVATION AND CONFIRMATION SAMPLE LOCATIONS

Implementation Summary Report for a Time-Critical Removal Action at Two Campfire Locations in the Western Transition Area

Reference:

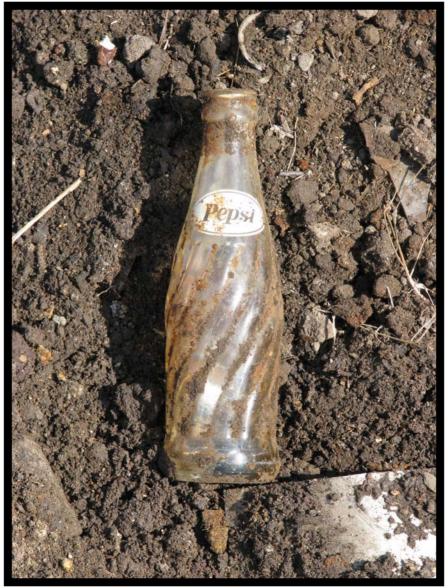
APPENDIX A TCRA EXCAVATION PHOTO LOG

Picture 1. Visually identifying the sites

Picture 2. Wetting the site

Picture 3. Hand excavation of Campfire Area I

Picture 4. Excavation of Campfire Area I


Picture 5. Excavation of Campfire Area II

Picture 6. Debris in Campfire Area II

Picture 7. Campfire Area II

Picture 8. Debris from Campfire Area II

Picture 9. Debris from Campfire Area II

Picture 10. Debris from Campfire Area II

Picture 11. Extent of excavation, Campfire Area II

Picture 12. Loading excavated material onto truck

Picture 13. Confirmation sampling in Campfire Area I

Picture 14. Confirmation sampling in Campfire Area II

APPENDIX B
CONFIRMATION SAMPLING RESULTS

201200

TE Tetra Tech EM Inc. San Francisco Office

Chain of Custody Record No. 6687

Preservative Added

	V × 0 V	Vo./Container Types Analysis Required		GCBs)	200 1 1146
	Lab:	C + 1	Field samplers: Carolyn Felic	Field samplers' signatures:	
	Lab PO#:		TrEMI technical contact: Sava Wolley	THEMI project manager: [] AS EN Bradled SON	Sample Location (Pt. ID)
135 Main St. Suite 1800	San Francisco. CA 94105	415-543-4880 Fax 415-543-5480	Project name: Campfire TCRA	Project (CTO) number: 163DS1515019	Sample ID

S

95:01 30/1/01

Sample Location (Pt. ID)

Sample ID

11:01

RFS-WTAA-001-CONFO2 RFS-WTAA-GOI-CONFOI

11: 25 X XX			
Company Name			Time
Company Name			Date
11:25	+7		Company Name
	11:07		Nome (print)

		. 1		
	Name (nrint)	Company Name	Date	IIIIc
	Tame (prime)		11/06	ノイ・マ
	してるが、それである	TEM	10/11/00 14:12	î.5
Relinquished by: (MA)				
Received by:	2) AH 47 W			
Relinquished by:				
Received by:				
Relinquished by:				
Received by:				

Fed Ex #:

Turnaround time/remarks:

Mutalls-CAMIT M 12010

5-day TAT

STAN TO STAN T

Polychlorinated Biphenyls (PCBs)							
Lab #:	206500	Location:	Campfire TCRA				
Client:	Tetra Tech EMI	Prep:	EPA 3550B				
Project#:	103DS1518019	Analysis:	EPA 8082				
Field ID:	RFS-WTAA-001-CONF01	Batch#:	143159				
Lab ID:	206500-001	Sampled:	10/01/08				
Matrix:	Soil	Received:	10/01/08				
Units:	ug/Kg	Prepared:	10/01/08				
Basis:	dry	Analyzed:	10/03/08				
Diln Fac:	10.00						

Moisture: 11% Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	74	
Aroclor-1221	ND	150	
Aroclor-1232	ND	74	
Aroclor-1242	ND	74	
Aroclor-1248	2,100	74	
Aroclor-1254	560	74	
Aroclor-1260	140	74	

Surrogate	%REC	Limits
TCMX	DO	68-139
Decachlorobiphenyl	DO	52-147

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 1

13.0

Polychlorinated Biphenyls (PCBs)							
Lab #:	206500	Location:	Campfire TCRA				
Client:	Tetra Tech EMI	Prep:	EPA 3550B				
Project#:	103DS1518019	Analysis:	EPA 8082				
Field ID:	RFS-WTAA-001-CONF02	Batch#:	143159				
Lab ID:	206500-002	Sampled:	10/01/08				
Matrix:	Soil	Received:	10/01/08				
Units:	ug/Kg	Prepared:	10/01/08				
Basis:	dry	Analyzed:	10/03/08				
Diln Fac:	10.00						

Moisture: 7% Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	72	
Aroclor-1221	ND	140	
Aroclor-1232	ND	72	
Aroclor-1242	ND	72	
Aroclor-1248	1,300	72	
Aroclor-1254	670	72	
Aroclor-1260	100	72	

Surrogate	%REC	Limits
TCMX	DO	68-139
Decachlorobiphenyl	DO	52-147

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Polychlorinated Biphenyls (PCBs)							
Lab #:	206500	Location:	Campfire TCRA				
Client:	Tetra Tech EMI	Prep:	EPA 3550B				
Project#:	103DS1518019	Analysis:	EPA 8082				
Field ID:	RFS-WTAA-001-CONF03	Batch#:	143159				
Lab ID:	206500-003	Sampled:	10/01/08				
Matrix:	Soil	Received:	10/01/08				
Units:	ug/Kg	Prepared:	10/01/08				
Basis:	dry	Analyzed:	10/03/08				
Diln Fac:	15.00						

Moisture: 11% Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	110	
Aroclor-1221	ND	220	
Aroclor-1232	ND	110	
Aroclor-1242	ND	110	
Aroclor-1248	3,600	110	
Aroclor-1254	1,500	110	
Aroclor-1260	200	110	

Surrogate	%REC	Limits
TCMX	DO	68-139
Decachlorobiphenyl	DO	52-147

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 1 14.0

Polychlorinated Biphenyls (PCBs)					
Lab #:	206500	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	EPA 3550B		
Project#:	103DS1518019	Analysis:	EPA 8082		
Field ID:	RFS-WTAA-001-CONF04	Batch#:	143159		
Lab ID:	206500-004	Sampled:	10/01/08		
Matrix:	Soil	Received:	10/01/08		
Units:	ug/Kg	Prepared:	10/01/08		
Basis:	dry	Analyzed:	10/03/08		
Diln Fac:	15.00				

Moisture: 8% Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	110	
Aroclor-1221	ND	220	
Aroclor-1232	ND	110	
Aroclor-1242	ND	110	
Aroclor-1248	4,600	110	
Aroclor-1254	1,400	110	
Aroclor-1260	240	110	

Surrogate	%REC	Limits
TCMX	DO	68-139
Decachlorobiphenyl	DO	52-147

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Polychlorinated	Biphenyls (PC	Bs)
Lab #:	206500	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Field ID:	RFS-WTAA-002-CONF05	Batch#:	143159
Lab ID:	206500-005	Sampled:	10/01/08
Matrix:	Soil	Received:	10/01/08
Units:	ug/Kg	Prepared:	10/01/08
Basis:	dry	Analyzed:	10/03/08
Diln Fac:	1.000		

Moisture: 23% Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	16	
Aroclor-1221	ND	31	
Aroclor-1232	ND	16	
Aroclor-1242	ND	16	
Aroclor-1248	45	16	
Aroclor-1254	27	16	
Aroclor-1260	17	16	

Surrogate	%REC	Limits
TCMX	104	68-139
Decachlorobiphenyl	87	52-147

	Polychlorinated	Biphenyls	(PCBs)
Lab #:	206500	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC463134	Batch#:	143159
Matrix:	Soil	Prepared:	10/01/08
Units:	ug/Kg	Analyzed:	10/02/08
Basis:	as received		

Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	12	
Aroclor-1221	ND	24	
Aroclor-1232	ND	12	
Aroclor-1242	ND	12	
Aroclor-1248	ND	12	
Aroclor-1254	ND	12	
Aroclor-1260	ND	12	

Surrogate	%REC	Limits
TCMX	96	68-139
Decachlorobiphenyl	115	52-147

	Polychlorinated	Biphenyls (P	CBs)
Lab #:	206500	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC463135	Batch#:	143159
Matrix:	Soil	Prepared:	10/01/08
Units:	ug/Kg	Analyzed:	10/02/08
Basis:	as received		

Cleanup Method: EPA 3665A

Analyte	Spiked	Result	%REC	Limits
Aroclor-1016	166.5	189.4	114	73-139
Aroclor-1260	166.5	196.2	118	76-143

Surrogate	%REC	Limits
TCMX	125	68-139
Decachlorobiphenyl	143	52-147

	Polychlorinated	Biphenyls (PC	CBs)
Lab #:	206500	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Field ID:	ZZZZZZZZZZ	Batch#:	143159
MSS Lab ID:	206503-004	Sampled:	09/25/08
Matrix:	Soil	Received:	09/25/08
Units:	ug/Kg	Prepared:	10/01/08
Basis:	dry	Analyzed:	10/02/08
Diln Fac:	1.000		

Type: MS Moisture: 4%

Lab ID: QC463136 Cleanup Method: EPA 3665A

Analyte	MSS Result	Spiked	Result	%REC	Limits
Aroclor-1016	<1.994	173.4	169.2	98	66-146
Aroclor-1260	4.067	173.4	161.9	91	52-142

Surrogate	%REC	Limits
TCMX	105	68-139
Decachlorobiphenyl	104	52-147

Type: MSD Moisture: 4%

Lab ID: QC463137 Cleanup Method: EPA 3665A

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Aroclor-1016	173.0	155.6	90	66-146	8	28
Aroclor-1260	173.0	152.2	86	52-142	6	28

Surrogate	%REC	Limits	
TCMX	101	68-139	
Decachlorobiphenyl	102	52-147	

California Title 22 Metals									
Lab #:	206500	Project#:	103DS1518019						
Client:	Tetra Tech EMI	Location:	Campfire TCRA						
Field ID:	RFS-WTAA-002-CONF05	Basis:	dry						
Lab ID:	206500-005	Sampled:	10/01/08						
Matrix:	Soil	Received:	10/01/08						
Units:	mg/Kg								

Moisture: 23%

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	5.9	0.65	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Arsenic	47	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Barium	290	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Beryllium	0.29	0.13	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Cadmium	9.4	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Chromium	87	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Cobalt	14	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Copper	820	6.4	20.00	143168	10/01/08	10/05/08	EPA 3050B	EPA 6010B
Lead	390	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Mercury	23	0.50	20.00	143223	10/03/08	10/03/08	METHOD	EPA 7471A
Molybdenum	32	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Nickel	62	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Selenium	0.58 J	0.65	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Silver	23	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Thallium	ND	0.65	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Vanadium	35	0.32	1.000	143168	10/01/08	10/04/08	EPA 3050B	EPA 6010B
Zinc	2,900	26	20.00	143168	10/01/08	10/05/08	EPA 3050B	EPA 6010B

J= Estimated value

ND= Not Detected

RL= Reporting Limit

	Califo	rnia Title 22 Meta	ıls	
Lab #:	206500	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3050B	
Project#:	103DS1518019	Analysis:	EPA 6010B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC463175	Batch#:	143168	
Matrix:	Soil	Prepared:	10/01/08	
Units:	mg/Kg	Analyzed:	10/04/08	
Basis:	as received	_		

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.25	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

California Title 22 Metals								
Lab #: Client: Project#:	206500 Tetra Tech EMI 103DS1518019	Location: Prep: Analysis:	Campfire TCRA EPA 3050B EPA 6010B					
Matrix: Units: Basis: Diln Fac:	Soil mg/Kg as received 1.000	Batch#: Prepared: Analyzed:	143168 10/01/08 10/04/08					

Type: BS Lab ID: QC463176

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	91.01	91	80-120
Arsenic	50.00	45.82	92	80-120
Barium	100.0	88.66	89	80-120
Beryllium	2.500	2.299	92	80-120
Cadmium	10.00	9.034	90	80-120
Chromium	100.0	88.26	88	80-120
Cobalt	25.00	21.39	86	80-120
Copper	12.50	10.67	85	80-120
Lead	100.0	92.48	92	80-120
Molybdenum	20.00	18.66	93	80-120
Nickel	25.00	21.44	86	80-120
Selenium	50.00	45.33	91	80-120
Silver	10.00	8.905	89	80-120
Thallium	50.00	45.46	91	80-120
Vanadium	25.00	22.16	89	80-120
Zinc	25.00	22.01	88	80-120

Type: BSD Lab ID: QC463177

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	94.99	95	80-120	4	20
Arsenic	50.00	47.72	95	80-120	4	20
Barium	100.0	93.05	93	80-120	5	20
Beryllium	2.500	2.415	97	80-120	5	20
Cadmium	10.00	9.380	94	80-120	4	20
Chromium	100.0	92.41	92	80-120	5	20
Cobalt	25.00	22.28	89	80-120	4	20
Copper	12.50	11.21	90	80-120	5	20
Lead	100.0	97.17	97	80-120	5	20
Molybdenum	20.00	19.48	97	80-120	4	20
Nickel	25.00	22.40	90	80-120	4	20
Selenium	50.00	46.62	93	80-120	3	20
Silver	10.00	9.258	93	80-120	4	20
Thallium	50.00	47.06	94	80-120	3	20
Vanadium	25.00	23.23	93	80-120	5	20
Zinc	25.00	22.98	92	80-120	4	20

	California Title 22 Metals									
Lab #:	206500	Location:	Campfire TCRA							
Client:	Tetra Tech EMI	Prep:	EPA 3050B							
Project#:	103DS1518019	Analysis:	EPA 6010B							
Field ID:	RFS-WTAA-002-CONF05	Batch#:	143168							
MSS Lab ID:	206500-005	Sampled:	10/01/08							
Matrix:	Soil	Received:	10/01/08							
Units:	mg/Kg	Prepared:	10/01/08							
Basis:	dry									

Moisture: 23%

Type: Lab ID: QC463178

Analyte	MSS Result	Spiked	Result	%REC	Limits Diln Fac	Analyzed
Antimony	5.899	124.9	62.71	45	3-120 1.000	10/04/08
Arsenic	47.34	62.44	104.8	92	67-120 1.000	10/04/08
Barium	290.2	124.9	402.9	90	46-136 1.000	10/04/08
Beryllium	0.2887	3.122	3.139	91	75-120 1.000	10/04/08
Cadmium	9.448	12.49	16.03	53 *	65-120 1.000	10/04/08
Chromium	87.47	124.9	145.3	46 *	59-120 1.000	10/04/08
Cobalt	13.84	31.22	38.42	79	56-120 1.000	10/04/08
Copper	823.6	15.61	633.1	-1221 NM	39-151 20.00	10/05/08
Lead	387.6	124.9	602.4	172 *	50-123 1.000	10/04/08
Molybdenum	32.27	24.98	24.82	-30 *	63-120 1.000	10/04/08
Nickel	61.77	31.22	79.12	56	42-139 1.000	10/04/08
Selenium	0.5818	62.44	54.85	87	62-120 1.000	10/04/08
Silver	23.40	12.49	24.23	7 *	65-120 1.000	10/04/08
Thallium	<0.1394	62.44	49.33	79	58-120 1.000	10/04/08
Vanadium	34.81	31.22	62.94	90	46-141 1.000	10/04/08
Zinc	2,855	31.22	1,442	-4528 NM	30-152 20.00	10/05/08

Type: Lab ID: MSD QC463179 Moisture: 23%

Analyte	Spiked	Result	%REC	Limits RPD	Lim	Diln Fac	Analyzed
Antimony	117.0	58.65	45	3-120 0	30	1.000	10/04/08
Arsenic	58.50	109.5	106	67-120 8	20	1.000	10/04/08
Barium	117.0	483.0	165 *	46-136 20	28	1.000	10/04/08
Beryllium	2.925	2.854	88	75-120 4	23	1.000	10/04/08
Cadmium	11.70	15.80	54 *	65-120 2	20	1.000	10/04/08
Chromium	117.0	133.6	39 *	59-120 5	23	1.000	10/04/08
Cobalt	29.25	36.07	76	56-120 2	25	1.000	10/04/08
Copper	14.63	647.4	-1205 NM	39-151 2	27	20.00	10/05/08
Lead	117.0	487.0	85	50-123 20	30	1.000	10/04/08
Molybdenum	23.40	23.25	-39 *	63-120 4	20	1.000	10/04/08
Nickel	29.25	80.19	63	42-139 3	29	1.000	10/04/08
Selenium	58.50	49.49	84	62-120 4	20	1.000	10/04/08
Silver	11.70	25.67	19 *	65-120 8	20	1.000	10/04/08
Thallium	58.50	43.34	74	58-120 6	20	1.000	10/04/08
Vanadium	29.25	60.23	87	46-141 1	21	1.000	10/04/08
Zinc	29.25	1,574	-4379 NM	30-152 9	33	20.00	10/05/08

^{*=} Value outside of QC limits; see narrative NM= Not Meaningful: Sample concentration > 4X spike concentration RPD= Relative Percent Difference

	California Title 22 Metals								
Lab #:	206500	Location:	Campfire TCRA						
Client:	Tetra Tech EMI	Prep:	EPA 3050B						
Project#:	103DS1518019	Analysis:	EPA 6010B						
Field ID:	RFS-WTAA-002-CONF05	Units:	mg/Kg						
Type:	Serial Dilution	Basis:	dry						
MSS Lab ID:	206500-005	Batch#:	143168						
Lab ID:	QC463180	Sampled:	10/01/08						
Matrix:	Soil	Received:	10/01/08						

Moisture: 23%

Analyte	MSS Result	MSS RL	Result	RL	% Diff	Lim	Diln Fac	Analyzed
Antimony	5.899	0.6494	5.175	2.978	NC	10	5.000	10/04/08
Arsenic	47.34	0.3247	47.14	1.607	0	10	5.000	10/04/08
Barium	290.2	0.3247	293.1	1.607	1	10	5.000	10/04/08
Beryllium	0.2887	0.1299	0.2677 J	0.6429	NC	10	5.000	10/04/08
Cadmium	9.448	0.3247	9.579	1.607	1	10	5.000	10/04/08
Chromium	87.47	0.3247	88.42	1.607	1	10	5.000	10/04/08
Cobalt	13.84	0.3247	14.81	1.607	7	10	5.000	10/04/08
Copper	823.6	6.429	833.6	32.15	1	10	100.0	10/05/08
Lead	387.6	0.3247	391.7	1.077	1	10	5.000	10/04/08
Molybdenum	32.27	0.3247	31.21	1.607	3	10	5.000	10/04/08
Nickel	61.77	0.3247	62.98	1.607	2	10	5.000	10/04/08
Selenium	0.5818	0.6494	1.831 J	1.943	NC	10	5.000	10/04/08
Silver	23.40	0.3247	22.00	1.607	6	10	5.000	10/04/08
Thallium	ND	0.6494	ND	2.090	NC	10	5.000	10/04/08
Vanadium	34.81	0.3247	34.31	1.607	1	10	5.000	10/04/08
Zinc	2,855	25.72	2,929	128.6	3	10	100.0	10/05/08

J= Estimated value

NC= Not Calculated

ND= Not Detected

RL= Reporting Limit

	California Title 22 Metals								
Lab #:	206500	Location:	Campfire TCRA						
Client:	Tetra Tech EMI	Prep:	EPA 3050B						
Project#:	103DS1518019	Analysis:	EPA 6010B						
Field ID:	RFS-WTAA-002-CONF05	Units:	mg/Kg						
Type:	Post Digest Spike	Basis:	dry						
MSS Lab ID:	206500-005	Batch#:	143168						
Lab ID:	QC463181	Sampled:	10/01/08						
Matrix:	Soil	Received:	10/01/08						

Moisture: 23%

Analyte	MSS Result	Spiked	Result	%REC	Limits Diln Fac	Analyzed
Antimony	5.899	128.6	119.1	88	75-125 1.000	10/04/08
Arsenic	47.34	64.29	103.1	87	75-125 1.000	10/04/08
Barium	290.2	128.6	396.4	83	75-125 1.000	10/04/08
Beryllium	0.2887	3.215	3.162	89	75-125 1.000	10/04/08
Cadmium	9.448	12.86	20.21	84	75-125 1.000	10/04/08
Chromium	87.47	128.6	196.6	85	75-125 1.000	10/04/08
Cobalt	13.84	32.15	39.57	80	75-125 1.000	10/04/08
Copper	823.6	321.5	1,253	134 *	75-125 20.00	10/05/08
Lead	387.6	128.6	483.2	74 *	75-125 1.000	10/04/08
Molybdenum	32.27	25.72	55.09	89	75-125 1.000	10/04/08
Nickel	61.77	32.15	86.77	78	75-125 1.000	10/04/08
Selenium	0.5818	64.29	59.61	92	75-125 1.000	10/04/08
Silver	23.40	12.86	34.70	88	75-125 1.000	10/04/08
Thallium	<0.1394	64.29	49.66	77	75-125 1.000	10/04/08
Vanadium	34.81	32.15	62.91	87	75-125 1.000	10/04/08
Zinc	2,855	642.9	3,774	143 NM	75-125 20.00	10/05/08

^{*=} Value outside of QC limits; see narrative NM= Not Meaningful: Sample concentration > 4X spike concentration Page 1 of 1 $\,$

	Califo	rnia Title 22 Meta	ıls	
Lab #:	206500	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	METHOD	
Project#:	103DS1518019	Analysis:	EPA 7471A	
Analyte:	Mercury	Basis:	as received	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC463413	Batch#:	143223	
Matrix:	Soil	Prepared:	10/03/08	
Units:	mg/Kg	Analyzed:	10/03/08	

Result	RL	
ND	0.020	

	Califor	rnia Title 22 Meta	als	
Lab #:	206500	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	METHOD	
Project#:	103DS1518019	Analysis:	EPA 7471A	
Analyte:	Mercury	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	143223	
Units:	mg/Kg	Prepared:	10/03/08	
Basis:	as received	Analyzed:	10/03/08	

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC463414	0.5000	0.4980	100	80-120		
BSD	QC463415	0.5000	0.4920	98	80-120	1	20

	Califor	rnia Title 22 Meta	ls	
Lab #:	206500	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	METHOD	
Project#:	103DS1518019	Analysis:	EPA 7471A	
Analyte:	Mercury	Basis:	dry	
Field ID:	ZZZZZZZZZ	Diln Fac:	5.000	
Type:	Serial Dilution	Batch#:	143223	
MSS Lab ID:	206482-001	Sampled:	09/29/08	
Lab ID:	QC463416	Received:	10/01/08	
Matrix:	Soil	Analyzed:	10/03/08	
Units:	mg/Kg			

MSS Result	MSS RL	Result	RL	Moist	ıre % Dif	Ef Lim
0.02623	0.02418	ND	0.1209	12%	NC	10

RL= Reporting Limit

	California Title 22 Metals									
Lab #:	206500	Location:	Campfire TCRA							
Client:	Tetra Tech EMI	Prep:	METHOD							
Project#:	103DS1518019	Analysis:	EPA 7471A							
Analyte:	Mercury	Diln Fac:	1.000							
Field ID:	ZZZZZZZZZ	Batch#:	143223							
MSS Lab ID:	206482-001	Sampled:	09/29/08							
Matrix:	Soil	Received:	10/01/08							
Units:	mg/Kg	Prepared:	10/03/08							
Basis:	dry	Analyzed:	10/03/08							

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	Moisture	RPD	Lim
MS	QC463417	0.02623	0.5570	0.5816	100	66-138	12%		
MSD	QC463418		0.5261	0.5892	107	66-138	12%	7	24

APPENDIX C
DEPARTMENT OF TOXIC SUBSTANCES CONTROL APPROVAL OF MATH
SCIENCES RESEARCH INSTITUTE STOCKPILE

Department of Toxic Substances Control

Maureen F. Gorsen, Director 700 Heinz Avenue Berkeley, California 94710-2721

October 23, 2007

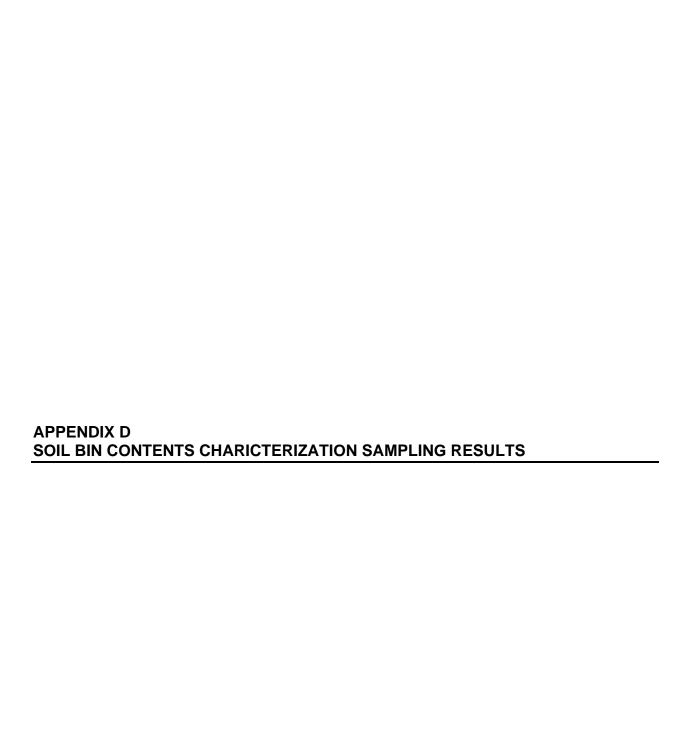
RECEIVED OCT 3 1 2007

Mr. Grea Haet Associate Director, Environmental Protection Office of Environment, Health & Safety University of California, Berkeley 317 University Hall #1150 Berkeley, California 94720-1150

Dear Mr. Haet,

The Department of Toxic Substances Control (DTSC) received via electronic mail on October 22, 2007 tables indicating the analytical results of the Mathematical Sciences Research Institute (MSRI) soil stockpile. The University of California has requested that this stockpile be allowed for backfilling the excavation associated with the former Forest Products Laboratory Wood Treatment Laboratory area Time Critical Removal Action. The MSRI soil stockpile was obtained from the main University of California Berkeley campus as part of a building construction project. DTSC has reviewed the tables and finds that the MSRI soil is acceptable as backfill material in the excavated area.

If you have any questions regarding this letter, please contact Lynn Nakashima of my staff at (510) 540-3839.


Sincerely,

Barbara J. Cook, P.E., Chief

Soulary Coll

Northern California – Coastal Cleanup

Operations Branch

206501

TE Tetra Tech EM Inc. San Francisco Office

Chain of Custody Record No. 6688

Page _____ of ___

				•								Pres	serva	tive A	Preservative Added			
135 Main St. Suite 1800					ſ													
San Francisco. CA 94105	Lab PO#:	Lab:														MOMP	يو	
415-543-4880			1-1-0		7	5	1	1	9			Analysis Bannirad	313/1	Deg		-		T
Fax 415-543-5480		<u>.</u> (- K			3	III	No./Container Types	hes	[`		7 213			ا د	-	
Project name:	TtEMI technical contact:	Field samplers:	:s															
Campfine That	Sava Wooley	(RU2	12 mg/	Parolyn Ferlic				.20										
Project (CTO) number:	TtEMI project manager:	Field samplers' signatures:	; signatures:	<u> </u>		ı		2										
[05DS1516019	Jason Brodenson	Cons	Consign J. Ferlie		VOA SW/S	y Poly		lpv.			SCE)	Purges Extrac						
Sample ID	Sample Location (Pt. ID)	Date	Time	Matrix	Im O4		Sleeve	Glass		VOAS VOA	Pest Rieta	HAT						
RES-WTRA-001-WASEU	-	90/10/01	10:00	1500	-		-	7		メ	*	7	,					
R#S-WTAA- 002-WASTED			00:01							メ	•	7						
3 Kts-wint-all-WASTER	4		1:40							×	イイズ	X					-	T
					-													
					+	t	F	ļ		-		-		F				Г

	Name (print)	Company Name	Date	Time
Relinquished by: Parallel	DYPASHA NATURAN	TENS	30/10/01	14:22
Received by:	/ pry labor	747	10/1/08	14:22
Relinquished by:	8			
Received by:				
Relinquished by:				
Received by:				

Turnaround time/remarks

Metals-CAMIT by 6010 pur both PRST AND 7CB

Standond TAT

20 mm

	Total Vola	tile Hydrocarbo	ons	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8015B	
Field ID:	RFS-WTAA-002-WASTE02	Diln Fac:	1.000	
Lab ID:	206501-002	Batch#:	143242	
Matrix:	Soil	Sampled:	10/01/08	
Units:	mg/Kg	Received:	10/01/08	
Basis:	dry	Analyzed:	10/04/08	

Moisture: 18%

Analyte	Result	RL	
Gasoline C7-C12	ND	1.2	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	97	55-151
Bromofluorobenzene (FID)	100	55-153

.....

	Total Vo	olatile Hydrocarbo	ons	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8015B	
Type:	BLANK	Basis:	as received	
Lab ID:	QC463492	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	143242	
Units:	mg/Kg	Analyzed:	10/03/08	

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	102	55-151
Bromofluorobenzene (FID)	98	55-153

	Total Vo	olatile Hydrocarbo	ons	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8015B	
Type:	LCS	Basis:	as received	
Lab ID:	QC463493	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	143242	
Units:	mg/Kg	Analyzed:	10/03/08	

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	4.396	88	78-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	127	55-151
Bromofluorobenzene (FID)	107	55-153

Page 1 of 1 8.0

	Total V	olatile Hydrocarbo	ns	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8015B	
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000	
MSS Lab ID:	206562-006	Batch#:	143242	
Matrix:	Soil	Sampled:	10/01/08	
Units:	mg/Kg	Received:	10/02/08	
Basis:	as received	Analyzed:	10/03/08	

Type: MS Lab ID: QC463496

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.09784	9.259	8.312	89	29-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	155 *	55-151	
Bromofluorobenzene (FID)	120	55-153	

Type: MSD Lab ID: QC463497

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.99	9.866	89	29-120	0	34

Surrogate	%REC	Limits
Trifluorotoluene (FID)	149	55-151
Bromofluorobenzene (FID)	122	55-153

Page 1 of 1 9.0

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

	Total Extractable Hydrocarbons						
Lab #:	206501	Location:	Campfire TCRA				
Client:	Tetra Tech EMI	Prep:	SHAKER TABLE				
Project#:	103DS1518019	Analysis:	EPA 8015B				
Field ID:	RFS-WTAA-002-WASTE01	Batch#:	143582				
Lab ID:	206501-001	Sampled:	10/01/08				
Matrix:	Soil	Received:	10/01/08				
Units:	mg/Kg	Prepared:	10/13/08				
Basis:	dry	Analyzed:	10/14/08				
Diln Fac:	3.000						

Moisture: 19%

Analyte	Result	RL	
Diesel C10-C24	470 Y	3.7	
Motor Oil C24-C36	290	18	

Surrogate	%REC	Limits	
Hexacosane	99	46-130	

Page 1 of 1 28.0

	Total Extractable Hydrocarbons						
Lab #:	206501	Location:	Campfire TCRA				
Client:	Tetra Tech EMI	Prep:	SHAKER TABLE				
Project#:	103DS1518019	Analysis:	EPA 8015B				
Field ID:	RFS-WTAA-001-WASTE04	Batch#:	143582				
Lab ID:	206501-003	Sampled:	10/01/08				
Matrix:	Soil	Received:	10/01/08				
Units:	mg/Kg	Prepared:	10/13/08				
Basis:	dry	Analyzed:	10/14/08				
Diln Fac:	5.000						

Moisture: 11%

Analyte	Result	RL	
Diesel C10-C24	76 Y	5.6	
Motor Oil C24-C36	460	28	

Surrogate	%REC	Limits	
Hexacosane	104	46-130	

Page 1 of 1 29.0

Total Extractable Hydrocarbons						
Lab #:	206501	Location:	Campfire TCRA			
Client:	Tetra Tech EMI	Prep:	SHAKER TABLE			
Project#:	103DS1518019	Analysis:	EPA 8015B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC464915	Batch#:	143582			
Matrix:	Soil	Prepared:	10/13/08			
Units:	mg/Kg	Analyzed:	10/13/08			
Basis:	as received					

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
Hexacosane	94	46-130

-9-

Total Extractable Hydrocarbons					
Lab #:	206501	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	SHAKER TABLE		
Project#:	103DS1518019	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC464916	Batch#:	143582		
Matrix:	Soil	Prepared:	10/13/08		
Units:	mg/Kg	Analyzed:	10/13/08		
Basis:	as received				

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.80	57.89	116	51-123

Surrogate	%REC	Limits
Hexacosane	116	46-130

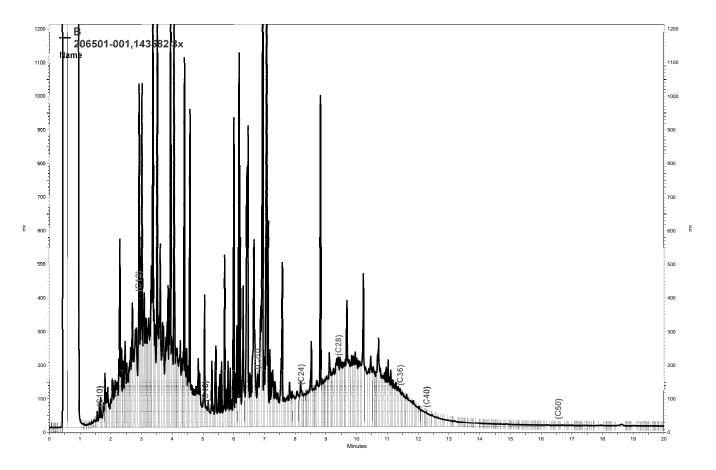
Page 1 of 1 31.0

	Total Extractable Hydrocarbons				
Lab #:	206501	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	SHAKER TABLE		
Project#:	103DS1518019	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000		
MSS Lab ID:	206585-003	Batch#:	143582		
Matrix:	Soil	Sampled:	10/02/08		
Units:	mg/Kg	Received:	10/03/08		
Basis:	as received	Prepared:	10/13/08		

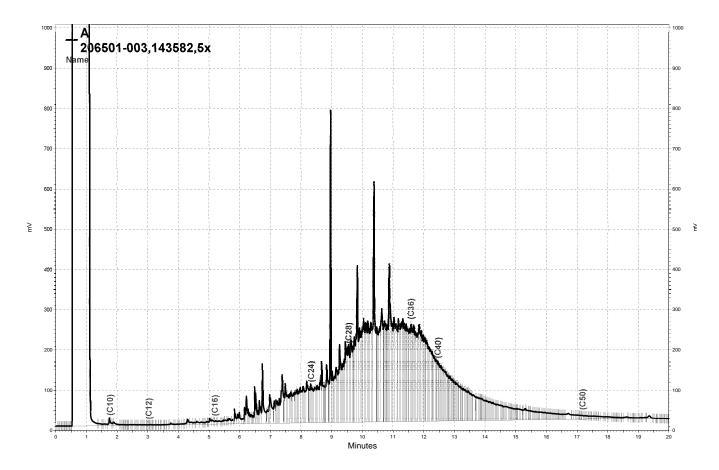
Type: MS Analyzed: 10/13/08

Lab ID: QC464917

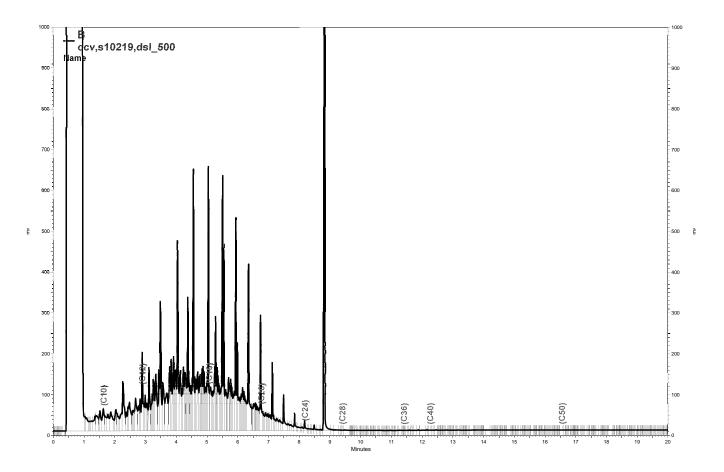
Analyte	MSS Result	Spiked	Result	%REC Limits
Diesel C10-C24	204.2	49.67	246.0	84 NM 38-140

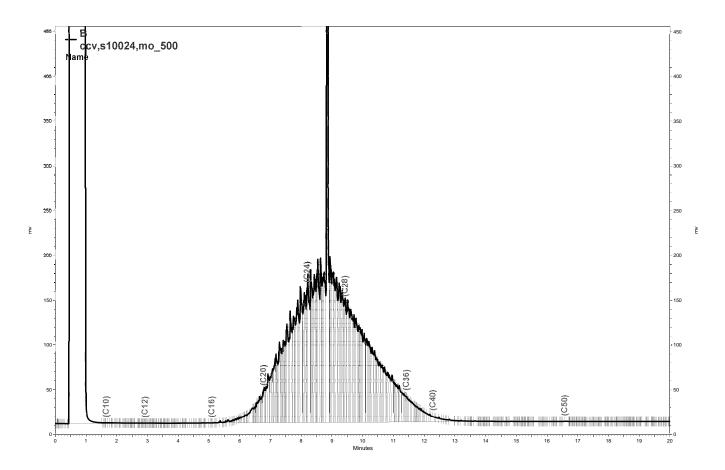

Surrogate	%REC	Limits
Hexacosane	105	46-130

Type: MSD Analyzed: 10/14/08


Lab ID: QC464918

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.77	245.2	82 NM	38-140	0	49


Surrogate	%REC	Limits
Hexacosane	103	46-130


\Lims\gdrive\ezchrom\Projects\GC15B\Data\287b036, B

\Lims\gdrive\ezchrom\Projects\GC17A\Data\287a011, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\287b005, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\287b004, B

	Purgeable	Organics by GC/	MS	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8260B	
Field ID:	RFS-WTAA-002-WASTE02	Diln Fac:	0.9107	
Lab ID:	206501-002	Batch#:	143174	
Matrix:	Soil	Sampled:	10/01/08	
Units:	ug/Kg	Received:	10/01/08	
Basis:	dry	Analyzed:	10/02/08	

Moisture: 18%

Analyte Result Freon 12 ND Chloromethane ND Vinyl Chloride ND Bromomethane ND	11 11 11 11	1.1 1.1
Chloromethane ND Vinyl Chloride ND Bromomethane ND	11 11 11	-
Vinyl Chloride ND Bromomethane ND	$ \begin{array}{c} \overline{11}\\ 11 \end{array} $	⊥. ⊥
Bromomethane ND	11	1 1
		1.1
		1.1
Chloroethane	11	1.1
Trichlorofluoromethane ND	5.6	1.1
Acetone ND	22	2.2
Freon 113 ND	5.6	1.1
1,1-Dichloroethene ND	5.6	1.1
Methylene Chloride 16 J	22	2.2
Carbon Disulfide ND	5.6	1.1
MTBE	5.6	1.1
trans-1,2-Dichloroethene ND	5.6	1.1
Vinyl Acetate ND	56	2.2
1,1-Dichloroethane ND	5.6	1.1
2-Butanone ND	11	2.2
cis-1,2-Dichloroethene ND	5.6	1.1
2,2-Dichloropropane ND	5.6	1.1
	5.6	
Chloroform ND		1.1
Bromochloromethane ND	5.6	1.1
1,1,1-Trichloroethane ND	5.6	1.1
1,1-Dichloropropene ND	5.6	1.1
Carbon Tetrachloride ND	5.6	1.1
1,2-Dichloroethane ND	5.6	1.1
Benzene ND	5.6	1.1
Trichloroethene ND	5.6	1.1
1,2-Dichloropropane ND	5.6	1.1
Bromodichloromethane ND	5.6	1.1
Dibromomethane	5.6	1.1
4-Methyl-2-Pentanone ND	11	2.2
cis-1,3-Dichloropropene ND	5.6	1.1
Toluene ND	5.6	1.1
trans-1,3-Dichloropropene ND	5.6	1.1
1,1,2-Trichloroethane	5.6	1.1
2-Hexanone ND	11	2.2
1,3-Dichloropropane ND	5.6	1.1
	5.6	1.1
Tetrachloroethene ND		
Dibromochloromethane ND	5.6	1.1
1,2-Dibromoethane ND	5.6	1.1
Chlorobenzene ND	5.6	1.1
1,1,1,2-Tetrachloroethane ND	5.6	1.1
Ethylbenzene ND	5.6	1.1
m,p-Xylenes ND	5.6	1.1
o-Xylene ND	5.6	1.1
Styrene ND	5.6	1.1
Bromoform ND	5.6	1.1
Isopropylbenzene ND	5.6	1.1
1,1,2,2-Tetrachloroethane ND	5.6	$\overline{1.1}$
1,2,3-Trichloropropane ND	5.6	1.1
Propylbenzene ND	5.6	1 1

J= Estimated value
ND= Not Detected
RL= Reporting Limit
MDL= Method Detection Limit

		Organics by GC/	MS	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8260B	
Field ID:	RFS-WTAA-002-WASTE02	Diln Fac:	0.9107	
Lab ID:	206501-002	Batch#:	143174	
Matrix:	Soil	Sampled:	10/01/08	
Units:	ug/Kg	Received:	10/01/08	
Basis:	dry	Analyzed:	10/02/08	

Analyte	Result	RL	MDL
Bromobenzene	ND	5.6	1.1
1,3,5-Trimethylbenzene	ND	5.6	1.1
2-Chlorotoluene	ND	5.6	1.1
4-Chlorotoluene	ND	5.6	1.1
tert-Butylbenzene	ND	5.6	1.1
1,2,4-Trimethylbenzene	ND	5.6	1.1
sec-Butylbenzene	ND	5.6	1.1
para-Isopropyl Toluene	ND	5.6	1.1
1,3-Dichlorobenzene	ND	5.6	1.1
1,4-Dichlorobenzene	ND	5.6	1.1
n-Butylbenzene	ND	5.6	1.1
1,2-Dichlorobenzene	ND	5.6	1.1
1,2-Dibromo-3-Chloropropane	ND	5.6	1.1
1,2,4-Trichlorobenzene	ND	5.6	1.1
Hexachlorobutadiene	ND	5.6	1.1
Naphthalene	ND	5.6	1.1
1,2,3-Trichlorobenzene	ND	5.6	1.1

Tentatively Identified Compounds	Result
2,6-dimethyl-undecane	12 J
2,7,10-trimethyl-Dodecane	11 J
3-methyl-nonane	15 J
Dodecane	7.7 J

Surrogate	%REC	Limits
Dibromofluoromethane	89	63-133
1,2-Dichloroethane-d4	117	74-133
Toluene-d8	105	80-111
Bromofluorobenzene	99	77-126

J= Estimated value
ND= Not Detected
RL= Reporting Limit
MDL= Method Detection Limit

Purgeable Organics by GC/MS				
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8260B	
Type:	BLANK	Basis:	as received	
Lab ID:	QC463195	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	143174	
Units:	ug/Kg	Analyzed:	10/02/08	

Freon 12 ND 10 1.0 Chloromethane ND 10 1.0 Vinyl Chloride ND 10 1.0 Bromomethane ND 10 1.0 Chloroethane ND 10 1.0 Trichlorofluoromethane ND 5.0 1.0 Acetone ND 20 2.0 Freon 113 ND 5.0 1.0 1,1-Dichloroethene ND 5.0 1.0	
Vinyl Chloride ND 10 1.0 Bromomethane ND 10 1.0 Chloroethane ND 10 1.0 Trichlorofluoromethane ND 5.0 1.0 Acetone ND 20 2.0 Freon 113 ND 5.0 1.0	
Bromomethane ND 10 1.0 Chloroethane ND 10 1.0 Trichlorofluoromethane ND 5.0 1.0 Acetone ND 20 2.0 Freon 113 ND 5.0 1.0	
Chloroethane ND 10 1.0 Trichlorofluoromethane ND 5.0 1.0 Acetone ND 20 2.0 Freon 113 ND 5.0 1.0	
Chloroethane ND 10 1.0 Trichlorofluoromethane ND 5.0 1.0 Acetone ND 20 2.0 Freon 113 ND 5.0 1.0	
Acetone ND 20 2.0 Freon 113 ND 5.0 1.0	
Acetone ND 20 2.0 Freon 113 ND 5.0 1.0	
Freon 113 ND 5.0 1.0	
11 1 Dighloroothono	
TILLEDICHIOLOGUIGHG ND S.U I.U	
Methylene Chloride 5.7 J 20 2.0	
Carbon Disulfide ND 5.0 1.0	
MTBE ND 5.0 1.0	
trans-1,2-Dichloroethene ND 5.0 1.0	
Vinyl Acetate ND 50 2.0	
1,1-Dichloroethane ND 5.0 1.0	
2-Butanone ND 10 2.0	
cis-1,2-Dichloroethene ND 5.0 1.0	
2,2-Dichloropropane ND 5.0 1.0	
Chloroform ND 5.0 1.0	
Bromochloromethane ND 5.0 1.0	
1,1,1-Trichloroethane ND 5.0 1.0	
Benzene ND 5.0 1.0	
Trichloroethene ND 5.0 1.0	
1,2-Dichloropropane ND 5.0 1.0	
Bromodichloromethane ND 5.0 1.0	
Dibromomethane ND 5.0 1.0	
4-Methyl-2-Pentanone ND 10 2.0	
cis-1,3-Dichloropropene ND 5.0 1.0	
Toluene ND 5.0 1.0	
trans-1,3-Dichloropropene ND 5.0 1.0	
1,1,2-Trichloroethane ND 5.0 1.0	
2-Hexanone ND 10 2.0	
1,3-Dichloropropane ND 5.0 1.0	
Tetrachloroethene ND 5.0 1.0	
Dibromochloromethane ND 5.0 1.0	
1,2-Dibromoethane ND 5.0 1.0	
Chlorobenzene ND 5.0 1.0	
1,1,1,2-Tetrachloroethane ND 5.0 1.0	
Ethylbenzene ND 5.0 1.0	
m,p-Xylenes ND 5.0 1.0	
o-Xylene ND 5.0 1.0	
Styrene ND 5.0 1.0	
Bromoform ND 5.0 1.0	
Isopropylbenzene ND 5.0 1.0	
1,1,2,2-Tetrachloroethane ND 5.0 1.0	
1,2,3-Trichloropropane ND 5.0 1.0	
Propylbenzene ND 5.0 1.0	
Bromobenzene ND 5.0 1.0	
1,3,5-Trimethylbenzene ND 5.0 1.0	

J= Estimated value
ND= Not Detected
RL= Reporting Limit
MDL= Method Detection Limit

	Purgeab	ole Organics by GC/	MS	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8260B	
Type:	BLANK	Basis:	as received	
Lab ID:	QC463195	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	143174	
Units:	ug/Kg	Analyzed:	10/02/08	

Analyte	Result	RL	MDL
2-Chlorotoluene	ND	5.0	1.0
4-Chlorotoluene	ND	5.0	1.0
tert-Butylbenzene	ND	5.0	1.0
1,2,4-Trimethylbenzene	ND	5.0	1.0
sec-Butylbenzene	ND	5.0	1.0
para-Isopropyl Toluene	ND	5.0	1.0
1,3-Dichlorobenzene	ND	5.0	1.0
1,4-Dichlorobenzene	ND	5.0	1.0
n-Butylbenzene	ND	5.0	1.0
1,2-Dichlorobenzene	ND	5.0	1.0
1,2-Dibromo-3-Chloropropane	ND	5.0	1.0
1,2,4-Trichlorobenzene	ND	5.0	1.0
Hexachlorobutadiene	ND	5.0	1.0
Naphthalene	ND	5.0	1.0
1,2,3-Trichlorobenzene	ND	5.0	1.0

Tentatively Identified Compounds No TICs found.

Surrogate	%REC	Limits	
Dibromofluoromethane	87	63-133	
1,2-Dichloroethane-d4	107	74-133	
Toluene-d8	106	80-111	
Bromofluorobenzene	96	77-126	

J= Estimated value
ND= Not Detected
RL= Reporting Limit
MDL= Method Detection Limit

	Purgeab	le Organics by GC/	'MS	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 5030B	
Project#:	103DS1518019	Analysis:	EPA 8260B	
Type:	LCS	Basis:	as received	
Lab ID:	QC463196	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	143174	
Units:	ug/Kg	Analyzed:	10/02/08	

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	25.48	102	72-132
Benzene	25.00	26.39	106	80-123
Trichloroethene	25.00	29.45	118	80-125
Toluene	25.00	27.54	110	80-124
Chlorobenzene	25.00	28.83	115	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	91	63-133	
1,2-Dichloroethane-d4	102	74-133	
Toluene-d8	104	80-111	
Bromofluorobenzene	97	77-126	

Page 1 of 1 4.0

	Purgeable Organics by GC/MS						
Lab #:	206501	Location:	Campfire TCRA				
Client:	Tetra Tech EMI	Prep:	EPA 5030B				
Project#:	103DS1518019	Analysis:	EPA 8260B				
Field ID:	ZZZZZZZZZ	Diln Fac:	0.9940				
MSS Lab ID:	206347-010	Batch#:	143174				
Matrix:	Soil	Sampled:	09/25/08				
Units:	ug/Kg	Received:	09/25/08				
Basis:	dry	Analyzed:	10/02/08				

Type: MS Moisture: 19%

Lab ID: QC463340

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<1.227	61.36	60.22	98	54-132
Benzene	<1.227	61.36	58.75	96	54-120
Trichloroethene	145.9 >LR	61.36	231.8 >LR	140 NM	47-138
Toluene	<1.227	61.36	62.15	101	50-120
Chlorobenzene	<1.227	61.36	64.70	105	44-120

Surrogate	%REC	Limits	
Dibromofluoromethane	92	63-133	
1,2-Dichloroethane-d4	100	74-133	
Toluene-d8	103	80-111	
Bromofluorobenzene	93	77-126	

Type: MSD Moisture: 19%

Lab ID: QC463341

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	61.36	60.59	99	54-132	1	29
Benzene	61.36	58.85	96	54-120	0	25
Trichloroethene	61.36	217.1 >LR	116 NM	47-138	NC	28
Toluene	61.36	62.74	102	50-120	1	28
Chlorobenzene	61.36	65.48	107	44-120	1	29

Surrogate	%REC	Limits
Dibromofluoromethane	94	63-133
1,2-Dichloroethane-d4	99	74-133
Toluene-d8	103	80-111
Bromofluorobenzene	95	77–126

NC= Not Calculated

NM= Not Meaningful: Sample concentration > 4X spike concentration

>LR= Response exceeds instrument's linear range

RPD= Relative Percent Difference

Page 1 of 1 5.0

Semivolatile Organics by GC/MS						
Lab #:	206501	Location:	Campfire TCRA			
Client:	Tetra Tech EMI	Prep:	EPA 3550B			
Project#:	103DS1518019	Analysis:	EPA 8270C			
Field ID:	RFS-WTAA-002-WASTE01	Batch#:	143510			
Lab ID:	206501-001	Sampled:	10/01/08			
Matrix:	Soil	Received:	10/01/08			
Units:	ug/Kg	Prepared:	10/10/08			
Basis:	dry	Analyzed:	10/10/08			
Diln Fac:	5.000	-				

Moisture: 19%

Analyte	Result	RL	
N-Nitrosodimethylamine	ND	2,100	
Phenol	ND	2,100	
bis(2-Chloroethyl)ether	ND	2,100	
2-Chlorophenol	ND	2,100	
1,3-Dichlorobenzene	ND	2,100	
1,4-Dichlorobenzene	ND	2,100	
Benzyl alcohol	ND	2,100	
1,2-Dichlorobenzene	ND ND	2,100	
		2,100	
2-Methylphenol	ND		
bis(2-Chloroisopropyl) ether	ND	2,100	
4-Methylphenol	ND	2,100	
N-Nitroso-di-n-propylamine	ND	2,100	
Hexachloroethane	ND	2,100	
Nitrobenzene	ND	2,100	
Isophorone	ND	2,100	
2-Nitrophenol	ND	4,100	
2,4-Dimethylphenol	ND	2,100	
Benzoic acid	ND	10,000	
bis(2-Chloroethoxy)methane	ND	2,100	
2,4-Dichlorophenol	ND	2,100	
1,2,4-Trichlorobenzene	ND	2,100	
Naphthalene	ND	410	
4-Chloroaniline	ND	2,100	
Hexachlorobutadiene	ND	2,100	
4-Chloro-3-methylphenol	ND	2,100	
2-Methylnaphthalene	ND	410	
Hexachlorocyclopentadiene	ND	4,100	
2,4,6-Trichlorophenol	ND	2,100	
2,4,5-Trichlorophenol	ND	2,100	
2-Chloronaphthalene	ND	2,100	
2-Nitroaniline	ND	4,100	
Dimethylphthalate	ND	2,100	
Acenaphthylene	ND	410	
2,6-Dinitrotoluene	ND	2,100	
3-Nitroaniline	ND	4,100	
Acenaphthene	ND	410	
2,4-Dinitrophenol	ND	4,100	
4-Nitrophenol	ND	4,100	
Dibenzofuran	ND	2,100	
2,4-Dinitrotoluene	ND	2,100	
Diethylphthalate	ND	2,100	
Fluorene	ND	410	
4-Chlorophenyl-phenylether	ND	2,100	
4-Nitroaniline	ND	4,100	
4,6-Dinitro-2-methylphenol	ND	4,100	
N-Nitrosodiphenylamine	ND	2,100	
Azobenzene	ND	2,100	
4-Bromophenyl-phenylether	ND	2,100	
Hexachlorobenzene	ND	2,100	
Pentachlorophenol	ND	4,100	
- CIICACIII OF OPIICIIOI	1117	1,100	

J= Estimated value ND= Not Detected RL= Reporting Limit Page 1 of 2

Semivolatile Organics by GC/MS						
Lab #: Client:	206501 Tetra Tech EMI	Location:	Campfire TCRA EPA 3550B			
Project#:	103DS1518019	Prep: Analysis:	EPA 8270C			
Field ID:	RFS-WTAA-002-WASTE01	Batch#:	143510			
Lab ID:	206501-001	Sampled:	10/01/08			
Matrix:	Soil	Received:	10/01/08			
Units:	ug/Kg	Prepared:	10/10/08			
Basis:	dry	Analyzed:	10/10/08			
Diln Fac:	5.000					

Analyte	Result	RL	
Phenanthrene	ND	410	
Anthracene	ND	410	
Di-n-butylphthalate	ND	2,100	
Fluoranthene	ND	410	
Pyrene	ND	410	
Butylbenzylphthalate	ND	2,100	
3,3'-Dichlorobenzidine	ND	4,100	
Benzo(a)anthracene	ND	410	
Chrysene	ND	410	
bis(2-Ethylhexyl)phthalate	ND	2,100	
Di-n-octylphthalate	ND	2,100	
Benzo(b)fluoranthene	ND	410	
Benzo(k)fluoranthene	ND	410	
Benzo(a)pyrene	ND	410	
Indeno(1,2,3-cd)pyrene	ND	410	
Dibenz(a,h)anthracene	ND	410	
Benzo(g,h,i)perylene	ND	410	

Tentatively Identified Compounds	Result
.gammaChordene	8100 J
Dodecane	5100 J
Dodecane, 2,6,10-trimethyl-	5900 J
Dodecane, 2-methyl-8-propyl-	5000 J
Heptachlor	6300 J
Octane, 2,3,6-trimethyl-	6900 J
Tetradecane	6600 J
Unknown 1	6900 J
cis-Chlordane	13000 Ј
trans-Chlordane	13000 J

Surrogate %	REC	Limits
2-Fluorophenol 71	_	33-120
Phenol-d5 75	5	36-120
2,4,6-Tribromophenol 87	7	35-120
Nitrobenzene-d5 72	2	45-120
2-Fluorobiphenyl 82	2	49-120
Terphenyl-d14 80)	47-120

J= Estimated value ND= Not Detected RL= Reporting Limit Page 2 of 2

Semivolatile Organics by GC/MS						
Lab #:	206501	Location:	Campfire TCRA			
Client:	Tetra Tech EMI	Prep:	EPA 3550B			
Project#:	103DS1518019	Analysis:	EPA 8270C			
Field ID:	RFS-WTAA-001-WASTE04	Batch#:	143510			
Lab ID:	206501-003	Sampled:	10/01/08			
Matrix:	Soil	Received:	10/01/08			
Units:	ug/Kg	Prepared:	10/10/08			
Basis:	dry	Analyzed:	10/10/08			
Diln Fac:	5.000	-				

Moisture: 11%

Analyte	Result	RL
N-Nitrosodimethylamine	ND	1,900
Phenol	ND	1,900
bis(2-Chloroethyl)ether	ND	1,900
2-Chlorophenol	ND	1,900
1,3-Dichlorobenzene	ND	1,900
1,4-Dichlorobenzene	ND ND	1,900
Benzyl alcohol	ND ND	1,900
1,2-Dichlorobenzene	ND ND	1,900
2-Methylphenol	ND ND	1,900
bis(2-Chloroisopropyl) ether	ND ND	
		1,900
4-Methylphenol	ND	1,900
N-Nitroso-di-n-propylamine	ND	1,900
Hexachloroethane	ND	1,900
Nitrobenzene	ND	1,900
Isophorone	ND	1,900
2-Nitrophenol	ND	3,700
2,4-Dimethylphenol	ND	1,900
Benzoic acid	ND	9,400
bis(2-Chloroethoxy)methane	ND	1,900
2,4-Dichlorophenol	ND	1,900
1,2,4-Trichlorobenzene	ND	1,900
Naphthalene	ND	370
4-Chloroaniline	ND	1,900
Hexachlorobutadiene	ND	1,900
4-Chloro-3-methylphenol	ND	1,900
2-Methylnaphthalene	ND	370
Hexachlorocyclopentadiene	ND	3,700
2,4,6-Trichlorophenol	ND	1,900
2,4,5-Trichlorophenol	ND	1,900
2-Chloronaphthalene	ND	1,900
2-Nitroaniline	ND	3,700
Dimethylphthalate	ND	1,900
Acenaphthylene	ND	370
2,6-Dinitrotoluene	ND	1,900
3-Nitroaniline	ND	3,700
Acenaphthene	ND	370
2,4-Dinitrophenol	ND	3,700
4-Nitrophenol	ND	3,700
Dibenzofuran	ND	1,900
2,4-Dinitrotoluene	ND	1,900
Diethylphthalate	ND	1,900
Fluorene	ND	370
4-Chlorophenyl-phenylether	ND	1,900
4-Nitroaniline	ND	3,700
4,6-Dinitro-2-methylphenol	ND	3,700
N-Nitrosodiphenylamine	ND	1,900
Azobenzene	ND	1,900
4-Bromophenyl-phenylether	ND ND	1,900
Hexachlorobenzene	ND ND	1,900
Pentachlorophenol	ND ND	3,700
Leuracii Tot obiieiio T	עווד	5,100

J= Estimated value ND= Not Detected RL= Reporting Limit Page 1 of 2

	Semivolatile Organics by GC/MS				
Lab #:	206501	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	EPA 3550B		
Project#:	103DS1518019	Analysis:	EPA 8270C		
Field ID:	RFS-WTAA-001-WASTE04	Batch#:	143510		
Lab ID:	206501-003	Sampled:	10/01/08		
Matrix:	Soil	Received:	10/01/08		
Units:	ug/Kg	Prepared:	10/10/08		
Basis:	dry	Analyzed:	10/10/08		
Diln Fac:	5.000	-			

Analyte	Result	RL	
Phenanthrene	ND	370	
Anthracene	ND	370	
Di-n-butylphthalate	ND	1,900	
Fluoranthene	ND	370	
Pyrene	ND	370	
Butylbenzylphthalate	ND	1,900	
3,3'-Dichlorobenzidine	ND	3,700	
Benzo(a)anthracene	ND	370	
Chrysene	ND	370	
bis(2-Ethylhexyl)phthalate	ND	1,900	
Di-n-octylphthalate	ND	1,900	
Benzo(b)fluoranthene	ND	370	
Benzo(k)fluoranthene	ND	370	
Benzo(a)pyrene	ND	370	
Indeno(1,2,3-cd)pyrene	ND	370	
Dibenz(a,h)anthracene	ND	370	
Benzo(g,h,i)perylene	ND	370	

Tentatively Identified Compounds	Result
1,1'-Biphenyl, 2,2',4,5'-tetrachloro-	760 J
1,1'-Biphenyl, 2,2',5,6-Tetrachloro-	1000 Ј
1,1'-Biphenyl, trichloro	1100 Ј
2-Pentanone, 4-hydroxy-4-methyl-	2200 Ј
Nonadecane	1200 J
Tritetracontane	980 J

Surrogate	%REC	Limits
2-Fluorophenol 8	81	33-120
Phenol-d5	87	36-120
2,4,6-Tribromophenol	101	35-120
Nitrobenzene-d5	80	45-120
2-Fluorobiphenyl	92	49-120
Terphenyl-d14	88	47-120

Page 2 of 2

J= Estimated value ND= Not Detected RL= Reporting Limit

Datell QC Rep	9010				
	Semivolatile Organics by GC/MS				
Lab #:	206501	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	EPA 3550B		
Project#:	103DS1518019	Analysis:	EPA 8270C		
Type: Lab ID:	BLANK	Diln Fac:	1.000		
Lab ID:	QC464648	Batch#:	143510		
Matrix:	Soil	Prepared:	10/10/08		
Units:	ug/Kg	Analyzed:	10/10/08		
Basis:	as received	-			

Analyte	Result	RL
N-Nitrosodimethylamine	ND	330
Phenol	ND	330
bis(2-Chloroethyl)ether	ND	330
2-Chlorophenol	ND	330
1,3-Dichlorobenzene	ND	330
1,4-Dichlorobenzene	ND	330
Benzyl alcohol	ND	330
1,2-Dichlorobenzene	ND	330
2-Methylphenol	ND ND	330
bis(2-Chloroisopropyl) ether	ND ND	330
4-Methylphenol	ND ND	330
		330
N-Nitroso-di-n-propylamine	ND	
Hexachloroethane	ND	330
Nitrobenzene	ND	330
Isophorone	ND	330
2-Nitrophenol	ND	670
2,4-Dimethylphenol	ND	330
Benzoic acid	ND	1,700
bis(2-Chloroethoxy)methane	ND	330
2,4-Dichlorophenol	ND	330
1,2,4-Trichlorobenzene	ND	330
Naphthalene	ND	67
4-Chloroaniline	ND	330
Hexachlorobutadiene	ND	330
4-Chloro-3-methylphenol	ND	330
2-Methylnaphthalene	ND	67
Hexachlorocyclopentadiene	ND	670
2,4,6-Trichlorophenol	ND	330
2,4,5-Trichlorophenol	ND	330
2-Chloronaphthalene	ND	330
2-Nitroaniline	ND	670
Dimethylphthalate	ND	330
Acenaphthylene	ND	67
2,6-Dinitrotoluene	ND	330
3-Nitroaniline	ND	670
Acenaphthene	ND	67
2,4-Dinitrophenol	ND	670
4-Nitrophenol	ND	670
Dibenzofuran	ND ND	330
2,4-Dinitrotoluene	ND ND	330
	ND ND	330
Diethylphthalate		
Fluorene	ND	67
4-Chlorophenyl-phenylether	ND	330
4-Nitroaniline	ND	670
4,6-Dinitro-2-methylphenol	ND	670
N-Nitrosodiphenylamine	ND	330
Azobenzene	ND	330
4-Bromophenyl-phenylether	ND	330
Hexachlorobenzene	ND	330
Pentachlorophenol	ND	670
Phenanthrene	ND	67
Anthracene	ND	67

J= Estimated value ND= Not Detected RL= Reporting Limit Page 1 of 2

	Semivolatile Organics by GC/MS				
Lab #:	206501	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	EPA 3550B		
Project#:	103DS1518019	Analysis:	EPA 8270C		
Type:	BLANK	Diln Fac:	1.000		
Type: Lab ID:	QC464648	Batch#:	143510		
Matrix:	Soil	Prepared:	10/10/08		
Units:	ug/Kg	Analyzed:	10/10/08		
Basis:	as received	-			

Analyte	Result	RL	
Di-n-butylphthalate	ND	330	
Fluoranthene	ND	67	
Pyrene	ND	67	
Butylbenzylphthalate	ND	330	
3,3'-Dichlorobenzidine	ND	670	
Benzo(a)anthracene	ND	67	
Chrysene	ND	67	
bis(2-Ethylhexyl)phthalate	ND	330	
Di-n-octylphthalate	ND	330	
Benzo(b)fluoranthene	ND	67	
Benzo(k)fluoranthene	ND	67	
Benzo(a)pyrene	ND	67	
Indeno(1,2,3-cd)pyrene	ND	67	
Dibenz(a,h)anthracene	ND	67	
Benzo(g,h,i)perylene	ND	67	

Tentatively Identified Compounds	Result	
2-Pentanone, 4-hydroxy-4-methyl-	1800 J	

Surrogate	%REC	Limits	
2-Fluorophenol	71	33-120	
Phenol-d5	68	36-120	
2,4,6-Tribromophenol	60	35-120	
Nitrobenzene-d5	65	45-120	
2-Fluorobiphenyl	77	49-120	
Terphenyl-d14	82	47-120	

J= Estimated value ND= Not Detected RL= Reporting Limit Page 2 of 2

Semivolatile Organics by GC/MS				
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3550B	
Project#:	103DS1518019	Analysis:	EPA 8270C	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC464649	Batch#:	143510	
Matrix:	Soil	Prepared:	10/10/08	
Units:	ug/Kg	Analyzed:	10/10/08	
Basis:	as received			

Analyte	Spiked	Result	%REC	Limits
Phenol	2,664	1,804	68	28-120
2-Chlorophenol	2,664	1,931	72	35-120
1,4-Dichlorobenzene	2,664	1,812	68	47-120
N-Nitroso-di-n-propylamine	2,664	1,542	58	21-120
1,2,4-Trichlorobenzene	2,664	1,785	67	43-120
4-Chloro-3-methylphenol	2,664	1,996	75	42-120
Acenaphthene	999.0	736.8	74	46-120
4-Nitrophenol	2,664	1,725	65	36-120
2,4-Dinitrotoluene	2,664	2,063	77	46-120
Pentachlorophenol	2,664	1,830	69	30-120
Pyrene	999.0	890.2	89	44-120

Surrogate	%REC	Limits
2-Fluorophenol	76	33-120
Phenol-d5	70	36-120
2,4,6-Tribromophenol	79	35-120
Nitrobenzene-d5	67	45-120
2-Fluorobiphenyl	78	49-120
Terphenyl-d14	84	47-120

Page 1 of 1 36.0

	Semivola	atile Organics by GO	C/MS	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3550B	
Project#:	103DS1518019	Analysis:	EPA 8270C	
Field ID:	ZZZZZZZZZZ	Batch#:	143510	
MSS Lab ID:	206538-003	Sampled:	10/01/08	
Matrix:	Soil	Received:	10/02/08	
Units:	ug/Kg	Prepared:	10/10/08	
Basis:	dry	Analyzed:	10/11/08	
Diln Fac:	1.000			

Type: MS Moisture: 31%

Type: MS Lab ID: QC464650

Analyte	MSS Result	Spiked	Result	%REC	Limits
Phenol	<87.63	3,846	2,528	66	39-120
2-Chlorophenol	<101.7	3,846	2,639	69	40-120
1,4-Dichlorobenzene	<79.01	3,846	2,457	64	49-120
N-Nitroso-di-n-propylamine	<44.10	3,846	2,162	56	32-120
1,2,4-Trichlorobenzene	<62.31	3,846	2,390	62	46-120
4-Chloro-3-methylphenol	<16.19	3,846	2,578	67	45-120
Acenaphthene	52.98	1,442	1,006	66	48-120
4-Nitrophenol	<51.12	3,846	2,484	65	34-120
2,4-Dinitrotoluene	<30.87	3,846	2,678	70	49-120
Pentachlorophenol	<243.7	3,846	2,628	68	23-120
Pyrene	157.1	1,442	1,163	70	42-120

Surrogate	%REC	Limits	
2-Fluorophenol	73	33-120	
Phenol-d5	70	36-120	l
2,4,6-Tribromophenol	73	35-120	l
Nitrobenzene-d5	67	45-120	l
2-Fluorobiphenyl	74	49-120	l
Terphenyl-d14	78	47-120	

Type: MSD Moisture: 31% Lab ID: QC464651

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Phenol	3,811	2,473	65	39-120	1	31
2-Chlorophenol	3,811	2,534	66	40-120	3	32
1,4-Dichlorobenzene	3,811	2,387	63	49-120	2	33
N-Nitroso-di-n-propylamine	3,811	2,127	56	32-120	1	39
1,2,4-Trichlorobenzene	3,811	2,231	59	46-120	6	32
4-Chloro-3-methylphenol	3,811	2,427	64	45-120	5	32
Acenaphthene	1,429	950.3	63	48-120	5	29
4-Nitrophenol	3,811	2,348	62	34-120	5	36
2,4-Dinitrotoluene	3,811	2,563	67	49-120	4	31
Pentachlorophenol	3,811	2,463	65	23-120	6	49
Pyrene	1,429	1,098	66	42-120	5	32

Surrogate	%REC	Limits	
2-Fluorophenol	69	33-120	
Phenol-d5	66	36-120	
2,4,6-Tribromophenol	66	35-120	
Nitrobenzene-d5	61	45-120	
2-Fluorobiphenyl	68	49-120	
Terphenyl-d14	71	47-120	

	Organochl	orine Pesticide	es	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3550B	
Project#:	103DS1518019	Analysis:	EPA 8081A	
Field ID:	RFS-WTAA-002-WASTE01	Batch#:	143159	
Lab ID:	206501-001	Sampled:	10/01/08	
Matrix:	Soil	Received:	10/01/08	
Units:	ug/Kg	Prepared:	10/01/08	
Basis:	dry	Analyzed:	10/15/08	

Moisture: 19% Cleanup Method: EPA 3665A

Analyte	Result	RL	Diln Fac	
alpha-BHC	ND	2,100	1,000	
beta-BHC	ND	2,100	1,000	
gamma-BHC	1,600 J	2,100	1,000	
delta-BHC	ND	2,100	1,000	
Heptachlor	27,000	2,100	1,000	
Aldrin	ND	2,100	1,000	
Heptachlor epoxide	ND	2,100	1,000	
Endosulfan I	ND	2,100	1,000	
Dieldrin	ND	4,100	1,000	
4,4'-DDE	5,000 C	4,100	1,000	
Endrin	ND	4,100	1,000	
Endosulfan II	ND	4,100	1,000	
Endosulfan sulfate	ND	4,100	1,000	
4,4'-DDD	ND	4,100	1,000	
Endrin aldehyde	ND	4,100	1,000	
4,4'-DDT	ND	4,100	1,000	
alpha-Chlordane	44,000	4,200	2,000	
gamma-Chlordane	43,000	4,200	2,000	
Methoxychlor	ND	21,000	1,000	
Toxaphene	ND	74,000	1,000	

Surrogate	%REC	Limits	Diln Fac
TCMX	DO	35-126	1,000
Decachlorobiphenyl	DO	37-146	1,000

C= Presence confirmed, but RPD between columns exceeds 40%

J= Estimated value

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

	Organochl	orine Pesticide	es	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3550B	
Project#:	103DS1518019	Analysis:	EPA 8081A	
Field ID:	RFS-WTAA-001-WASTE04	Batch#:	143159	
Lab ID:	206501-003	Sampled:	10/01/08	
Matrix:	Soil	Received:	10/01/08	
Units:	ug/Kg	Prepared:	10/01/08	
Basis:	dry			

Moisture: 11% Cleanup Method: EPA 3665A

Analyte	Result	RL	Diln Fac	Analyzed
alpha-BHC	ND	9.5	5.000	10/04/08
beta-BHC	ND	9.5	5.000	10/04/08
gamma-BHC	63 C	9.5	5.000	10/04/08
delta-BHC	ND	9.5	5.000	10/04/08
Heptachlor	82 C	9.5	5.000	10/04/08
Aldrin	ND	9.5	5.000	10/04/08
Heptachlor epoxide	150	9.5	5.000	10/04/08
Endosulfan I	22 C	9.5	5.000	10/04/08
Dieldrin	23 C	18	5.000	10/04/08
4,4'-DDE	74	37	10.00	10/14/08
Endrin	ND	18	5.000	10/04/08
Endosulfan II	ND	18	5.000	10/04/08
Endosulfan sulfate	15 С Ј	18	5.000	10/04/08
4,4'-DDD	16 С Ј	18	5.000	10/04/08
Endrin aldehyde	ND	18	5.000	10/04/08
4,4'-DDT	48 C	18	5.000	10/04/08
alpha-Chlordane	220	19	10.00	10/14/08
gamma-Chlordane	190	19	10.00	10/14/08
Methoxychlor	ND	95	5.000	10/04/08
Toxaphene	ND	340	5.000	10/04/08

Surrogate	%REC	Limits	Diln Fac	Analyzed
TCMX	77	35-126	5.000	10/04/08
Decachlorobiphenyl	120	37-146	5.000	10/04/08

C= Presence confirmed, but RPD between columns exceeds 40%

J= Estimated value

ND= Not Detected

RL= Reporting Limit

	Organo	chlorine Pesticide	es	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3550B	
Project#:	103DS1518019	Analysis:	EPA 8081A	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC463134	Batch#:	143159	
Matrix:	Soil	Prepared:	10/01/08	
Units:	ug/Kg	Analyzed:	10/02/08	
Basis:	as received			

Cleanup Method: EPA 3665A

Analyte	Result	RL	
alpha-BHC	ND	1.7	
beta-BHC	ND	1.7	
gamma-BHC	ND	1.7	
delta-BHC	ND	1.7	
Heptachlor	ND	1.7	
Aldrin	ND	1.7	
Heptachlor epoxide	ND	1.7	
Endosulfan I	ND	1.7	
Dieldrin	ND	3.3	
4,4'-DDE	ND	3.3	
Endrin	ND	3.3	
Endosulfan II	ND	3.3	
Endosulfan sulfate	ND	3.3	
4,4'-DDD	ND	3.3	
Endrin aldehyde	ND	3.3	
4,4'-DDT	ND #	3.3	
alpha-Chlordane	ND	1.7	
gamma-Chlordane	ND	1.7	
Methoxychlor	ND #	17	
Toxaphene	ND	60	

Surrogate	%REC	Limits
TCMX	109	35-126
Decachlorobiphenyl	97	37-146

^{#=} CCV drift outside limits; average CCV drift within limits per method requirements

ND= Not Detected

RL= Reporting Limit

	Organo	chlorine Pesticide	es	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3550B	
Project#:	103DS1518019	Analysis:	EPA 8081A	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC463138	Batch#:	143159	
Matrix:	Soil	Prepared:	10/01/08	
Units:	ug/Kg	Analyzed:	10/02/08	
Basis:	as received			

Cleanup Method: EPA 3665A

Analyte	Spiked	Result	%REC	Limits
gamma-BHC	13.32	11.85	89	27-121
Heptachlor	13.32	11.67	88	22-127
Aldrin	13.32	11.46	86	27-120
Dieldrin	26.63	22.76	85	29-131
Endrin	26.63	22.17	83	30-146
4,4'-DDT	26.63	18.29 #	69	26-131

Surrogate	%REC	Limits
TCMX	104	35-126
Decachlorobiphenyl	99	37-146

	Organo	chlorine Pesticide	es	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3550B	
Project#:	103DS1518019	Analysis:	EPA 8081A	
Field ID:	ZZZZZZZZZ	Batch#:	143159	
MSS Lab ID:	206503-004	Sampled:	09/25/08	
Matrix:	Soil	Received:	09/25/08	
Units:	ug/Kg	Prepared:	10/01/08	
Basis:	dry	Analyzed:	10/02/08	
Diln Fac:	1.000			

Type: MS Moisture: 4%

Lab ID: QC463139 Cleanup Method: EPA 3665A

Analyte	MSS Result	Spiked	Result	%REC	Limits
gamma-BHC	<0.2304	13.79	12.42	90	37-123
Heptachlor	<0.2688	13.79	12.29	89	33-129
Aldrin	<0.2386	13.79	12.67	92	37-120
Dieldrin	<0.5355	27.58	24.86	90	42-128
Endrin	<0.5047	27.58	24.18	88	33-136
4,4'-DDT	<0.5220	27.58	19.72 #	72	27-132

Surrogate	%REC	Limits	
TCMX	107	35-126	
Decachlorobiphenyl	99	37-146	

Type: MSD Moisture: 4%

Lab ID: QC463140 Cleanup Method: EPA 3665A

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
gamma-BHC	13.74	13.05	95	37-123	5	48
Heptachlor	13.74	13.47	98	33-129	9	51
Aldrin	13.74	13.01	95	37-120	3	44
Dieldrin	27.48	25.46	93	42-128	3	42
Endrin	27.48	24.87	90	33-136	3	53
4,4'-DDT	27.48	21.33 #	78	27-132	8	49

Surrogate	%REC	Limits	
TCMX	112	35-126	
Decachlorobiphenyl	106	37-146	

Page 1 of 1 48.0

^{#=} CCV drift outside limits; average CCV drift within limits per method requirements
RPD= Relative Percent Difference

	Polychlorinated	Biphenyls (PC	Bs)
Lab #:	206501	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Field ID:	RFS-WTAA-002-WASTE01	Batch#:	143159
Lab ID:	206501-001	Sampled:	10/01/08
Matrix:	Soil	Received:	10/01/08
Units:	ug/Kg	Prepared:	10/01/08
Basis:	dry	Analyzed:	10/03/08
Diln Fac:	50.00		

Moisture: 19% Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	410	
Aroclor-1221	ND	820	
Aroclor-1232	ND	410	
Aroclor-1242	ND	410	
Aroclor-1248	ND	410	
Aroclor-1254	ND	410	
Aroclor-1260	ND	410	

Surrogate	%REC	Limits
TCMX	DO	68-139
Decachlorobiphenyl	DO	52-147

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Polychlorinated Biphenyls (PCBs)			
Lab #:	206501	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Field ID:	RFS-WTAA-001-WASTE04	Batch#:	143159
Lab ID:	206501-003	Sampled:	10/01/08
Matrix:	Soil	Received:	10/01/08
Units:	ug/Kg	Prepared:	10/01/08
Basis:	dry	Analyzed:	10/03/08
Diln Fac:	50.00		

Moisture: 11% Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	370	
Aroclor-1221	ND	750	
Aroclor-1232	ND	370	
Aroclor-1242	ND	370	
Aroclor-1248	10,000	370	
Aroclor-1254	2,800	370	
Aroclor-1260	430	370	

Surrogate	%REC	Limits
TCMX	DO	68-139
Decachlorobiphenyl	DO	52-147

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

	Polychlorinated	Biphenyls (F	PCBs)
Lab #:	206501	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC463134	Batch#:	143159
Matrix:	Soil	Prepared:	10/01/08
Units:	ug/Kg	Analyzed:	10/02/08
Basis:	as received		

Cleanup Method: EPA 3665A

Analyte	Result	RL	
Aroclor-1016	ND	12	
Aroclor-1221	ND	24	
Aroclor-1232	ND	12	
Aroclor-1242	ND	12	
Aroclor-1248	ND	12	
Aroclor-1254	ND	12	
Aroclor-1260	ND	12	

Surrogate	%REC	Limits
TCMX	96	68-139
Decachlorobiphenyl	115	52-147

Page 1 of 1 12.0

	Polychlorinated	Biphenyls (P	CBs)
Lab #:	206501	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC463135	Batch#:	143159
Matrix:	Soil	Prepared:	10/01/08
Units:	ug/Kg	Analyzed:	10/02/08
Basis:	as received		

Cleanup Method: EPA 3665A

Analyte	Spiked	Result	%REC	Limits
Aroclor-1016	166.5	189.4	114	73-139
Aroclor-1260	166.5	196.2	118	76-143

Surrogate	%REC	Limits
TCMX	125	68-139
Decachlorobiphenyl	143	52-147

	Polychlorinated	l Biphenyls (P	CBs)
Lab #:	206501	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3550B
Project#:	103DS1518019	Analysis:	EPA 8082
Field ID:	ZZZZZZZZZZ	Batch#:	143159
MSS Lab ID:	206503-004	Sampled:	09/25/08
Matrix:	Soil	Received:	09/25/08
Units:	ug/Kg	Prepared:	10/01/08
Basis:	dry	Analyzed:	10/02/08
Diln Fac:	1.000		

Type: MS Moisture: 4%

Lab ID: QC463136 Cleanup Method: EPA 3665A

Analyte	MSS Result	Spiked	Result	%REC	Limits
Aroclor-1016	<1.994	173.4	169.2	98	66-146
Aroclor-1260	4.067	173.4	161.9	91	52-142

Surrogate	%REC	Limits
TCMX	105	68-139
Decachlorobiphenyl	104	52-147

Type: MSD Moisture: 4%

Lab ID: QC463137 Cleanup Method: EPA 3665A

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Aroclor-1016	173.0	155.6	90	66-146	8	28
Aroclor-1260	173.0	152.2	86	52-142	6	28

Surrogate	%REC	Limits	
TCMX	101	68-139	
Decachlorobiphenyl	102	52-147	

California Title 22 Metals					
Lab #:	206501	Project#:	103DS1518019		
Client:	Tetra Tech EMI	Location:	Campfire TCRA		
Field ID:	RFS-WTAA-002-WASTE01	Basis:	dry		
Lab ID:	206501-001	Sampled:	10/01/08		
Matrix:	Soil	Received:	10/01/08		
Units:	mg/Kg				

Moisture: 19%

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	8.3	0.62	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Arsenic	30	0.31	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Barium	990	2.8	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Beryllium	0.35	0.12	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Cadmium	14	0.31	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Chromium	1,300	2.8	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Cobalt	28	0.31	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Copper	3,300	2.8	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Lead	1,200	1.9	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Mercury	11	0.51	20.00	143367	10/07/08	10/08/08	METHOD	EPA 7471A
Molybdenum	18	0.31	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Nickel	740	2.8	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Selenium	ND	0.62	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Silver	110	0.31	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Thallium	ND	0.62	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Vanadium	39	0.31	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Zinc	5,300	11	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B

Page 1 of 1 15.1

California Title 22 Metals					
Lab #:	206501	Project#:	103DS1518019		
Client:	Tetra Tech EMI	Location:	Campfire TCRA		
Field ID:	RFS-WTAA-001-WASTE04	Basis:	dry		
Lab ID:	206501-003	Sampled:	10/01/08		
Matrix:	Soil	Received:	10/01/08		
Units:	mg/Kg				

Moisture: 11%

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	14	0.56	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Arsenic	20	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Barium	720	2.6	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Beryllium	0.42	0.11	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Cadmium	5.1	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Chromium	72	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Cobalt	15	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Copper	2,200	2.6	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Lead	1,800	1.7	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B
Mercury	3.8	0.10	5.000	143367	10/07/08	10/08/08	METHOD	EPA 7471A
Molybdenum	4.5	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Nickel	97	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Selenium	ND	0.56	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Silver	55	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Thallium	ND	0.56	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Vanadium	41	0.28	1.000	143485	10/09/08	10/10/08	EPA 3050B	EPA 6010B
Zinc	1,700	10	10.00	143485	10/09/08	10/11/08	EPA 3050B	EPA 6010B

California Title 22 Metals					
Lab #:	206501	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	METHOD		
Project#:	103DS1518019	Analysis:	EPA 7471A		
Analyte:	Mercury	Basis:	as received		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC464026	Batch#:	143367		
Matrix:	Soil	Prepared:	10/07/08		
Units:	mg/Kg	Analyzed:	10/07/08		

Result	RL	
ND	0.020	

California Title 22 Metals					
Lab #:	206501	Location:	Campfire TCRA		
Client:	Tetra Tech EMI	Prep:	METHOD		
Project#:	103DS1518019	Analysis:	EPA 7471A		
Analyte:	Mercury	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	143367		
Units:	mg/Kg	Prepared:	10/07/08		
Basis:	as received	Analyzed:	10/07/08		

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC464027	0.5000	0.4730	95	80-120		
BSD	QC464028	0.5000	0.4830	97	80-120	2	20

	Californi	a Title 22 Meta	ıls	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	METHOD	
Project#:	103DS1518019	Analysis:	EPA 7471A	
Analyte:	Mercury	Basis:	dry	
Field ID:	RFS-WTAA-002-WASTE01	Diln Fac:	100.0	
Type:	Serial Dilution	Batch#:	143367	
MSS Lab ID:	206501-001	Sampled:	10/01/08	
Lab ID:	QC464029	Received:	10/01/08	
Matrix:	Soil	Analyzed:	10/08/08	
Units:	mg/Kg			

MSS Result	MSS RL	Result	RL	Moist	ure % Dif	f Lim
10.96	0.5144	9.169	2.572	19%	16 *	10

^{*=} Value outside of QC limits; see narrative RL= Reporting Limit

California Title 22 Metals						
Lab #:	206501	Location:	Campfire TCRA			
Client:	Tetra Tech EMI	Prep:	METHOD			
Project#:	103DS1518019	Analysis:	EPA 7471A			
Analyte:	Mercury	Diln Fac:	20.00			
Field ID:	RFS-WTAA-002-WASTE01	Batch#:	143367			
MSS Lab ID:	206501-001	Sampled:	10/01/08			
Matrix:	Soil	Received:	10/01/08			
Units:	mg/Kg	Prepared:	10/07/08			
Basis:	dry	Analyzed:	10/08/08			

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	Moisture RP) Lim
MS	QC464030	10.96	0.6299	15.37	701 NM	66-138	19%	
MSD	QC464031		0.6567	16.23	804 NM	66-138	19% 5	24

Page 1 of 1 20.0

	Califo	rnia Title 22 Meta	ıls	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3050B	
Project#:	103DS1518019	Analysis:	EPA 6010B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC464533	Batch#:	143485	
Matrix:	Soil	Prepared:	10/09/08	
Units:	mg/Kg	Analyzed:	10/10/08	
Basis:	as received			

Analyte	Result	RL	
Antimony	0.25 J	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.25	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

J= Estimated value

ND= Not Detected

RL= Reporting Limit

California Title 22 Metals					
Lab #: Client: Project#:	206501 Tetra Tech EMI 103DS1518019	Location: Prep: Analysis:	Campfire TCRA EPA 3050B EPA 6010B		
Matrix: Units: Basis: Diln Fac:	Soil mg/Kg as received 1.000	Batch#: Prepared: Analyzed:	143485 10/09/08 10/10/08		

Type: BS Lab ID: QC464534

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	102.2	102	80-120
Arsenic	50.00	50.98	102	80-120
Barium	100.0	105.7	106	80-120
Beryllium	2.500	2.717	109	80-120
Cadmium	10.00	10.69	107	80-120
Chromium	100.0	104.7	105	80-120
Cobalt	25.00	25.61	102	80-120
Copper	12.50	13.15	105	80-120
Lead	100.0	101.9	102	80-120
Molybdenum	20.00	21.08	105	80-120
Nickel	25.00	25.62	102	80-120
Selenium	50.00	51.54	103	80-120
Silver	10.00	10.32	103	80-120
Thallium	50.00	51.57	103	80-120
Vanadium	25.00	26.17	105	80-120
Zinc	25.00	26.23	105	80-120

Type: BSD Lab ID: QC464535

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	102.0	102	80-120	0	20
Arsenic	50.00	51.64	103	80-120	1	20
Barium	100.0	106.7	107	80-120	1	20
Beryllium	2.500	2.729	109	80-120	0	20
Cadmium	10.00	10.68	107	80-120	0	20
Chromium	100.0	105.2	105	80-120	1	20
Cobalt	25.00	25.70	103	80-120	0	20
Copper	12.50	13.19	106	80-120	0	20
Lead	100.0	101.1	101	80-120	1	20
Molybdenum	20.00	21.07	105	80-120	0	20
Nickel	25.00	25.52	102	80-120	0	20
Selenium	50.00	51.12	102	80-120	1	20
Silver	10.00	10.35	103	80-120	0	20
Thallium	50.00	51.37	103	80-120	0	20
Vanadium	25.00	26.22	105	80-120	0	20
Zinc	25.00	26.59	106	80-120	1	20

	California 1	Title 22 Metals	
Lab #:	206501	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3050B
Project#:	103DS1518019	Analysis:	EPA 6010B
Field ID:	ZZZZZZZZZ	Batch#:	143485
MSS Lab ID:	206712-001	Sampled:	10/03/08
Matrix:	Soil	Received:	10/08/08
Units:	mg/Kg	Prepared:	10/09/08
Basis:	dry	Analyzed:	10/10/08
Diln Fac:	1.000	_	

Moisture: 18%

Type: Lab ID: MS QC464536

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	1.660	114.0	40.29	34	3-120
Arsenic	14.78	56.99	68.39	94	67-120
Barium	224.0	114.0	323.2	87	46-136
Beryllium	0.5810	2.849	3.224	93	75-120
Cadmium	2.843	11.40	14.08	99	65-120
Chromium	38.74	114.0	127.3	78	59-120
Cobalt	12.76	28.49	33.65	73	56-120
Copper	300.7	14.25	247.1	-376 NM	39-151
Lead	1,796	114.0	1,532 >LR	-232 NM	50-123
Molybdenum	<0.07263	22.79	18.01	79	63-120
Nickel	89.74	28.49	57.99	-111 *	42-139
Selenium	<0.1170	56.99	51.19	90	62-120
Silver	0.2732	11.40	11.83	101	65-120
Thallium	<0.1259	56.99	41.03	72	58-120
Vanadium	52.61	28.49	68.83	57	46-141
Zinc	868.6	28.49	660.6 >LR	-730 NM	30-152

MSD Moisture: 18%

Type: Lab ID: QC464537

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	117.3	39.55	32	3-120	5	30
Arsenic	58.63	67.30	90	67-120	4	20
Barium	117.3	356.7	113	46-136	9	28
Beryllium	2.932	3.387	96	75-120	3	23
Cadmium	11.73	12.30	81	65-120	16	20
Chromium	117.3	133.7	81	59-120	3	23
Cobalt	29.32	33.20	70	56-120	3	25
Copper	14.66	244.4	-384 NM	39-151	1	27
Lead	117.3	1,204 >LR	-505 NM	50-123	NC	30
Molybdenum	23.45	18.86	80	63-120	2	20
Nickel	29.32	58.28	-107 *	42-139	0	29
Selenium	58.63	54.59	93	62-120	4	20
Silver	11.73	11.82	98	65-120	3	20
Thallium	58.63	48.14	82	58-120	13	20
Vanadium	29.32	66.75	48	46-141	4	21
Zinc	29.32	658.8 >LR	-716 NM	30-152	NC	33

Page 1 of 1 23.0

^{*=} Value outside of QC limits; see narrative NC= Not Calculated NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference

	Califor	rnia Title 22 Meta	ls	
Lab #:	206501	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3050B	
Project#:	103DS1518019	Analysis:	EPA 6010B	
Field ID:	ZZZZZZZZZ	Units:	mg/Kg	
Type:	Serial Dilution	Basis:	dry	
MSS Lab ID:	206712-001	Batch#:	143485	
Lab ID:	QC464538	Sampled:	10/03/08	
Matrix:	Soil	Received:	10/08/08	

Moisture: 18%

Analyte	MSS Result	MSS RL	Result	RL	% Diff	Lim	Diln Fac	Analyzed
Antimony	1.660	0.6098	1.126 J	2.690	NC	10	5.000	10/10/08
Arsenic	14.78	0.3049	15.51	1.452	5	10	5.000	10/10/08
Barium	224.0	0.3049	245.3	1.452	10	10	5.000	10/10/08
Beryllium	0.5810	0.1220	0.6077	0.5807	5	10	5.000	10/10/08
Cadmium	2.843	0.3049	2.963	1.452	4	10	5.000	10/10/08
Chromium	38.74	0.3049	42.18	1.452	9	10	5.000	10/10/08
Cobalt	12.76	0.3049	14.30	1.452	12 *	10	5.000	10/10/08
Copper	300.7	0.3049	306.0	1.452	2	10	5.000	10/10/08
Lead	1,796	3.892	1,643	19.46	9	10	100.0	10/11/08
Molybdenum	ND	0.3049	ND	1.452	NC	10	5.000	10/10/08
Nickel	89.74	0.3049	100.7	1.452	12 *	10	5.000	10/10/08
Selenium	ND	0.6098	ND	1.755	NC	10	5.000	10/10/08
Silver	0.2732	0.3049	ND	1.452	NC	10	5.000	10/10/08
Thallium	ND	0.6098	ND	1.888	NC	10	5.000	10/10/08
Vanadium	52.61	0.3049	56.01	1.452	6	10	5.000	10/10/08
Zinc	868.6	23.23	770.0	116.1	11 *	10	100.0	10/11/08

^{*=} Value outside of QC limits; see narrative

J= Estimated value

NC= Not Calculated

ND= Not Detected

RL= Reporting Limit

	Californ	ia Title 22 Meta	als
Lab #:	206501	Location:	Campfire TCRA
Client:	Tetra Tech EMI	Prep:	EPA 3050B
Project#:	103DS1518019	Analysis:	EPA 6010B
Field ID:	ZZZZZZZZZ	Units:	mg/Kg
Type:	Post Digest Spike	Basis:	dry
MSS Lab ID:	206712-001	Batch#:	143485
Lab ID:	QC464539	Sampled:	10/03/08
Matrix:	Soil	Received:	10/08/08

Moisture: 18%

Analyte	MSS Result	Spiked	Result	%REC	Limits Diln Fac	Analyzed
Antimony	1.660	116.1	112.9	96	75-125 1.000	10/10/08
Arsenic	14.78	58.07	68.69	93	75-125 1.000	10/10/08
Barium	224.0	116.1	320.1	83	75-125 1.000	10/10/08
Beryllium	0.5810	2.904	3.339	95	75-125 1.000	10/10/08
Cadmium	2.843	11.61	13.16	89	75-125 1.000	10/10/08
Chromium	38.74	116.1	141.9	89	75-125 1.000	10/10/08
Cobalt	12.76	29.04	37.10	84	75-125 1.000	10/10/08
Copper	300.7	14.52	306.7	41 NM	75-125 1.000	10/10/08
Lead	1,796	2,323	3,829	88	75-125 20.00	10/11/08
Molybdenum	<0.07263	23.23	20.72	89	75-125 1.000	10/10/08
Nickel	89.74	29.04	111.5	75	75-125 1.000	10/10/08
Selenium	<0.1170	58.07	55.19	95	75-125 1.000	10/10/08
Silver	0.2732	11.61	10.81	91	75-125 1.000	10/10/08
Thallium	<0.1259	58.07	47.61	82	75-125 1.000	10/10/08
Vanadium	52.61	29.04	77.71	86	75-125 1.000	10/10/08
Zinc	868.6	580.7	1,362	85	75-125 20.00	10/11/08

207399

Subject: Additional Analysis

From: "Ferlic, Carolyn" < carolyn.ferlic@ttemi.com>

Date: Mon, 3 Nov 2008 08:51:47 -0800 **To:** "Anne Kathain" <anne@ctberk.com>

Hey Anne -

We are going to need some additional tests on the samples I brought in a few weeks ago. I believe they were all brought in on Oct 1, C&T job 206501.

For Sample WTAA-002-WASTE01 will you please run the TCLP for Lead, Mercury, Silver, Heptachlor, and Chlordane

For Sample WTAA-001-WASTE04 will you please run the TCLP for Lead and Heptachlor

If you can give me a cost estimate for this as well, I would appreciate it. A standard turn around time will be fine.

I will be in the office all day today if you have any questions.

Thanks! Carolyn

Carolyn Ferlic | Environmental Engineer

Direct: 415.222.8233 | Main: 415.543.4880 | Fax: 415.543.5480 carolyn.ferlic@ttemi.com

Tetra Tech EM Inc.

135 Main Street, Suite 1800 San Francisco, CA 94105 | www.tetratech.com

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

206501

TE Tetra Tech EM Inc. San Francisco Office

Chain of Custody Record No. 6688

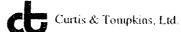
_ of _

Preservative Added

135 Main St. Suite 1800					ſ						-						-		
San Francisco. CA 94105	Lab PO#:	Lab:														NONE	<u>بر</u> ک		
415-543-4880 Fax 415-543-5480		C)	トち		NO.	/C ₀	ntain	No./Container Types	ypes			Ani	ılysi	s Re	Analysis Required	72			
Project name: (Demos five TUPA	TEMI technical contact:	Field samplers:	1 K	lawyers:				.50											
Project (CTO) number: 105DS1G18019	Trem project manager: JASM Brodenson	Field samplers' signatures:	signatures:		(ISW /	Amber 1 Poly		2			(E)	Purgeables	Extractables						
Sample ID	Sample Location (Pt. ID)	Date	Time	×	Im 04		Sleeve	Gjusa		VOAS	SVOA Pesa Mesa Metal	HqT	174						
RES-WTRA-001-WASEU		90/10/01	10/01/08 10:00	Seri			- 4	_1			7	Ź	7		-				
R+S-WTAA-002-WASTED			00:01	_	==-					X		1	-						
LTS-WINA-COI-WASTEDA	4		11:40								メイベ		X			1	\pm	\dashv	
		-								_	+	1		-					
								\exists			_			\dashv	-	-	+	1	
					_														
					-					_									
					-	-	-	1	-	-	ļ	_							
					-	L	-		-		-								
					-		-	L			F			L					
							-			=									
										_									

	Name (print)	Company Name	Date	Time
Relinanished by: As A. Dung T. GAA 27	TITALE NATORAN	TEM	30/10/01	14:22
Received by:	1 pg. (db.	[4]	10/1/08	14.22
Relinquished by:				
Received by:				
Relinquished by:				
Received by:				

Turnaround timetracks - CAPIUIT By LEDIO Pun both PEST MYB 7CB


on ite, its

Fed Ex #:

Standard TAT inter

WHITE-Laboratory Copy YELLOW-Sample Tracker PINK-File Copy

COOLER RECEIPT CHECKLIST

Login # 206501 Client TETA TECH Date Received 10/1/08 Number of coole Project CAMPFIRE TEXA	ers	
Date Opened 10/1/08 By (print) M. VILLANUEL (sign) Date Logged in By (print) (sign)	Tar	e ₁
Did cooler come with a shipping slip (airbill, etc)? Shipping info	YES	6
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date		16
2B. Were custody seals intact upon arrival? YES 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form). 6. Indicate the packing in cooler: (if other, describe)	. VES	NO NO NO NO
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper to 7. Temperature documentation:	owels	
Type of ice used: Wet Blue/Gel None Temp(°C) 5	.7	
☐ Samples Received on ice & cold without a temperature blank		
☐ Samples received on ice directly from the field. Cooling process had begu	n	
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 2. Did all bottles arrive unbroken/unappened?	<u>.</u>	16 0
If YES, what time were they transferred to freezer? Did all bottles arrive unbroken/unopened?	YES	NO
If YES, what time were they transferred to freezer? D. Did all bottles arrive unbroken/unopened? O. Are samples in the appropriate containers for indicated tests? I. Are sample labels present, in good condition and complete?		
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers?		NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested?	30000000000000000000000000000000000000	NO NO NO NO
If YES, what time were they transferred to freezer? D. Did all bottles arrive unbroken/unopened? D. Are samples in the appropriate containers for indicated tests? L. Are sample labels present, in good condition and complete? Do the sample labels agree with custody papers? D. Was sufficient amount of sample sent for tests requested? Are the samples appropriately preserved?	5 (A)	NO NO NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery?	2 2 G G G G G G G G G G G G G G G G G G	NO N
If YES, what time were they transferred to freezer? Do Did all bottles arrive unbroken/unopened? Do Are samples in the appropriate containers for indicated tests? Lace sample labels present, in good condition and complete? Do the sample labels agree with custody papers? Baseline amount of sample sent for tests requested? Are the samples appropriately preserved? Are bubbles > 6mm absent in VOA samples? Was the client contacted concerning this sample delivery?	COLOR OF SES	NO NO NO NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 16. If YES, Who was called? 17. Date: 18. COMMENTS	COLOR OF SES	NO NO NO NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 17. If YES, Who was called? 18. Date:	COLOR OF SES	NO NO NO NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 16. If YES, Who was called? 17. Date: 18. COMMENTS	COLOR OF SES	NO NO NO NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 16. If YES, Who was called? 17. Date: 18. COMMENTS	COLOR OF SES	NO NO NO NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 16. If YES, Who was called? 17. Date: 18. COMMENTS	COLOR OF SES	NO NO NO NO NO NO
If YES, what time were they transferred to freezer? Do Did all bottles arrive unbroken/unopened? In Are samples in the appropriate containers for indicated tests? In Are sample labels present, in good condition and complete? In Do the sample labels agree with custody papers? In Are samples appropriately papers? In Are the samples appropriately preserved? In Are the samples appropriately preserved? In Are bubbles > 6mm absent in VOA samples? If YES, Who was called? If YES, Who was called? By Date: COMMENTS	NO NO YES	NO NO NO NO NO NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 16. If YES, Who was called? 17. Date: 18. COMMENTS	NO NO YES	NO NO NO NO NO NO

SOP Volume:

Client Services

Section:

1.1.2

Page: l of l

Rev. 6 Number 1 of 3
Effective: 23 July 2008
F:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

CASE NARRATIVE

Laboratory number: 207399

Client: Tetra Tech EMI
Project: 103DS1518019
Location: Campfire TCRA

Request Date: 11/03/08 Samples Received: 10/01/08

This data package contains sample and QC results for two soil samples, requested for the above referenced project on 11/03/08. See attached cooler receipt form for any sample receipt problems or discrepancies.

Pesticides (EPA 8081A):

All samples underwent sulfur cleanup using the copper option in EPA Method 3660B.

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7470A):

No analytical problems were encountered.

Organochlorine Pesticides Campfire TCRA EPA 3520C Lab #: 207399 Location: Client: Tetra Tech EMI Prep: 103DS1518019 EPA 8081A Project#: Analysis: 10/01/08 11/08/08 Units: ug/L Received: 144656 Batch#: Prepared: Sampled: 10/01/08

Field ID: RFS-WTAA-002-WASTE01

Matrix: TCLP Leachate Type: SAMPLE Diln Fac: 50.00 Lab ID: 11/18/08 207399-001 Analyzed:

Analyte	Result	RL	
Heptachlor	4.6	2.4	
alpha-Chlordane	14	2.4	
gamma-Chlordane	11	2.4	

Su	urrogate	%REC	Limits
TCMX		DO	37-120
Decachlorobi	iphenyl	DO	29-141

Field ID: RFS-WTAA-001-WASTE04 Matrix: TCLP Leachate

SAMPLE Diln Fac: 10.00 Type: Lab ID: 11/18/08 207399-002 Analyzed:

Analyte	Result	RL	
Heptachlor	ND	0.53	
alpha-Chlordane	ND	0.53	
gamma-Chlordane	ND	0.53	

	Surrogate	%REC	Limits
TCMX		DO	37-120
Decachloro	obiphenyl	DO	29-141

Type: Lab ID: BLANK Diln Fac: 1.000 QC469549 11/13/08 Analyzed:

Water Matrix:

Analyte	Result	RL	
Heptachlor	ND	0.050	
alpha-Chlordane	ND	0.050	
gamma-Chlordane	ND	0.050	

Surrogate	%REC	Limits
TCMX	92	37-120
Decachlorobiphenyl	112	29-141

DO= Diluted Out ND= Not Detected RL= Reporting Limit

Organochlorine Pesticides				
Lab #:	207399	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3520C	
Project#:	103DS1518019	Analysis:	EPA 8081A	
Matrix:	Water	Batch#:	144656	
Units:	ug/L	Prepared:	11/08/08	
Diln Fac:	1.000	Analyzed:	11/13/08	

Type: BS Lab ID: QC469550

Analyte	Spiked	Result	%REC	Limits
Heptachlor	0.2000	0.2464	123	48-127

Surrogate	%REC	Limits
TCMX	120	37-120
Decachlorobiphenyl	130	29-141

Type: BSD Lab ID: QC469551

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Heptachlor	0.2000	0.2217	111	48-127	11	30

Surrogate	%REC	Limits
TCMX	118	37-120
Decachlorobiphenyl	111	29-141

Metals Analytical Report

Lab #: 207399 Project#: 103DS1518019
Client: Tetra Tech EMI Location: Campfire TCRA
Units: ug/L Received: 10/01/08
Sampled: 10/01/08

Field ID: RFS-WTAA-002-WASTE01 Lab ID: 207399-001 Type: SAMPLE Matrix: TCLP Leachate

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Lead	15,000	30	10.00	144580	11/06/08	11/07/08	EPA 3010A	EPA 6010B
Mercury	0.95 J	1.0	1.000	144850	11/13/08	11/13/08	METHOD	EPA 7470A
Silver	ND	50	10.00	144580	11/06/08	11/07/08	EPA 3010A	EPA 6010B

Field ID: RFS-WTAA-001-WASTE04 Batch#: 144580 Type: SAMPLE Prepared: 11/06/08 Lab ID: 207399-002 Analyzed: 11/07/08 EPA 3010A EPA 6010B Matrix: TCLP Leachate Prep: 10.00 Diln Fac: Analysis:

Analyte	Result	RL	
Lead	2,700	30	

BLANK Type: 11/06/08 Prepared: Lab ID: QC469208 Analyzed: 11/07/08 TCLP Leachate EPA 3010A Matrix: Prep: 10.00 Diln Fac: EPA 6010B Analysis:

Batch#: 144580

Analyt	e Result	RL	
Lead	ND	30	
Silver	ND	50	

Prepared: BLANK 11/13/08 Type: Lab ID: QC470377 11/13/08 Analyzed: Matrix: Water Prep: METHOD EPA 7470A Diln Fac: 1.000 Analysis: Batch#: 144850

Analyte	Result	RL	
Mercury	ND	0.20	

J= Estimated value ND= Not Detected RL= Reporting Limit Page 1 of 1

Metals Analytical Report							
Lab #:	207399	Location:	Campfire TCRA				
Client:	Tetra Tech EMI	Prep:	EPA 3010A				
Project#:	103DS1518019	Analysis:	EPA 6010B				
Matrix:	TCLP Leachate	Batch#:	144580				
Units:	ug/L	Prepared:	11/06/08				
Diln Fac:	1.000	Analyzed:	11/07/08				

Type: BS Lab ID: QC469209

Analyte	Spiked	Result	%REC	Limits
Lead	2,000	1,901	95	80-120
Silver	200.0	184.2	92	80-120

Type: BSD Lab ID: QC469210

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Lead	2,000	1,970	99	80-120	4	20
Silver	200.0	195.3	98	80-120	6	20

	Meta	ls Analytical Repor	t	
Lab #:	207399	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3010A	
Project#:	103DS1518019	Analysis:	EPA 6010B	
Field ID:	ZZZZZZZZZ	Batch#:	144580	
MSS Lab ID:	207408-001	Sampled:	11/02/08	
Matrix:	TCLP Leachate	Received:	11/03/08	
Units:	ug/L	Prepared:	11/06/08	
Diln Fac:	10.00	Analyzed:	11/07/08	

Type: MS

Analyte	MSS Result	Spiked	Result	%REC	Limits
Lead	3,975	2,000	5,943	98	71-120
Silver	<10.54	200.0	183.5	92	69-120

Lab ID: QC469211

Type: MSD Lab ID: QC469212

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Lead	2,000	5,951	99	71-120	0	20
Silver	200.0	182.8	91	69-120	0	20

Metals Analytical Report						
Lab #:	207399	Location:	Campfire TCRA			
Client:	Tetra Tech EMI	Prep:	EPA 3010A			
Project#:	103DS1518019	Analysis:	EPA 6010B			
Field ID:	ZZZZZZZZZZ	Diln Fac:	50.00			
Type:	Serial Dilution	Batch#:	144580			
MSS Lab ID:	207408-001	Sampled:	11/02/08			
Lab ID:	QC469213	Received:	11/03/08			
Matrix:	TCLP Leachate	Analyzed:	11/07/08			
Units:	ug/L					

Analyte	MSS Result	MSS RL	Result	RL	% Di:	Ef Lim
Lead	3,975	30.00	4,122	150.0	4	10
Silver	ND	50.00	ND	250.0	NC	10

RL= Reporting Limit

	Metals	Analytical Repor	t	
Lab #:	207399	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	EPA 3010A	
Project#:	103DS1518019	Analysis:	EPA 6010B	
Field ID:	ZZZZZZZZZ	Diln Fac:	10.00	
Type:	Post Digest Spike	Batch#:	144580	
MSS Lab ID:	207408-001	Sampled:	11/02/08	
Lab ID:	QC469214	Received:	11/03/08	
Matrix:	TCLP Leachate	Analyzed:	11/07/08	
Units:	ug/L			

Analyte	MSS Result	Spiked	Result	%REC	Limits
Lead	3,975	20,000	22,670	93	75-125
Silver	<10.54	2,000	1,869	93	75-125

Page 1 of 1 6.0

	Metal	ls Analytical Repor	t	
Lab #:	207399	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	METHOD	
Project#:	103DS1518019	Analysis:	EPA 7470A	
Analyte:	Mercury	Batch#:	144850	
Matrix:	Water	Prepared:	11/13/08	
Units:	ug/L	Analyzed:	11/13/08	
Diln Fac:	1.000			

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC470378	5.000	5.150	103	80-120		
BSD	QC470379	5.000	5.260	105	80-120	2	20

Page 1 of 1 7.0

	Metals A	nalytical Repor	rt	
Lab #:	207399	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	METHOD	
Project#:	103DS1518019	Analysis:	EPA 7470A	
Analyte:	Mercury	Units:	ug/L	
Field ID:	RFS-WTAA-002-WASTE01	Diln Fac:	5.000	
Type:	Serial Dilution	Batch#:	144850	
MSS Lab ID:	207399-001	Sampled:	10/01/08	
Lab ID:	QC470381	Received:	10/01/08	
Matrix:	TCLP Leachate	Analyzed:	11/13/08	

MSS Result	MSS RL	Result	RL	% Diff Lim
0.9450	1.000	ND	5.000	NC 10

NC= Not Calculated ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Metals A	nalytical Repor	rt	
Lab #:	207399	Location:	Campfire TCRA	
Client:	Tetra Tech EMI	Prep:	METHOD	
Project#:	103DS1518019	Analysis:	EPA 7470A	
Analyte:	Mercury	Batch#:	144850	
Field ID:	RFS-WTAA-002-WASTE01	Sampled:	10/01/08	
MSS Lab ID:	207399-001	Received:	10/01/08	
Matrix:	TCLP Leachate	Prepared:	11/13/08	
Units:	ug/L	Analyzed:	11/13/08	
Diln Fac:	1.000			

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC470382	0.9450	25.00	27.80	107	71-124		
MSD	QC470383		25.00	27.55	106	71-124	1	20

APPENDIX E
WASTE PROFILE SHEETS AND MANIFEST

Form Approved, OMB No. 2050-0039 42 Year Full Rejection (877) 577-266 005043029 JJK GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent.

I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small plantity generator) is true. 13. Waste Codes 21121 Day UNIVERSITY OF CALIF., BERKELEY RICHBORD FIELD STAFFOR Month . Month 119 WAD991281767 CARGGG164012 12. Unit Wt./Vol. A U.S. EPA ID Number U.S. EPA ID Number U.S. EPA ID Number Partial Rejection Senerator's Site Address (If different than mailing address) 3300 800 RICHEGES CA 94884 (518)643-7195 11. Total Quantity (1) 397638-80 - ERG(171) PSCA SOTL AND DERETS (2) 397645-90 - ERG(171) BCAA SOIL AND BEHRIS 1301 SOUTH 66TH STREET b Type ð Port of entry/exit: Date leaving U.S.: 2. Page 1 of 3. Emergency Response Phone 10. Containers Residue ğ Š L. MEVADA, 11C Signature Export from U.S. MARCH MALLANIEUR WASTR, MOLLIE, R.C.S. (LAND, CHECKING) 9 PG. EMVIROBBIGNIAL HAMAGEMENT OF Hars + Worth 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number UR3432 POLYCHLORIBATHD BIPHENTLS, SOLID 9 PGILL Please print or type. (Form designed for use on elite (12-pitch) typewriter.) EDST FACTALTY UNITERESTYT OF CA., BETARELET OFFICE OF EMAS Perston Simple AT 24 - 1156 (518)643-6384 KERT, MA 98612 (253) 472-8636 Campber TORA 14. Special Handling Instructions and Additional Information 1. Generator ID Number Import to U.S. 17. Transporter Acknowledgment of Receipt of Materials Quantity DESLINGTOR SEVINORESHTAL, LLC. 117 UNITERSTIT NALL, 320 FLOOR 8. Designated Facility Name and Site Address DAZAS TITH AVENUE SOUTH 5. Generator's Name and Malling Address Generator's/Offeror's Printed/Typed Name Transporter signature (for exports only): and Packing Group (if any)) 18a. Discrepancy Indication Space 21st CENTURY Fransporter 1 Printed/Typed Name ransporter 2 Printed/Typed Name Transporter 1 Company Name Transporter 2 Company Name UNIFORM HAZARDOUS 16. International Shipments 10(0990) WASTE MANIFEST Facility's Phone: 18. Discrepancy ä . ₩ ₩ Ħ

ВОТАЯЗИЗО

ЯЗТЯОЧЅИАЯТ

, lea	_ •	ORM HAZARDOUS	Generator ID Number	vii) 1)	2. Page 1 of 3.	mergency Respons	e Phone	4. Manifest T	racking Nu	mber	ATION Classified, packaged, d am the Primary Month Day 12 15 10 Month Day Full Rejection Month Day	
		ORM HAZARDOUS	l.	3669268		(877)	577-26	56 UU	<u> </u>	<u> </u>	<u>უ </u>	<u> </u>
		nerator's Name and Maili		<u> </u>		erator's Site Address	s (II allierent ti	nan mailing addres	8)			
	T 3	NIVERSITY OF CA 17 UNIVERSTIY F	A., BERKELET OFFICE (HALL, 3RD FLOOR	OF EHGS.	. 1	AIVERSITY OF 381 SOUTH 46	H STREET	•	HIKOND: F	IELD STA	TION-	
	Gener	ato BREEZEY CA	4720-1150 (510)643	-6384		ICHNOND CA 9	804 (51)	U.S. EPAID N	lumber			
		nsporter 1 Company Nar		TAL MANAGEMENT	OF: NEVAE	A: LIC		CARO	20164	012		
		nsporter 2 Company Nar						U.S. EPA ID N	umber		>-2	
	D	BUCETUI	JE CAR	NER SE	MUICE			U.S. EPAID N		070	516	
	8. Des	signated Facility Name a	nd Site Address					U.S. EPAID N	lumber			
	E	BURLINGTON ENVI	RONNERTAL, LLC. KEN	T FACILITY								
		0245 77TH AVER		0818				WAD	99128	1767		
	_	y's Phone: 100T Decorin	EA 98032 (253) 872-	Name, Hazard Class, ID Number		10. Cont	ainers	11. Total	12. Unit	13.	Waste Code	\$
	9a. HM	and Packing Group (if	fany))			No.	Туре	Quantity	Wt./Vol.			
		1. IM3432 POL	YCHLORINATED BIPHEN	YLS, SOLID 9 PGIII		and the		2500	.tm .	6115%	拼音	
Į,	X			•	* 1	/	CF		P			
GENERATOR			BRANK WACED CALL	, N.O.S. (LEAD, CHRO	MTMEL Q BOTT	T .		4 _ 50 _		611	D007	D008
	₁₀		WATER BASIE' SONIN	* M.A.G. Inputs our		1 3	CF	9,600	P		 	
١ĭ	R	7 Eğinessi				~		170				
	-	3.								ļ		
-							1.					
-						_	+ -	 	 	 	<u> </u>	
≥		4.					.		İ	ļ	 	├
2			•							<u> </u>	<u> </u>	
V) [14. S	Special Handling Instructi	ons and Additional Information									
5-11		(1) 397638-90	- ERG(171) TSCA: S	OIL AND DEBRIS (2) 3	197645- 00 - E	RG(171) RCRA	SOIL AND) DEBRIS				
' []		Canad	Cina TORA 1	project was	te		÷					
						fully and accurately	described abo	ove by the proper s	hipping nam	ne, and are d	assified, pack	kaged,
	15.			in nooner condition for ITAIISDEN 2	iczziiuliu iu abblicai	ie internanciam cure i	national gover	nmental regulations	s. If export s	hipment and	i am the Phil	nary
				conform to the terms of the attac d in 40 CFR 262.27(a) (if I am a l					·			
	Gene	erator's/Offero's Printed	Typed Name		Signa	nie	112	1/		1.1	•	٠.
		Kaz		~ Kar Ita	_ /	/ lag	1 2 1	1 acce			<u> </u>	100
E N	•	nternational Shipments	IIIIpoit to 0.0.	i	Export from U.S	. Port of Date le	entry/exit: aving U.S.:	<u></u>				
		nsporter signature (for ex	cports only): nent of Receipt of Materials			0000	aring order	4				
TDANSDORTER	Tran	ransporter Acknowledgii sporter 1 Printed/Typed			Signa	ure	hit			M	onth Day	y Year 5 49
١٥		Jann 1305	ter ,			neyp	MY	W			ionth Da	
NA STATE	Tran	sporter 2 Printed/Typed		<i>P</i> - 4 0	- VSigna I	ture / /	- 1	1/2		i		PB.
٩	<u> </u>	1/1	AVID L	per			~ 4	- Cy			<u>, , , , , , , , , , , , , , , , , , , </u>	
_ <u> </u> 1	_	Discrepancy		_				Partial R	olootion		Full Re	eiection
	18a.	. Discrepancy Indication	Space Quantity	Туре	•	Residue		L_J raidal K	ejecuon			,,
	-	,				Manifest Refere	ence Number:					
2	18b	. Alternate Facility (or Ge	enerator)					U.S. EPA ID	Number			
	<u>.</u>							1 .				
		ility's Phone:									Month D	ay Yea
1	180	Signature of Alternate F	Facility (or Generator)									
	<u> </u>		/M	(i.e., codes for hazardous waste	treatment disposal	and recycling system	ns)	· · · · · · · · · · · · · · · · · · ·				
COLVECTOR	19. 1.	Hazardous Waste Repo	π Management Method Codes	(i.e., CATES IN HELETOODS WASIE	3.			4.				
ľ	. 1											
	20.	Designated Facility Own	ner or Operator: Certification of	receipt of hazerdous materials o	overed by the manife	st except as noted in	Item 18a				Month D	iay <u>Y</u> ea
				sastoni			Co-Do	RME		ı	120	'31Q
Ι,	11/	inrist	714 U1	SW 1914	<u> </u>	-11 101 C	<u> </u>	- 1 00				<u></u>

مسند	of print or type. (Form designed for use on elite ((12-pitch) typewriter.)			A. I		pproved, OMB No. 20	150-0039
Ī	UNIFORM HAZARDOUS WASTE MANIFEST (Continuation Sheet)	21. Generator ID Number CAD 983 Let	7248 22	Page 2	3. Manifest Tracking Nul 005 04 3	nber 5 02 <i>G</i>	WK_	
 	O. C	and the second s						
	University of 25. Transporter 3 Company Name Bug	California				Byparle a -		
	25. Transporter 3 Company Name A	linean Frian	marres to	P	U.S. EPAID		2001743	,
 	26. Transporter Company Name	Mrs. Allin	,	<u> </u>	U.S. EPA ID			
\prod		inning Name Havard Class ID Number		28. Containers	29. Total	30. Unit	A4 W	
	27a. 27b. U.S. DOT Description (including Proper Shi HM and Packing Group (if any))	ipping name, nazatu olass, ib number,			Type Quantity	Wt./Vol.	31. Waste Codes	
$\ $,						
						1		
						 		
						-		
						 		
힑						-		
GENERATOR						 		
뜅						-		
						+++		
						-		
						++		
	· ·					-		<u> </u>
						+ -		
						-		
						+-+		
	1					-		
						+		- -
						-		
	32. Special Handling Instructions and Additional Inform	nation				<u> </u>		
					: .			
ļ					Á			
_	33. Transporter 3 Acknowledgment of Receipt of Printed/Typed Name	of Materials	. (Signature)		<u></u>		Month Day	
TRANSPORTER	Mars As	Mu	<u> </u>	1 april	M	<u>ı</u>	11248	108
ANSI	34. TransporterActnowledgment of Receipt or Printed/Typed Name	of Materials	Signature	U			Month Day	Year
T								
<u>Έ</u>	35. Discrepancy							
FACIL								
DESIGNATED FACILITY	36. Hazardous Waste Report Management Method Co	odes (i.e., codes for hazardous waste treatmen	nt, disposal, and recyclin	ng systems)		1		
SIGN								
Ä								=
FP/	A Form 8700-22A (Rev. 3-05) Previous editions a	are obsolete.	DESIGNA	TED FACI	ILITY TO DESTI	NATION S	STATE (IF REQ	UIRED

Form Approved, OMB No. 2050-0039

Page Philip Services, Corporation Generator's Waste Profile 397638-00 Status: PENDING Starts: 03 DEC 2008 256 Jennifer Abbott Sales Rep Expires: 31 DEC 2009 Acct Mngr 0043 David Sato 03 DEC 2008 Printed: A: GENERATOR (21508) SITE INFORMATION B: CUSTOMER (41107) INFORMATION UNIVERSITY OF CALIF., BERKELEY RICHMOND FIELD UNIV. OF CALIFORNIA CAPITAL PROJECTS - ACCT. EPA CAD983669268 1936 UNIVERSITY AVE, ROOM 280 8221 SIC N 1301 SOUTH 46TH STREET BERKELEY, CA 94707-7027 RICHMOND, CA 94804 Contact KELLEY ETHERINGTON Phone (510) 643-7195 Analysis Yes On File > MSDS No Sample No C: WASTE INFORMATION TSCA SOIL AND DEBRIS FROM FIRE PIT: WASTESTREAM WTAA-001 Waste Name SITE REMEDIATION Process D: PHYSICAL CHARACTERISTICS OF WASTE NT PH Range Odor None Free Liq % NONE S-Sol Top Color VARIES **Phys States** Single Phased Flash Test NT Layers Mid Color Flash Rnge NotTested Spec Grav 1.0-1.4 **Bot Color** Information Provided By Generator E: CHEMICAL COMPOSITION OF WASTE (<0.008 ppb 80 -90 %) HEPTACHLOR CONTAMINATED SOIL 1800 mgk DEBRIS: PPE/GLASS/METAL/PLASTIC 10 -20 %) LEAD, TOTAL 80.4 mgk) LEAD, TCLP 2.7 mgl POLYCHLORINATED BIPHENYLS <500 PPM VOC NS Sulfides NS PCB's 80.4 PPM Phenolics Cyanides NS 5.1 PPM Chromium 72 PPM Silver 55 PPM Zinc 1700 PPM F: METALS METHOD Total Cadmium Nickel 97 PPM Copper 2200 PPM Selenium ND 20 PPM Merc TCLP NT Arsenic Chrome-6 Merc Tot 3.8 PPM Thallium ND 720 PPM 1800 PPM Barium Lead Vanadium 41 PPM Cobalt 15 PPM G: OTHER CHARACTERISTICS OF WASTE No Water Reactive No Reactive No **Shock Sensitive** No Ign. Solid No Oxidizer No Explosive DW / EHW DW TSCA Yes Universal Waste No. H: EPA / STATE WASTE IDENTIFICATION Dangerous / Hazardous Yes Waste Water No CERCLA Debris No NESHAPS No Form W301 Source G44 Origin 2 SubPart CC No **EPA** Codes State Codes 611 Inhalation Hazard No Poison No Dangerous Wet No Marine Pollutant No I: SHIPPING INFORMATION **Projected Volume** Monthly Qty to Ship Now Containers CF Fiber Container UN3432 POLYCHLORINATED BIPHENYLS, SOLID 9 PGIII ERG(171) **DOT Descrip**

J: SPECIAL HANDLING INFORMATION

TSCA: ALL SHIPMENTS MUST HAVE THE FOLLOWING INFORMATION: OUT OF SERVICE DATE FOR ALL ITEMS; UNIQUE IDENTIFICATION NUMBER FOR ALL PCB CONTAINERS, PCB ARTICLE CONTAINERS, AND PCB ARTICLES; WEIGHT MUST BE MANIFESTED IN KILOGRAMS; Waste Categs PCB08

Philip Services, Corporation

Generator's Waste Profile 397638-00

Page

2

Status: PENDING

Starts: 03 DEC 2008 Expires: 31 DEC 2009

Printed:

31 DEC 2009 03 DEC 2008 Sales Rep Acct Mngr 256 Jennifer Abbott 0043 David Sato

GENERATOR CERTIFICATION

I hereby certify, as an authorized representative of the Generator named above, that BEI has been fully informed of all information known about this waste, including but not limited to, the waste's generation process, composition, and physical characteristics, necessary to identify proper treatment and disposal of waste and this information is true and accurate.

If this is an existing profile which is being renewed, I hereby certify that there have been no changes in this waste, chemical, physical, or regulatory designation since full characterization by sample testing.

Signature

Printed Name

Assuc. Director

Date

Philip maintains the requisite permits and agrees to accept this waste stream, as described.

niiip Serv	vices, Co	rporation		G	enerat	or's	Wast	e Profil	le 3	976	45-00				Page	des est tills
Starts :		C 2008	1		and the second second		of the organization of	etratale - t-a Austrian - c	e produce deposit	name				Status : PE		
Expires:		C 2009										Rep		lennifer Abbo	tt	
Printed:	03 DE0	C 2008	and the state of the service from the		etianisti ataurki on kusir-laksiisin	al VANCEAN COTAGE		er han er let straggisk mengen som er til steller om 2000.		MEZICH KANDON-AND	ACCI	Mngr	0043 L	David Sato		
: GENE	RATOR	(21508)	SITE	NFORMA	TION				B:	CUST	OMER (4	1107)	INFOR	RMATION		
UNIVER	RSITY OF	CALIF.,BI	ERKELI	EY RICHMO	ND FIELD	EPA	CAD98	3669268		UNIV.	OF CALIFO	RNIA C	APITAL	PROJECTS	- ACCT	
1301 S	OUTH 46	TH STREE	ΕT			SIC	8221	N			JNIVERSITY			280		
	IOND, CA					CD 2000 F F F F	(540) 0	10.7105		BERK	ELEY, CA 94	1707-70	027			
> Co	ontact	KELLEY E	THERI	NGTON		Phone	(510) 6	43-7195								
C: WAST	E INFO	RMATION	4		On Fil	9 >	MSDS	No Ana	lysis	No	Sample	No				
Waste Proces		RCRA SO SITE REM			ROM FIRE PI	T: WAS	TESTRE/	0-AATW MA	02							
D: PHYS	ICAL CH	HARACTE	ERISTI	CS OF W	ASTE							PHI	Range	NT		
Phys S	States	S-Sol 1	Гор Со	or VARIE	S		Odor	None				Free	e Liq %			
		- 5	Mid Co	200			Layers	Single		sed			h Test			
		Î	Bot Col	lor			Spec G	rav 1.0-1.	4			rias	in Knge	NotTested		
E: CHEM	IICAL C	OMPOSIT	TION C	F WASTE			Informa	ition Provid	led B	y Ge	enerator		9	518 8		-
DEBRI CHROM LEAD, LEAD, MERCU	IUM TOTAL TCLP RY, TOT	GLASS/ME	TAL/P	LASTIC		- mgk mgk mgl ppb	20 %)	HEPTACHL CHLORDAN GAMMA-BH CHLORDAN P, P'-DDE HEPTACHL POLYCHLO	E, T C (U E (U (UH OR (HC) HC) C) UHC)	TPHENY! S			4.6 ppb 25 ppb 1.6 mgk 87 mgk 5 mgk 27 mgk 13.13 mgk		
PCB's	RY, TCL YES		inides	NS	Phenolic	25/5/5	ೆ	Sulfides	NS					voc	<500 P	2540560
					Cadmiun		PPM	Chromiun		n ppin	Silver	110	PPM	Zinc	5300 P	PM
r: IVIE I A	ILS IVIE I	THOD Tota Ars	enic	30 PPM	Merc TCI			Selenium		V 1 1 101	Nickel		PPM	Copper	3300 F	
		Bar	ium	990 PPM	Lead	120	00 PPM	Merc Tot	11	PPM	Thallium	ND		Chrome-6		
											Vanadlur	n 39	PPM	Cobalt	28 PF	M
G: OTHE	R CHAI	RACTERI	STICS	OF WAS	E											
lgn. Sc	olid	No Oxi	dizer	No	Explosiv	e No	Shock	Sensitive	No		Water Rea	ctive	No	Reactive		No
H: EPA /	STATE	WASTE	IDENT	IFICATIO	V Dangero	us / Ha	zardous	Yes	DW	/ EHW	DW	TSCA	No	Universal	Waste	No
Form	W301	Source (344	Origin 2	SubPart	CC No	NESH	APS No	CEF	RCLA	No	Debris	No	Waste Wa	ter	No
	Codes	D007 D00	08												W	
I: SHIPI	PING IN	FORMAT	ION	M	arine Polluta	nt No	Dang	erous Wet	No		Inhalation	Hazaro	No	Poison		No
Conta		CF Fiber		ner			Qty to	Ship Now			Proje	ected V	/olume			
	escrip				TE, SOLID, N	I.O.S. (0.000 M		PGII	I ERG	(171)					
		NDLING I						Α.								
					OLLOWING	INFOR	MATION	OUT OF SE	RVIC	E DATE	F FOR ALL I	TEMS:	UNIOU	E IDENTIFIC	ATION	
NUMB	ER FOR													ED IN KILOG		

Philip Services, Corporation

Generator's Waste Profile 397645-00

Page

2

Status: PENDING

Starts: 03 DEC 2008 Expires:

Printed:

31 DEC 2009

Sales Rep 256 Jennifer Abbott Acct Mngr 0043 David Sato

GENERATOR CERTIFICATION

03 DEC 2008

I hereby certify, as an authorized representative of the Generator named above, that BEI has been fully informed of all information known about this waste, including but not limited to, the waste's generation process, composition, and physical characteristics, necessary to identify proper treatment and disposal of waste and this information is true and accurate.

If this is an existing profile which is being renewed, I hereby certify that there have been no changes in this waste, chemical, physical, or regulatory designation since full characterization by sample testing.

Signature

Philip maintains the requisite permits and agrees to accept this waste stream, as described.