UNIVERSITY OF CALIFORNIA, BERKELEY

BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

OFFICE OF ENVIRONMENT, HEALTH AND SAFETY UNIVERSITY HALL, $3^{\rm rd}$ FLOOR

BERKELEY, CALIFORNIA 94720-1150

March 10, 2022

Nicole Yuen Project Manager Department of Toxic Substances Control 700 Heinz Avenue Berkeley, CA 94710

Sara Ziff Project Manager U.S. Environmental Protection Agency, Region 9 75 Hawthorn Street San Francisco, California 94105

Subject: Sampling Results for Western Stege Marsh Near-Surface Sediment Samples

January 24, 2022 Sampling Event

Richmond Field Station Site, University of California, Berkeley

Dear Ms. Yuen and Ms. Ziff:

University of California, Berkeley Office of Environment, Health & Safety staff conducted the annual Public Health Assessment recommended marsh sediment sampling at the Richmond Field Station Site on January 24, 2022. The objective of the sampling effort was to characterize near-surface sediment in remediated portions of the Western Stege Marsh, as well as to evaluate incidental sediment contact by marsh restoration workers. This sampling event replicates the near-surface sediment sampling conducted annually in January or February from 2008-2020. This letter provides the rationale for the selected sampling locations, a summary of field sampling protocols, including minor adjustments from previous years, and sample results. A figure showing the sampling locations is presented at the end of this letter. Complete analytical results are presented in Attachment 1.

Sample Locations

Incremental sampling methodology (ISM) sampling was selected for this project to provide a comprehensive and thorough evaluation of chemical concentrations in a specific area of potential exposure, or decision unit. The ISM sampling strategy for this project was based on selecting a decision unit to best represent potential exposure by workers involved in restoration activities within remediated marsh areas.

Ms. Nicole Yuen Ms. Sara Ziff March 7, 2022 Page 2

In January 2008, UC Berkeley established site-specific boundaries of the areas where marsh restoration activities may be performed. Based on this information, one decision unit, identified as Western Stege Marsh Decision Unit 1, was identified to evaluate possible exposure areas within remediated portions of the marsh under this sampling activity. This decision unit was first sampled in January 2008, and then once every subsequent year until 2020, after which sampling transitioned to every two years (even-numbered years). The location and extent of the Western Stege Marsh Decision Unit 1 are presented on the figure at the end of this sampling letter. The decision unit encompassed an area recommended for sampling in the Public Health Assessment, Evaluation of Exposure to Contaminants at the University of California, Berkeley, Richmond Field Station, as prepared by the California Department of Public Health and Agency for Toxic Substances and Disease Registry, dated March 13, 2008. The health assessment report concluded that there was an unknown potential health risk to marsh restoration workers posed by recontamination of sediment in the remediated marsh.

Surface samples at depths of 0 to 2 inches below ground surface (bgs) were collected because the decision unit is intended to characterize near-surface soils. The rationale for this sampling interval is that the sediment which workers may be exposed to during planting or weeding on the marsh plain. The near-surface sediment also represents any sediment that may be migrating within slough channels and being deposited on top of clean Bay Mud used as backfill in 2002 to 2004. Two previous sampling events were conducted in this decision unit in 2005 and 2006 using a discrete sampling methodology.

Field Sampling Protocols

The near-surface sediment sample was collected on January 24, 2022. The decision unit was identified in the field based on the description above and consistent with previous sampling events. One ISM surface soil sample was collected from the decision unit. The ISM soil sample consisted of 80 subsamples, or increment locations, collected from 0 to 2 inches bgs. The number of increments was increased from 50 in previous samples to 80 samples in January 2018 due to guidance from Federal EPA that recommends a minimum of 75 increments be collected for assessment of PCB concentrations using ISM methodology. ^{1,2}

The ISM sampling technique was used to obtain sufficient near-surface soft sediments from the decision unit to account for both compositional and distributional heterogeneity of any possible contamination. The sampling protocol followed these steps:

1. The field sampler began at a corner of the decision unit and sampled in an orthogonal pattern, moving from east to west to collect subsamples from 80 locations with the decision unit. The location of these subsamples, shown in approximation on the attached figure, was not critical as long as they were distributed throughout the decision unit. The subsamples were collected using one clean metal spoon or disposable trowel for the decision unit.

¹ U.S. Environmental Protection Agency. (2019). *Incremental Sampling Methodology (ISM) at Polychlorinated Biphenyl (PCB) Cleanup Sites*. Retrieved February 28, 2020 from EPA: https://www.epa.gov/pcbs/incremental-sampling-methodology-ism-pcb-cleanup-sites

² Ibid. (2017). *PCB Facility Approval Streamlining Toolbox: A Framwork for Streamlining PCB Site Cleanup Approvals*. Retrieved February 28, 2020 from EPA: https://www.epa.gov/sites/production/files/2017-06/documents/06072017 final pcbfast toolbox 508compliant.pdf

Ms. Nicole Yuen Ms. Sara Ziff March 7, 2022 Page 3

- 2. The 80 subsamples were placed into clean, unused 32 ounce glass jars as they were collected. The final sample consisted of two nearly full 32 ounce jars.
- 3. The entire sample was placed on ice, and delivered via courier to McCampbell Analytical, Inc., in Pittsburg, California, after the sampling event, on January 24, 2022 for analysis by the McCampbell Analytical Multi-Incremental Sub-Sampling (MIS) Procedure with subsampling to 30 gram sample for PCBs and a 10 gram subsample for metals analyses. A copy of the chain-of-custody form is presented in Attachment 1.

Sample Results

The sample was submitted for analysis of metals and polychlorinated biphenyls (PCB) using the methods listed below.

- Metals by EPA Method 6020 with extraction Method 3050B
- PCB analysis by EPA Method 8082 with Soxhlet Extraction Method 3540C

Pesticide analysis was excluded from this year's sampling event because review of pesticide analyses from previous sampling events dating from 2008 to 2017 determined that pesticides are not a chemical of concern. This is consistent with the March 17, 2010 Final CDPH and ATSDR Public Health Assessment's evaluation of marsh sediments and surface water at the RFS which identifies PCB and metals and potential exposure risks. Previous pesticide analyses are included for reference and will be included in future reports.

PCBs were reported at concentrations less than the commercial/industrial screening levels. Arsenic was reported at a concentration exceeding its background concentration of 16 milligrams per kilogram. All other metals analyzed were detected at concentrations less than the applicable commercial/industrial screening level or not detected. The sampling results and screening criteria are presented in the tables following this letter.

The January 2022 sampling results were compared with the 2008 through 2020 sampling results from the same decision unit, as well as with averages from discrete samples collected from the same area during sampling events in 2005 and 2006. The analytical results from the 2020 sampling event are similar to the previously collected data; no trends have been identified.

Ms. Nicole Yuen Ms. Sara Ziff March 7, 2022 Page 4

If you have any questions or comments regarding this submittal, please call me at (510) 725-2528.

Sincerely,

Alicia Bihler

Environmental Programs Manager

Alicia Blus

Enclosures: Analytical Summary Tables

Sample Location Figure

Attachment 1: McCampbell Analytical Results Work Order Number 2201A62

POLYCHLORINATED BIPHENYLS (PCB) RESULTS REPORTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

		PCBs (1)		
Screening Criteria	Aroclor- 1248	Aroclor- 1254	Aroclor- 1260	Total Aroclors
Commercial worker	0.528	0.588	0.595	0.577
Construction worker	3.99	2.29	4.01	3.98
Maintenance worker	3.99	4.00	4.01	3.98
Off-Site Receptor	3.07	4.15	6.44	2.61
Other	1(2)	1(2)	1(2)	1
Category I Criteria	1	1	1	1
Category II Criteria	1	1	1	1
Sample Location				
WSM 16 discrete sample mean (3)				
March 1, 2005	$0.19^{(4)}$	0.14(5)	0.054	0.384
WSM 30 discrete sample mean (3)		-		
June 13, 2006	$0.22^{(6)}$	ND	$0.016^{(7)}$	0.236
WSM DU1-001				
January 17, 2008	0.081	0.053	0.021 J	0.155
WSM DU1-002				
February 4, 2009	0.18	0.10	0.05	0.33
WSM DU1-003				
February 18, 2010	0.31	0.16	0.036 J	0.506
WSM DU1-004				ND
February 22, 2011	0.048 U	0.048 U	0.048 U	(<0.048)
WSM DU1-005				
February 3, 2012	0.034 U	0.096	0.068	0.164
WSM DU1-006				ND
February 4, 2013	0.010 U	0.010 U	0.010 U	(<0.010)
WSM DU1-007				
February 27, 2014	0.19	0.042 U	0.03 J	0.268
WSM DU1-008				
January 27, 2015	0.094	0.097	0.036	0.227
WSM DU1-009	0.100	ND	ND	0.100
January 21, 2016	0.100	(<0.0097)	(<0.0097)	0.100
WSMPHA17	ND	0.022	0.010	0.051
January 18, 2017	(<0.012)	0.033	0.018	0.051
WSM2018PHA	ND	ND	0.410	0.410
January 26, 2018	(<0.160)	ND ND	0.410	0.410
WSM2019PHA January 25, 2019	ND (<0.066)		ND (<0.066)	ND
WSM2020PHA	(<0.066) ND	(<0.066)	(<0.066) ND	מא
January 31, 2020	(<0.033)	0.15	(<0.033)	0.15
WSM2022PHA	(~0.033)	ND	(<0.033) ND	0.13
January 24, 2022	0.24 A	(<0.050)	(<0.050)	0.24

Notes:

Bold values indicate that the result exceeded the Category I criterion.

Screening criteria based on the Final Soil Management Plan, Revision 2, Table C-1, December 31, 2019.

(1) All other PCBs not detected
(2) Other criteria for PCBs are based on Toxic Substances Control Act (TSCA) criteria for high occupancy areas with no cap
(3) For detect-only data, the mean is the arithmetic mean. For chemicals with non-detect measurements, this value is the arithmetic mean with one-half the detection limit substituted for non-detect measurements.

(4) (5) (6) (7) J Thirteen detections Eleven detections Nineteen detections Twelve detections Estimated Value NA Not available ND, U Not detected

The reported value is determined using a "single point" calibration by GC-ECD as allowed by the method.

PESTICIDE RESULTS REPORTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

		Pesticides (1)												
Screening Criteria	Aldrin	Alpha-bhc	Heptachlor	Heptachlor expoxide	Endosulfan I	Dieldrin	Endrin	Endosulfan sulfate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Alpha- Chlordane	Gamma- Chlordane	Methoxychlor
Commercial worker	0.184	0.235	0.626	0.330	6,030	0.093	159	3,180	6.18	9.28	7.06	6.10	6.10	
Construction worker	1.41	1.58	5.14	2.59	1,990	0.623	43.1	855	4.3	70.5	49.9	43.60	43.6	
Maintenance worker	1.415	1.58	5.14	2.59	49,600	0.623	1,080	21,400	41.5	70.5	49.9	43.60	43.6	
Off-Site Receptors	0.984	2,120	1.03	0.910	10,300	830		34,000,000	55,300	60.7	39,400	42.0	42.90	
Category I Criteria	0.184	0.235	0.626	0.330	1,990	0.0926	43.1	855	4.31	9.28	7.06	6.10	6.10	
Category II Criteria	1.84	2.35	6.26	3.30	19,900	0.926	431	8,550	43.1	92.8	70.6	61.0	61.0	
Sample Location										•				
WSM 16 discrete sample mean ⁽²⁾ March 1, 2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WSM 30 discrete sample mean ⁽²⁾ June 13, 2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WSM DU1-001 January 17, 2008	0.017 U	0.017 U	0.017 U	0.017 U	0.017 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.017 U	0.017 U	0.17 U
WSM DU1-002 February 4, 2009	0.060 U	0.060 U	0.060 U	0.060 U	0.060 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.060 U	0.060 U	0.60 U
WSM DU1-003 February 18, 2010	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.032 U	0.032 U	0.32 U
WSM DU1-004 February 22, 2011	0.017 CJ	0.034 U	0.034 U	0.033 CJ	0.0037 UJ	0.029 CJ	0.046 CJ	0.031 UJ	0.038 UJ	0.066 U	0.044 CJ	0.023 UJ	0.034 U	0.012 UJ
WSM DU1-005 February 3, 2012	0.0023 CJ	0.006 U	0.006 U	0.0031 J	0.006 U	0.012 U	0.012 U	0.012 U	0.0037 J	0.0036 CJ	0.0041 CJ	0.0015 CJ	0.0015 CJ	0.06 U
WSM DU1-006 February 4, 2013	0.017 U	0.017 U	0.017 U	0.017 U	0.017 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.017 U	0.017 U	0.17 U
WSM DU1-007 February 27, 2014	0.037 U	0.037 U	0.037 U	0.0095 CJ	0.037 U	0.072 U	0.072 U	0.072 U	0.072 U	0.072 U	0.072 U	0.037 U	0.037 U	0.37 U

	Aldrin	Alpha-bhc	Heptachlor	Heptachlor expoxide	Endosulfan I	Dieldrin	Endrin	Endosulfan sulfate	4,4'-DDD	4,4'-DDE	4,4'-DDT	Alpha- Chlordane	Gamma- Chlordane	Methoxychlor
WSM DU1-008														
January 27, 2015	0.0042 U	0.00048 C J	0.00069 C J	0.0042 U	0.0042 U	0.0042 U	0.016 C J	0.0081 U	0.0077 C J	0.0081 U	0.18 C	0.00042 U	0.00042 U	0.00042 U
WSM DU1-009	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
January 21, 2016	(< 0.034)	(< 0.034)	0.040	(< 0.034)	(< 0.034)	(< 0.034)	(< 0.067)	(< 0.067)	(< 0.067)	(< 0.067)	(< 0.067)	(< 0.034)	(< 0.034)	(< 0.34)
WSMPHA17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
January 18, 2017	(<0.033)	(<0.033)	(<0.033)	(<0.033)	(<0.033)	(< 0.033)	(< 0.065)	(< 0.065)	(< 0.065)	(< 0.065)	(< 0.065)	(< 0.033)	(< 0.033)	(< 0.33)
WSM2018PHA														
January 26, 2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WSM2019PHA														
January 25, 2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WSM2020PHA														
January 31, 2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WSM2022PHA							_	_						
January 24, 2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Only chemicals that were detected or have screening criteria are listed.

Bold values indicate that the result exceeded the Category I criterion.

Screening criteria based on the Final Soil Management Plan, Revision 2, Table C-1, December 21, 2019.

- (1) All other pesticides were not detected.
- (2) For detect-only data, the mean is the arithmetic mean. For chemicals with non-detect measurements, this value is the arithmetic mean with one-half the detection limit substituted for non-detect measurements.
- C Relative percent difference between columns exceeds 40%
- J Estimated Value
- NA Not available samples collected in 2005, 2006, 2018, 2019, and 2020 were not analyzed for pesticides.
- U Not detected (method blank contamination)

METAL RESULTS REPORTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

												Mo	etals											
Screening Criteria	Aluminum	Antimony	Arsenic (1)	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
Commercial worker	NA	467	0.253	217,000	232	778	NA	1,750,000	347	46,700	818,000	320	NA	25,600	187	5,840	11,100	NA	5,840	5,840	NA	11.70	5,780	350,000
Construction worker	NA	142	0.85	2,120	21.4	36.6	NA	531,000	21.1	14,200	248,000	320	NA	213	39.6	1,770	60.4	NA	1,730	1,770	NA	3.54	351	106,000
Maintenance worker	NA	3,540	1.77	53,100	128	73	NA	13,300,000	34.1	354,000	6,190,000	320	NA	5,340	989	44,200	1,180	NA	44,200	44,200	NA	88.5	8,780	2,650,000
Off-Site Receptors	NA		888	709,000	1,590	909	NA		424				NA	71	42,500		14,700	NA	28,400,000		NA		142,000	
Other	$NA^{(2)}$		16(1)						73(2)					5,900(2)			280(2)							
Category I Criteria	NA NA	142	16	2,120	21.4	36.6	NA	100,000	73	14,200	100,000	320	NA	5,900	39.6	1,770	280	NA	1,730	1,770	NA NA	3.54	351	100,000
Category II Criteria	NA	1,420	16	21,200	214	366	NA	100,000	730	100,000	100,000	800	NA	5,900	396	17,700	604	NA	17,300	17,700	NA	35.4	3,510	100,000
Sample Location												I						I						
WSM 16 discrete sample mean ⁽³⁾ March 1, 2005	NA	ND	55.7	ND	0.84	1.2 ⁽³⁾	NA	86.44	ND	118	NA	51.56	NA	NA	2.59	ND	85.75	NA	1.15(4)	ND	NA	ND	ND	276
WSM 30 discrete sample mean ⁽³⁾ June 13, 2006	NA	6.2°	55.3	78.1	0.61	1.24 ⁽⁵⁾	NA	89.4	14.8	136	NA	82.1	NA	NA	3.5	2.4 ⁽⁶⁾	81.4	NA	1.03 ⁽⁷⁾	0.29(8)	NA	0.51 ⁽⁹⁾	81.5	321
WSM DU1-001 January 17, 2008	28,000	2.4	15	53	0.53	0.38 J		74	13	67	46,000	32	15,000			0.50 U	69	3,300	1.0 U	0.50 U	8,200	1.0 U	67	140
WSM DU1-002 February 4, 2009	8,800	1.3	22	31	0.89 U	0.52 J	2,600	39	10	79	26,000	44	9,600	620	1.8	1.3	48	3,900	0.73 J	0.89 U	30,000	0.89 U	39	210
WSM DU1-003 February 18, 2010	24,000	3.9	26	61	0.60	0.68 J	3,900	81	12	100	38,000	52	13,000	330	2.6	0.89 J	73	4,900	1.2 J	0.96 U	21,000	1.9 U	71	260
WSM DU1-004 February 22, 2011	23,000	11	35	57	0.67	0.50 J	3,700	78	13	110	36,000	59	13,000	360	3.0	1.8	75	4,900	2.0 U	0.34 J	23,000	2.0 U	68	280
WSM DU1-005 February 3, 2012	20,000	0.45 J	29	51	0.76 J	0.49 J	3,500	72	12	90	38,000	52	12,000	590	2.3	1.6	68	4,700	1.1	0.47 J	22,000	0.11 J	54	230
WSM DU1-006 February 4, 2013	28,000	1.2 U	28	60	0.61	0.31 J	3,600	84	16	96	45,000	56	13,000	510	2.0	1.8	83	4,600	1.2 U	0.43 J	14,000	1.2 U	77	240
WSM DU1-007 February 27, 2014	24,000	1.2	48	64	0.77 J	0.93 J	3,900	100	19	140	60,000	83	16,000	790	1.9	4.5	94	5,200	1.4	0.64 J	22,000	0.31 J	86	400
WSM DU1-008 January 27, 2015	23,000	0.50 J	25	52	0.66	0.41 J	3,900	76	15	59	37,000	41	12,000	780	1.5	1.3	76	4,200	1.1	0.29 J	17,000	0.15 J	72	190

	Aluminum	Antimony	Arsenic (1)	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
WSM DU1-009 January 21, 2016	NA	0.88	19	47	0.65	2.0	NA	80	14	77	NA	38	NA	NA	2.2	2.2	73	NA	ND (<0.5)	0.25	NA	0.81	70	180
WSMPHA17 January 18, 2017		ND (<2.0)	6.8	20	0.17	0.64	NA	30	4.6	29	NA	19	NA	NA	0.54	0.94	28	NA	ND	ND (<0.25)		ND (<0.49)	, ,	110
WSM2018PHA January 26, 2018		ND (<2.0)	13	21	0.21	0.27	NA	26	4.6	22	NA	17	NA	NA	0.46	0.63	24	NA	ND	ND (<0.25)		ND (<0.51)		73
WSM2019PHA January 25, 2019		ND (<2.0)	16	33	0.43	0.49	NA	53	9.3	52	NA	34	NA	NA	0.32	1.0	47	NA	ND	ND (<0.25)		ND (<0.49)		140
WSM2020PHA January 31, 2020		ND (<2.0)	22	50	0.50	0.34	NA	79	14	80	NA	42	NA	NA	0.61	1.6	71	NA	ND (<2.0)			ND (<0.50)		180
WSM2022PHA January 24, 2022	NA	0.72	16	50	ND	ND (<0.50)		65	8.9	52	NA	32	NA	NA	1.0	1.6	59	NA		ND (<0.50)		ND (<0.50)		150

Notes:

Bold values indicate that the result exceeded the Category I criterion.

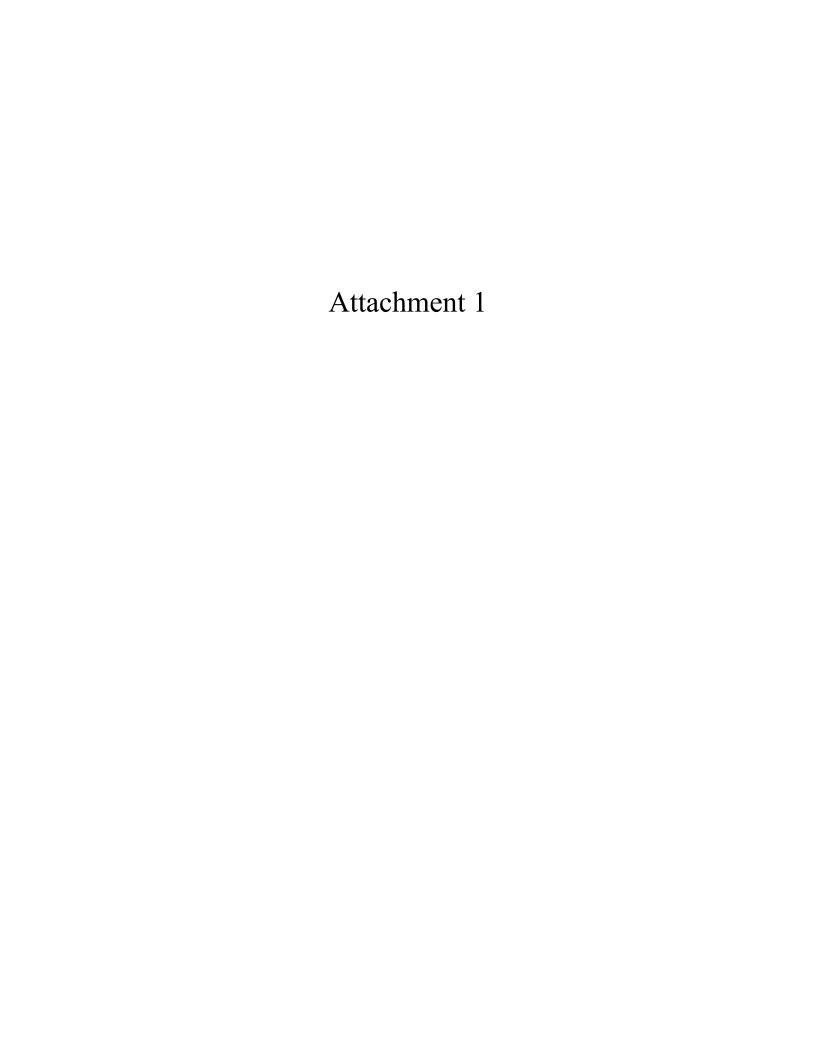
Screening criteria based on the Final Soil Management Plan, Revision 2, Table C-1, December 31, 2019.

NA	Not available
ND	Not detected
J	Estimated Value
U	Not detected

- (1) Arsenic screening value based on DTSC-approved ambient concentration developed for the adjacent Campus Bay site.
- (2) Screening levels for cobalt, manganese, and nickel were updated, and aluminum was eliminated as a chemical of concern in the Final SMP, Revision 1.
- (3) For detect-only data, the mean is the arithmetic mean. For chemicals with non-detect measurements, this value is the arithmetic mean with one-half the detection limit substituted for non-detect measurements
- (4) Fifteen detections
- (5) Eight detections
- (6) Eleven detections
- (7) Twenty-two detections
- (8) Twenty-six detections
- (9) Only thirteen detections

(10) Two detections

2022 PHA Sampling Locations


- Decision Unit 1 boundary
 - Increments added in 2018
 - Increment location (approximate)
- Vegetation Quadrats
 - Biologically Active Permeable Barrier

0 35 70 140 210 280

Richmond Field Station Site University of California, Berkeley

WESTERN STEGE MARSH NEAR SURFACE SAMPLING JANUARY 24, 2022

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2201A62

Report Created for: UC Berkeley EH & S

317 University Hall 3rd Fl Berkeley, CA 94720-1150

Project Contact: Alicia Bihler
Project P.O.: BB01491209
Project: RFS WSM PHA

Project Received: 01/24/2022

Analytical Report reviewed & approved for release on 02/10/2022 by:

Susan Thompson

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: UC Berkeley EH & S WorkOrder: 2201A62

Project: RFS WSM PHA

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LOL Laboratory Control Sample
LOL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: UC Berkeley EH & S WorkOrder: 2201A62

Project: RFS WSM PHA

Analytical Qualifiers

A The reported value is determined using a "single point" calibration by GC-ECD as allowed by the method.

h7 Copper (EPA 3660B) cleanup

j1 See attached narrative

Case Narrative

Client: UC Berkeley EH & S Work Order: 2201A62

Project: RFS WSM PHA February 10, 2022

j1

Sample prepared per the Interstate Technology & Regulatory Council (ITRC). 2012. Incremental Sampling Methodology. ISM-1. Washington, D.C.: Interstate Technology & Regulatory Council, Incremental Sampling Methodology Team. Www.itrcweb.org.

Sample aliquots are weighed for extraction after the air-drying step outlined in the ISM method; therefore all associated data is reported on an "air dried" basis.

Analytical Report

Client: UC Berkeley EH & S

Date Received: 01/24/2022 15:20

Date Prepared: 02/08/2022

Project: RFS WSM PHA

WorkOrder: 2201A62
Extraction Method: SW3540C
Analytical Method: SW8082
Unit: mg/kg

	Polychlorinated Bipheny	ls (PCBs)	Aroclors w/	Soxhlet	Extraction	
Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
WSM2022PAH	2201A62-001A	Soil	01/24/2022	11:15	GC23 02102210.d	239061
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Aroclor1016	ND		0.050	1		02/10/2022 12:01
Aroclor1221	ND		0.050	1		02/10/2022 12:01
Aroclor1232	ND		0.050	1		02/10/2022 12:01
Aroclor1242	ND		0.050	1		02/10/2022 12:01
Aroclor1248	0.24	Α	0.050	1		02/10/2022 12:01
Aroclor1254	ND		0.050	1		02/10/2022 12:01
Aroclor1260	ND		0.050	1		02/10/2022 12:01
Aroclor1262	ND		0.050	1		02/10/2022 12:01
Aroclor1268	ND		0.050	1		02/10/2022 12:01
PCBs, total	0.24		0.050	1		02/10/2022 12:01
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	112		50-150			02/10/2022 12:01
Analyst(s): KVE			Analytical Com	ments: h7	7,j1	

Analytical Report

CAM / CCR 17 Metals

Client: UC Berkeley EH & S

Date Received: 01/24/2022 15:20

Date Prepared: 02/07/2022

Project: RFS WSM PHA

Thallium

Zinc

Vanadium

WorkOrder: 2201A62
Extraction Method: SW3050B
Analytical Method: SW6020
Unit: mg/Kg

Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
2201A62-001A	Soil	01/24/2022	11:15	ICP-MS5 114SMPL.d	238988
Result		<u>RL</u>	<u>DF</u>		Date Analyzed
0.72		0.50	1		02/08/2022 10:22
16		0.50	1		02/08/2022 10:22
50		5.0	1		02/08/2022 10:22
ND		0.50	1		02/08/2022 10:22
ND		0.50	1		02/08/2022 10:22
65		0.50	1		02/08/2022 10:22
8.9		0.50	1		02/08/2022 10:22
52		0.50	1		02/08/2022 10:22
32		0.50	1		02/08/2022 10:22
1.0		0.050	1		02/08/2022 10:22
1.6		0.50	1		02/08/2022 10:22
59		0.50	1		02/08/2022 10:22
0.57		0.50	1		02/08/2022 10:22
ND		0.50	1		02/08/2022 10:22
	2201A62-001A Result 0.72 16 50 ND ND 65 8.9 52 32 1.0 1.6 59 0.57	2201A62-001A Soil Result 0.72 16 50 ND ND 65 8.9 52 32 1.0 1.6 59 0.57	Result RL 0.72 0.50 16 0.50 50 5.0 ND 0.50 ND 0.50 65 0.50 8.9 0.50 52 0.50 32 0.50 1.0 0.050 1.6 0.50 59 0.50 0.57 0.50	Result RL DF 0.72 0.50 1 16 0.50 1 ND 0.50 1 ND 0.50 1 ND 0.50 1 8.9 0.50 1 52 0.50 1 32 0.50 1 1.0 0.050 1 1.6 0.50 1 59 0.50 1 0.57 0.50 1	Result RL DF 0.72 0.50 1 16 0.50 1 50 5.0 1 ND 0.50 1 ND 0.50 1 65 0.50 1 8.9 0.50 1 52 0.50 1 32 0.50 1 1.0 0.050 1 1.6 0.50 1 59 0.50 1 0.57 0.50 1

 Surrogates
 REC (%)
 Limits

 Terbium
 103
 70-130
 02/08/2022 10:22

 Analyst(s):
 WV
 Analytical Comments: j1

0.50

0.50

5.0

1

1

ND

59

150

02/08/2022 10:22

02/08/2022 10:22

02/08/2022 10:22

Quality Control Report

Client: UC Berkeley EH & S

Date Prepared: 02/08/2022

Date Analyzed: 02/09/2022 - 02/10/2022

Instrument: GC23 **Matrix:** Soil

Project: RFS WSM PHA

WorkOrder: 2201A62 **BatchID:** 239061

Extraction Method: SW3540C

Analytical Method: SW8082

Unit: mg/kg

Sample ID: MB/LCS/LCSD-239061

2201A62-001AMS/MSD

		QC Sun	ımary Re	eport for	SW8082					
Analyte		MB Result		MDL	RL		SPK Val	MB SS %REC		MB SS Limits
Aroclor1016		ND		0.0500	0.0500		-	-	-	
Aroclor1221		ND		0.0500	0.0500		-	-	-	
Aroclor1232		ND		0.0500	0.0500		-	-	-	
Aroclor1242		ND		0.0500	0.0500		-	-	-	
Aroclor1248		ND		0.0500	0.0500		-	-	-	
Aroclor1254		ND		0.0500	0.0500		-	-	-	
Aroclor1260		ND		0.0500	0.0500		-	-	-	
Aroclor1262		ND		0.0500	0.0500		-	-	-	
Aroclor1268		ND		0.0500	0.0500		-	-	=	
Surrogate Recovery										
Decachlorobiphenyl		0.0512					0.05	102	5	50-150
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aroclor1016		0.149	0.162	0.15		99	108	60-140	8.27	20
Aroclor1260		0.161	0.172	0.15		107	114	60-140	6.45	20
Surrogate Recovery										
Decachlorobiphenyl		0.0527	0.0523	0.050		105	105	50-150	0.725	20
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aroclor1016	1	0.204	0.193	0.15	ND	136	129	60-140	5.92	20
Aroclor1260	1	0.196	0.190	0.15	ND	130	127	60-140	2.58	20
Surrogate Recovery										
Decachlorobiphenyl	1	0.0440	0.0408	0.050		88	82	50-150	7.41	20

Quality Control Report

Client: UC Berkeley EH & S

Date Prepared: 02/07/2022Date Analyzed: 02/08/2022Instrument: ICP-MS5Matrix: Soil

Project: RFS WSM PHA

WorkOrder: 2201A62 **BatchID:** 238988

Extraction Method: SW3050B **Analytical Method:** SW6020

Unit: mg/kg

Sample ID: MB/LCS/LCSD-238988

	QC Summar	ry Report for	Metals			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Antimony	ND	0.160	0.500	-	-	-
Arsenic	ND	0.140	0.500	-	-	-
Barium	ND	0.680	5.00	-	-	-
Beryllium	ND	0.0830	0.500	-	-	-
Cadmium	ND	0.0940	0.500	-	-	-
Chromium	ND	0.130	0.500	-	-	-
Cobalt	ND	0.0690	0.500	-	-	-
Copper	ND	0.230	0.500	-	-	-
Lead	ND	0.0690	0.500	-	=	-
Mercury	ND	0.0380	0.0500	-	=	-
Molybdenum	ND	0.140	0.500	-	-	-
Nickel	ND	0.0810	0.500	-	-	-
Selenium	ND	0.320	0.500	-	-	-
Silver	ND	0.110	0.500	-	=	-
Thallium	ND	0.0720	0.500	-	=	-
Vanadium	ND	0.150	0.500	-	-	-
Zinc	ND	3.20	5.00	-	-	-
Surrogate Recovery						
Terbium	507			500	101	70-130

Quality Control Report

Client: UC Berkeley EH & S

Date Prepared: 02/07/2022Date Analyzed: 02/08/2022Instrument: ICP-MS5Matrix: Soil

Project: RFS WSM PHA

WorkOrder: 2201A62 **BatchID:** 238988

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

Sample ID: MB/LCS/LCSD-238988

	QC Sur	nmary R	eport for M	letals				
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Antimony	49.1	50.8	50	98	102	75-125	3.42	20
Arsenic	51.6	51.0	50	103	102	75-125	1.24	20
Barium	493	491	500	99	98	75-125	0.491	20
Beryllium	49.3	48.2	50	99	96	75-125	2.15	20
Cadmium	50.1	50.0	50	100	100	75-125	0.146	20
Chromium	50.3	49.8	50	101	100	75-125	1.13	20
Cobalt	48.7	46.7	50	97	93	75-125	4.34	20
Copper	50.0	50.6	50	100	101	75-125	1.23	20
Lead	49.2	50.0	50	98	100	75-125	1.66	20
Mercury	1.17	1.24	1.25	94	99	75-125	5.49	20
Molybdenum	48.6	49.5	50	97	99	75-125	1.82	20
Nickel	51.2	51.4	50	102	103	75-125	0.316	20
Selenium	49.7	50.1	50	99	100	75-125	0.738	20
Silver	50.5	49.2	50	101	98	75-125	2.48	20
Thallium	48.6	49.0	50	97	98	75-125	0.676	20
Vanadium	50.4	50.2	50	101	100	75-125	0.489	20
Zinc	515	507	500	103	101	75-125	1.64	20
Surrogate Recovery								
Terbium	506	534	500	101	107	70-130	5.25	20

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Report to:

Alicia Bihler

CHAIN-OF-CUSTODY RECORD

☐ Excel

Page 1 of 1

WorkOrder:	2201A62
------------	---------

ClientCode: UCB

✓ Email	□HardCopy

ThirdParty J-flag

Detection Summary

□ EDF

Bill to:

EQuIS

Requested TATs:

10 days; 5 days;

Email: abihler@berkeley.edu cc/3rd Party: dscrimger@berkeley.edu;

CLIP

Accounts Payable UC Berkeley

Dry-Weight

Date Received:

01/24/2022

317 University Hall 3rd Fl Berkeley, CA 94720-1150

UC Berkeley EH & S

PO: BB01491209
Project: RFS WSM PHA

□WaterTrax

317 University Hall #1150 Berkeley, CA 94720-1150 ucinvoice@berkeley.edu

Date Logged: 01/25/2022

(510) 725-2528 FAX: (510) 643-7595

					Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date Ho	old 1	2	3	4	5	6	7	8	9	10	11	12
		T						_		_					
2201A62-001	WSM2022PAH	Soil	1/24/2022 11:15	A	Α	Α									

Test Legend:

1	8082_Soxhlet_S	2 CAM17MS_TTLC_S	3	PRDisposal Fee	4	
5		6	7		8	
9		10	11		12	

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: Client Contact: Contact's Email	UC BERKE Alicia Bihle	r	: S		Project:	RFS WSM PH	IA					QC I	rder: 220 evel: LEV	EL 2	
Contact 5 Linain	· ubliner @ ber	WaterT	rax	EDF	Exce		S	√ Em	nail	HardCopy	Third			72022	
LabID Client	SampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001A WSM2022F	АН	Soil	SW6020 (CAM 17)		2	1L CG & 1-1L AG, Unpres	,			1/24/2022 11:15	5 days	1/31/2022			
			SW8082 (PCBs w/ Soxhler	Extraction)							10 days	2/7/2022			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

McCAMPBELL ANALYTICAL, INC.								. CHAIN OF CUSTODY RECORD															
1534	Willow Pass	Rd. Pittsbu	rg, Ca.	94565-1701		Turn	Aroun	d Tim	e:1 Day	Rush		2 Day	Rush	3	Day R	ush	ST	TD (9	Quote	#		
Telep	hone: (877) 2	252-9262 / I	Fax: (92	25) 252-9269			J-Flag	/ MDL		ESL			Cleanup	Appro	oved)	В		Order	_		
www.mccamp	bell.com	<u>m</u>	ain@r	nccampbell	.com	Deliv	ery Fo	rmat:	PDF		Geo	Tracke			EDD		Write (_			EQuIS	1 1	
Report To: Alicia Bihler	A CONTRACTOR	Bill To	: Alicia	Bihler		1	1294			-			An	alysis	Requ	ested			,				
Company: UC Berkeley EH&S						달	2							Ť	Ť		\top	Т			T	П	
Email: abihler@berkeley.edu						1	3540C				-												
Alt Email: dscrimger@berkeley.edu		Tele	: 510-7	25-2528		Increment	et 3									- 1	- 1				1-3		
Project Name: RFS WSM PHA		Project #	:			1 =	Soxhlet	Metals								- 1							
Project Location: UC Berkeley Richmond	Field Station	PO #	# BB01	491209		10	So	1et							-	- 1							
Sampler Signature:						d	+	2								- 1							
SAMPLE ID	San	npling	iners			Prep/7	8082	11															
Location / Field Point	Date	Time	#Containers	Matrix	Preservative	ISM	PCB	CAM															
WSM2022PAH	1/24/22	11:15	2	soil		•	•	•					\dashv		+	+	+	+	+	+	+-		_
									14							\top	+	+	+	+	+	\vdash	_
													_	\top		+	+	+	+	+	+		
						\vdash							\dashv	+	+	+	+	+	+	+	+-		
,						\vdash							-	+	+	+	+	+	+			-	_
	-	 	\vdash			_				_	-	-		+	\dashv	+	-	+	+	_	-	-	
			┼		-	_			-				-	\dashv	\perp	+		+	_				
			-			_								\perp		\perp		\perp			$oxed{oxed}$		
								-						I		1						PHI.	
		in the second												,		\top		+	13.00				
MAI clients MUST disclose any dangerous chemica Non-disclosure incurs an immediate \$250 surcharge	als known to be p	present in their	submitte	ed samples in co	ncentrations tha	t may c	ause im	mediat	e harm	or serio	us futu	re healt	h endang	erment	as a resu	lt of bri	ief, glove	ed, ope	en air,	sample ha	indling b	y MAI st	taff.
* If metals are requested for water samples and												us to v	vork safe	ly.				_	0	. /*			
Please provide an adequate volume of sample.	If the volume	is not sufficie	ent for a	MS/MSD a L	CS/LCSD will	he pre	will de	in its n	lace an	d note	200.8.			Win .			_			nents / Ii			
Relinquished By / Compan	y Name	is not surner	_	CONTRACTOR OF THE REAL PROPERTY.	me I	THE RESERVE AND ADDRESS.	THE REAL PROPERTY.	STATE OF THE PERSON NAMED IN	/ Com		-	e repoi	<u>.</u>	Date	_	Time				onsis			
						M		ANA	-	/	tune		1	1241	_	132	– ma	ater	rial i	n 2 3	2oz ja	ars.	
imana	MA	7		1/12/152		3	1	100	3	N	1			1/20		132				- 12			
V * * * * * * * * * * * * * * * * * * *	11/1/1	-	11-	133		V	46	1	///	Y /J	Y		11-	11 200	1		-						
Matrix Code: DW=Drinking Water, C	GW=Ground	l Water, W	W=W	aste Water,	SW=Seaw	ster,	S=Soi	l, SL	=Slud	lge, A	=Air	. WP	=Wipe	. O=0)ther		-						
Preservative Code: 1=4°C 2=HCl	$3=H_2SO_4$	4=HNO ₃	5=Na	OH 6=Zn	OAc/NaOH	7=	None	2	n decembe	5,			1	,		Ten	1p 4	5	°C	. In	itials		
																	/_	11	2				
																	V	W		,	Dogo	C	

Sample Receipt Checklist

Client Name: Project:	UC Berkeley EH & S RFS WSM PHA			Date and Time Received: Date Logged: Received by:	1/24/2022 15:20 1/25/2022 Agustina Venegas
WorkOrder №: Carrier:	2201A62 Matrix: Soil Antonio Mason (MAI Courier)			Logged by:	Agustina Venegas
	Chain of (Custody	(COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time of	f collection noted by Client on COC?	Yes	•	No 🗆	
Sampler's name	noted on COC?	Yes		No 🗸	
COC agrees with	Quote?	Yes		No 🗆	NA 🗹
	<u>Samp</u>	ole Rece	eipt Informati	<u>ion</u>	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗆	NA 🗸
Custody seals int	tact on sample bottles?	Yes		No 🗆	NA 🗸
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservati	ion and	Hold Time (HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	NA 🗆
Samples Receive	ed on Ice?	Yes	✓	No 🗌	
	(Ісе Тур	e: WE	TICE)		_
Sample/Temp Bla	ank temperature		Temp: 3.5	5°C	NA 🗆
ZHS conditional a requirement (VO	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes		No 🗆	NA 🗹
	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
537.1: 6 - 8)? Free Chlorine t [not applicable	ested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗆	NA 🗹
Comments:		==		=======	