UNIVERSITY OF CALIFORNIA, BERKELEY

BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

SANTA BARBARA • SANTA CRUZ

OFFICE OF ENVIRONMENT, HEALTH AND SAFETY UNIVERSITY HALL, 3rd FLOOR

BERKELEY, CALIFORNIA 94720-1150

August 22, 2011

Lynn Nakashima Project Manager Department of Toxic Substances Control 700 Heinz Avenue Berkeley, CA 94710

Subject: University of California, Berkeley, Richmond Field Station Response to DTSC Comments on the Phase I Groundwater Sampling Results Technical Memorandum, DTSC Site Investigation and Remediation Order I/SE-RAO 07/07-004 Section 5.16

Dear Ms Nakashima:

Please find enclosed the August 22, 2011 Final, Revision1 Phase I Groundwater Sampling Results Technical Memorandum (two copies on paper and disc). This version updates the version submitted May 11, 2011 and incorporates all the edits requested by your July 21, 2011 letter. This submission (via email) includes the revised text, tables, and a response to comments. Two hard copies and electronic copies on CD will be sent to your office and will include all figures and attachments.

If you have any questions or need further information regarding this submittal, please contact me (gjhaet@berkeley.edu, 510-642-4848) or Karl Hans (khans@berkely.edu, 510-643-9574).

Sincerely,

Greg Heat EH&S Associate Director Environmental Protection

Enclosure

cc: Bill Marsh, Edgcomb Law Group Anthony Garvin, UC Office of the General Counsel Doug Mosteller, CSV

FINAL, Revision 1

Phase I Groundwater Sampling Results Technical Memorandum

University of California, Berkeley Richmond Field Station, Richmond, California

Prepared for Office of Environment, Health and Safety University of California, Berkeley 317 University Hall, No. 1150 Berkeley, California 94720

August 22, 2011

Prepared by

Jason Brodersen, P.G., No 6262

CONTENTS

1.0	INT	INTRODUCTION1							
	1.1	PHYSICAL SETTING	1						
	1.2	INVESTIGATION PURPOSE	1						
2.0	FIEL	D ACTIVITIES	3						
	2.1	UTILITY CLEARANCE	3						
	2.2	DRILLING AND COMPLETION	3						
	2.3	PIEZOMETER DEVELOPMENT	4						
	2.3	GROUNDWATER SAMPLING	5						
	2.4	WATER LEVEL MEASUREMENTS AND SURVEYING	6						
	2.5	WASTE CHARACTERIZATION AND DISPOSAL	6						
3.0	GEO	DLOGY	8						
4.0	HYD	DROLOGY	9						
5.0	DAT	A QUALITY ASSESSMENT	10						
	5.1	DATA QUALITY OBJECTIVES	10						
	5.2	LABORATORY DATA REVIEW	10						
	5.3	DATA QUALITY REVIEW FINDINGS	11						
	5.4	DEVIATIONS	12						
6.0	DAT	A EVALUATION	14						
	6.1	VOLATILE ORGANIC COMPOUNDS	14						
	6.2	SEMI-VOLATILE ORGANIC COMPOUNDS	14						
	6.3	METALS	15						
	6.4	TOTAL PETROLEUM HYDROCARBONS	16						
	6.5	EXPLOSIVES AND PERCHLORATES	16						
7.0 R	EFERE	ENCES	17						

Attachment

- 1 GEOLOGIC BORING LOGS
- 2 WELL COMPLETION LOGS
- 3 WELL DEVELOPMENT LOGS
- 4 WELL PERMITS
- 5 WELL SAMPLING FORMS
- 6 COMPLETE ANALYTICAL RESULTS

<u>Appendix</u>

A RESPONSE TO COMMENTS

<u>Figure</u>

- 1 SITE LOCATION MAP
- 2 SITE MAP
- 3 GROUNDWATER SAMPLING LOCATIONS
- 4 SHALLOW GROUNDWATER ELEVATION CONTOURS, NOVEMBER 1, 2010
- 5 SHALLOW GROUNDWATER ELEVATION CONTOURS, FEBRUARY 10, 2010
- 6 GEOLOGIC CROSS SECTION A-A'
- 7 GEOLOGIC CROSS SECTION B-B'
- 8 TDS RESULTS AND CONTOURS

Table

- 1 GROUNDWATER SAMPLE RATIONALE
- 2 GROUNDWATER SAMPLING REGISTRY
- 3 PIEZOMETER COMPLETION SUMMARY
- 4 PARAMETERS SUMMARY
- 5 STATE AND FEDERAL WATER QUALITY CRITERIA
- 6 VOC DETECTED RESULTS SUMMARY
- 7 SVOC DETECTED RESULTS SUMMARY
- 8 METALS DETECTED RESULTS SUMMARY
- 9 TPH SUMMARY
- 10 EXPLOSIVE RESIDUE AND PERCHLORATE DETECTED RESULTS SUMMARY

ACRONYMS AND ABBREVIATIONS

DPT	Direct push technology
QDO	Data quality objective
DTSC	Department of Toxic Substances Control
EMF	Electromagnetic field
EPA	Environmental Protection Agency
FSW	Field Sampling Workplan
ft bgs	Feet below ground surface
GPS	Global positioning system
HSA	Hollow stem auger
IDW	Investigation derived waste
J	Estimated value
LCS	Laboratory control sample
MCL	Maximum contaminant level
MDL	Method detection level
MFA	Mercury Fulminate Area
MS	Matrix spike
MSD	Matrix spike supplicate
Order	DTSC Site Investigation and Remediation Order No. IS/E-RAO 06/07-004
PAH	Polyaromatic hydrocarbons
PCB	Polychlorinated biphenyl
PCE	Tetrachloroethlyene
PID	Photo ionization detector
PVC	Polyvinyl chloride
QA	Quality assurance
QC	Quality control
QL	Quantination limit
R	Invalid data
RDL	Required detection limit
RFS	Richmond Field Station
RSI	RSI Drilling Inc.
SVOC	Semi volatile organic compounds
TCE	Tricloroethlyene
TDS	Total dissolved solids

ACRONYMS AND ABBREVIATIONS (continued)

Tetra Tech	Tetra Tech EM Inc.
TPH-E	Total extractable petroleum hydrocarbons
ТРН-Р	Total purgeable petroleum hydrocarbons
U	Not detected
UC Berkeley	University of California, Berkeley
ug/L	Micrograms per liter
UJ	Not detected at an estimated value
VOC	Volatile organic compound

1.0 INTRODUCTION

This technical memorandum has been prepared on behalf of The Regents of the University of California (UC) in accordance with California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), Site Investigation and Remediation Order No. IS/E-RAO 06/07-004 (Order), dated September 15, 2006. This memorandum describes the results of the Field Sampling Workplan (FSW) Phase I Groundwater Sampling Plan, dated June 2, 2010 (Tetra Tech EM Inc [Tetra Tech] 2010). The objective of the FSW is to address data gaps identified in the Current Conditions Report (Tetra Tech 2008) and identify immediate or potential risks to public health and the environment. The first phase of the FSW consisted of a site-wide groundwater sampling investigation to determine overall groundwater characteristics and confirm or deny the presence of any unknown groundwater contamination conditions.

This memorandum presents a summary of field activities, site geology, site hydrology, data quality assessment, and data evaluation. The report attachments provide field documentation forms as well as complete analytical results.

1.1 PHYSICAL SETTING

The Richmond Field Station (RFS) is located at 1301 South 46th Street, Richmond, California, along the southeastern shoreline of the City of Richmond on the San Francisco Bay and northwest of Point Isabel (see Figure 1). It consists of upland areas developed for academic teaching and research activities, an upland remnant coastal terrace prairie, a tidal salt marsh, and a transition zone between the upland areas and marsh. Between the late 1800s and 1948, several companies, including the California Cap Company, manufactured explosives at the RFS. In 1950, The UC Regents purchased the property from the California Cap Company. UC Berkeley initially used the RFS for research for the College of Engineering; later, it was also used by other campus departments.

Three habitat type areas have been identified at RFS: (1) the Upland Area, (2) the Transition Area, and (3) the Western Stege Marsh (see Figure 2). The Upland area consists of 96 acres of land bounded by Meade Street to the north, South 46th Street to the east, the Transition Area to the south, and Meeker Slough and Regatta Boulevard to the west. The Transition Area occupies approximately 5.5 acres and is bounded to the north by the Upland Area at the location of a buried, former seawall that is believed to have been the edge of the historic mudflats, and to the south by Western Stege Marsh at the 5-foot elevation upper extent of the marsh (National Geodetic Vertical Datum 29). The Transition Area is believed to consist entirely of artificial fill placed on historic mudflats. Western Stege Marsh occupies approximately 7.5 acres and is bounded by the Transition Area to the north, the RFS connector trail to the East Bay Regional Park District Trail and Eastern Stege Marsh to the east, the Bay Trail to the south, and Meeker Slough and Marina Bay housing development to the west (see Figure 2).

1.2 INVESTIGATION PURPOSE

The possible presence of contaminants in groundwater at RFS was identified as a data gap in the Current Conditions Report (Tetra Tech 2008). Potential sources include contamination from offsite sources as well as potential contamination from previous site activities that may have leached from soil or underground utilities to groundwater. The Phase I FSW field effort was conducted to address these data gaps through the installation of piezometers throughout the RFS (see Figure 3), which were strategically sited at critical down gradient locations from previously identified data gaps (see Figures 4 and 5). Data collected from the installed and developed piezometers included groundwater samples, geology, and depth to water measurements, was used to develop a hydrogeologic model of the site, and improve the understanding of overall site-wide groundwater quality.

2.0 FIELD ACTIVITIES

The sampling strategy for Phase I consisted of drilling, constructing, developing, and sampling 51, 2-inch diameter completed piezometers throughout the RFS, as well as sampling three previously-installed piezometers. Groundwater samples were analyzed for dissolved metals, pesticides, polychlorinated biphenyls (PCB), semi-volatile organic compounds (SVOC), total extractable petroleum hydrocarbons (TPH-e), total purgeable petroleum hydrocarbons (TPH-p), polycyclic aromatic hydrocarbons (PAH), and volatile organic compounds (VOC). In addition, the depth to groundwater and water quality parameters such as total dissolved solids (TDS), dissolved oxygen, pH, oxidation-reduction potential, specific conductance, and temperature, were measured at each location. Certain locations included additional analytes based on site history. Rationales for groundwater sampling locations, depths, and analyses are presented in Tables 1 and 2 of the FSW and this report.

2.1 UTILITY CLEARANCE

Prior to any subsurface disturbance, the piezometer locations were sited with a hand-held global positioning system (GPS) unit and marked with either a spray paint or stakes, depending upon the ground surface. Utility clearance included contacting Underground Service Alert to inform them that digging would occur and obtaining a dig ticket, as well as site-specific screening. Tetra Tech contracted Precision Locating to locate any underground utilities in the vicinity of the proposed piezometers using electromagnetic field (EMF) detectors. Tetra Tech accompanied the utility locator, helping to identify the piezometer locations, as well as providing existing utility maps to mark known utility locations. Once an underground utility was detected, its estimated location and bearing were marked with spray paint.

Several piezometer locations were adjusted to keep the drilling locations a safe distance from underground utilities. In areas near known or presumed utilities, boreholes were hand-augured to 5 feet below ground surface (ft bgs) for additional utility clearance.

2.2 DRILLING AND COMPLETION

Tetra Tech contracted with RSI Drilling, Inc. (RSI) to perform all piezometer drilling and completion work. Forty-seven of the newly installed piezometers targeted groundwater in the shallow horizon and four additional piezometers targeted a lower groundwater horizon. A summary of the newly installed piezometers is provided in Table 3. Drilling and installation of 49 of the 51 piezometers took place between July 26 and August 12, 2010. The two remaining piezometers, located in the site feature referred to as the "Bulb area", were drilled and installed on October 18, 2010. The installation of these two locations was delayed to prevent interference with the California Clapper Rail breeding season which ends annually on September 1st.

All boreholes were drilled with a track mounted, dual direct-push technology (DPT) and hollowstem auger (HSA) drill rig. Boreholes were initially advanced using 2-inch diameter DPT rods that collected a continuous core sample in acetate sleeves for analysis by an on-site geologist. The continuous cores of each borehole were logged by soil type, color, and moisture. Small soil samples were collected from the cores at periodic depth intervals and were placed in marked ziplock bags. These bags were stabilized for a minimum of 10 minutes, then a photo ionization detector (PID) was used to detect possible VOCs in the soil cuttings. The boring logs, including VOC readings from the PID, are included in Attachment 1.

Based on the lithology and moisture content, the on-site geologist estimated a depth to groundwater which was used to position the piezometer screen and determine total depth of the HSA boring. Each borehole was then drilled using 8.25-inch outside diameter, 4-inch inside diameter hollow-stem augers. The soil cuttings from the drilling activities were drummed, labeled, and moved to the secured on-site drum storage location west of Building 110.

The piezometers were installed in the borehole through the hollow stem of the auger after the HSA drilling was completed. The final depth of the 47 shallow boreholes varied between 13 and 20 ft bgs while the 4 boreholes that penetrated to a deeper underlying groundwater zone were completed between 40 and 44 ft bgs. The piezometer screen intervals were determined in the field by the on-site geologist. For the shallow piezometers, each screened interval was 10 feet in length and was positioned so that the screen interval extended 2 feet above the estimated groundwater table. The screen interval on the deep piezometers extended from 30 ft to 40 ft bgs with the exception of piezometer B480Deep which extended from 35 to 40 ft bgs. All piezometers were constructed from 2-inch diameter schedule 40 polyvinyl chloride (PVC) blank casing with 2-inch diameter schedule 40 PVC screen with 0.01-inch slot size. The screen intervals of the piezometers were encased in a filter pack consisting of #2/12 kiln-fired sands that was tremied into place through the HSA. The filter pack extended from the bottom of the boring to 1 foot above the top of the PVC screen where a 2-foot-thick seal of hydrated bentonite chips was installed. The remainder of the boring surrounding the PVC casing was filled with an annular seal of Portland cement grout to within 1 foot of the ground surface.

Steel well christy boxes were used to complete the piezometers. Depending on the type of ground surface, the steel well casing was either installed flush with the existing surface or a few inches above grade. The above grade casings were then encased in a 2 foot by 2 foot concrete pad to protect the piezometers from accidental damage. A locking well cap, to prevent rain or irrigation water from entering the piezometers, was placed on each completed piezometer. At the request of DTSC, the well casing surrounding location B474 was raised several feet, and is surrounded by a steel stove-pipe stickup. All piezometer completion logs are included in Attachment 2.

2.3 PIEZOMETER DEVELOPMENT

Following completion, the piezometers were allowed to stabilize for a minimum of 24 hours before development began to ensure that the bentonite and annular seals had set. Following the minimum stabilization period, the piezometers were opened, a depth to water measurement was recorded, and the development process initiated. The piezometers were initially surged for a minimum of 10 minutes using a surge block and pulley system that forces water into and out of the filter pack. After the surge process was complete, the piezometers were bailed for a minimum of 10 minutes to remove excessive sediments from the standing water in the piezometers. A pump connected to the development rig was then inserted into the piezometer and the final step in piezometer development began. The discharge water from the pump was run through a flow-cell that measured groundwater turbidity, dissolved oxygen content, pH, temperature, and electrical conductance among other parameters. The discharge water was then collected in a drum. Piezometer development logs showing the varying groundwater parameters are included in Attachment 3.

The amount of groundwater that was pumped during the development phase varied for each piezometer and depended on the length of the water column in each piezometer. A minimum of 3 times the volume of water within the filter pack and piezometer casing was purged during development. Pumping would continue beyond 3 times the volume if the parameters measured by the flow cell had not stabilized. The total volume purged from each piezometer varied between 6 and 65 gallons but averaged just over 25 gallons per piezometer. Due to the tight lithologic formations where the shallow piezometers were screened, the piezometers often became dry during the development process. Some of the piezometers were successfully developed using a low-flow peristaltic pump while still others required time to recharge over one or several nights in order to supply the minimum required amount of purge water.

All pumped groundwater was captured in drums which were then labeled and moved to the secure on-site drum storage location west of Building 110.

2.3 GROUNDWATER SAMPLING

Sampling of the newly installed piezometers and three existing piezometers was conducted between September 3 and October 19, 2010. Groundwater sampling was protracted to accommodate the U.S. Environmental Protection Agency (EPA) Region 9 Laboratory's capacity to process the samples. Per the EPA request, 10 to 11 piezometers were sampled over 2 days each week. The groundwater from each sampled piezometer was collected through sterile Teflon and silicone tubing using a low-flow, peristaltic pump. The discharge from the pump ran through a flow cell which measured turbidity, dissolved oxygen content, pH, temperature, and electrical conductance. Groundwater samples were collected from each piezometer after the parameters stabilized to within the acceptable ranges as shown on the groundwater sample collection sheets included in Attachment 5. Groundwater results are discussed in Section 6.

Ample sample volume was collected from the shallow piezometers to submit samples for laboratory analysis of dissolved metals, pesticides, perchlorates, PCBs, PAHs, SVOCs, TPH-e, TPH-p, TDS, and VOCs. Samples were immediately placed in coolers containing ice. At the end of each day, the samples were delivered to the EPA Region 9 laboratory located at the RFS.

Additional sample volume was collected at the former dry house and test pit locations to allow for laboratory analysis of explosive residue. These samples were placed in coolers containing ice and were delivered the same day to Curtis and Tompkins Laboratory in Berkeley, CA.

At piezometer locations CTPS and EERC, the piezometers could not yield the required sample volume. The field sampling team returned to these locations in the next few days allowing the piezometers to recharge. The piezometers were purged until stabilization occurred, then the remaining sampling volume was collected. At location B450, no sample could be collected following development due to insufficient groundwater recharge into the piezometer. The field sampling team returned to this location on many occasions; however, the piezometer would not yield groundwater after less than 1 gallon was purged.

Chemical analysis was not conducted at the deep piezometer locations. Groundwater parameters were recorded and following stabilization, samples for TDS were collected, placed on ice and delivered to the EPA Region 9 laboratory, see Table 4.

2.4 WATER LEVEL MEASUREMENTS AND SURVEYING

A comprehensive set of depth to water measurements for all piezometers were recorded on November 1, 2010 to coincide with a similar field event occurring on the adjacent Campus Bay property. A small notch was placed at due North location at the top of each PVC piezometer casing so that the measurement could be taken from the same reference location during future measuring events. The depth to water in all 51 of the newly installed piezometers was measured from the top of the PVC casing to 0.01 foot accuracy using a water level meter. If the piezometers were found to be pressurized, then the well cap was removed for a minimum of 10 minutes prior to the depth to water measurement to allow for the water level to adjust. A second round of groundwater measurements was collect on February 10, 2010 to assess seasonal variation in groundwater elevations and contours. The depths to water measurements were recorded in the field notebook and are included on Figure 4 and Figure 5.

On November 1 and November 16, all existing piezometers were surveyed by a licensed land surveyor. The elevation for the top of each piezometer casing was measured to sub 0.01 foot accuracy and recorded in the NAVD88 elevation datum. This elevation data was used with the measured depths to water to determine the water table elevations and estimated gradients across the RFS. Groundwater contour maps created from this data is shown on Figure 4 and Figure 5.

2.5 WASTE CHARACTERIZATION AND DISPOSAL

All investigation derived waste (IDW) created during the field effort was drummed, labeled, and moved to a fenced storage location west of Building 110. The drums containing soil cuttings were characterized by four composite samples. During the drilling process, once the DPT cores had been logged, the field samplers scraped the length of the core, obtaining equal volume from the entire depth interval. This sample was placed in an appropriate sample jar and labeled. Following the completion of drilling, five soil waste streams were identified.

- Sample WASTE1 is representative of soil collected from piezometers installed in the core of the former California Cap Company buildings and Mercury Fulminate Area (MFA), which have a higher potential for elevated metals concentrations based on previous site investigations. Piezometers installed in this area consist of B128, MFA, CCC3, and CCC2.
- Sample WASTE7 is representative of soil collected from piezometers installed in the "Bulb" area adjacent to the marsh, which consists of fill material from undocumented sources. Piezometers installed this area consist of Bulb1 and Bulb2.
- Sample WASTE3 is representative of any soil containing visually-identified cinders. These soils were segregated into a separate drum for analysis.
- Sample WASTE4 represents any soil with elevated PID readings. Elevated PID readings were only identified at piezometer B163. Encore samples were collected for VOC analysis from the drum containing soil from location B163.
- Sample WASTE2 represents soil generated from all remaining piezometer installations.

Representative soil from each waste stream was combined, homogenized, and sub-sampled. All of these samples were delivered to Curtis and Tompkins, located in Berkeley, CA for analysis. Additionally, at the two Bulb locations, soil was collected and submitted to Eberline Analytical for gross alpha, gross beta, and tritium analysis due to historic concerns for radiologic disposal in this area. A soil sample was also collected from the location CTP and used for comparison to the Bulb results as a background concentration. The results indicate that the Required Detection Limit (RDL) was achieved for each analyte requested. The activity measured in soil from the locations Bulb1 and Bulb2 was not statistically different from soil evaluated from location CTP. Not statistically different in this case was defined as activity less than the background levels or within the 2 sigma error (95% confidence level) associated with each measurement.

The drums containing auger rinse water (drummed water and sediment produced from the water used to steam clean the drilling equipment between locations) was characterized with one composite sample, WASTE6. A clean bailer was used to collect equal amount water from each of the drums, which was then combined in a decontaminated 5-gallon bucket and the sample volume was collected from this composited water. The drums containing water purged from piezometers during the development and sampling processes were characterized through the samples collected and analyzed as part of the field sampling effort.

3.0 GEOLOGY

As presented in the Current Conditions Report (Tetra Tech 2008), four major geologic units were defined for the RFS as follows:

- Artificial Fill
- Quaternary Alluvium
- Bay Sediments
- Yerba Buena Mud (Older Bay Mud)

The borings for this investigation were limited to the upper 40 feet; therefore, only the artificial fill, alluvium, and to a lesser extent bay sediments were encountered. Artificial fill was difficult to differentiate from the underlying alluvium because it was of a similar lithology and texture. The lithology of the fill and alluvium can be grouped into four basic soil types: silt/clay, clayey gravel, clayey/silty sand, and sand. In most cases, the gravels contained clay and sand and the clays layers had an estimated 5 to 40 percent sand or gravel. The relationship between the lithologies was typical of a coastal alluvial plain: thin interbedded layers of clays, silts, sands, and gravels that were laterally discontinuous. The fine-grained sediments (clays and silts) could have been deposited as over-bank flood-plain deposits and the coarse grained sediments could be from former stream or river beds meandering across a flood plain. The meandering of former surface water channels likely causes the lateral variation in the lithologies observed in the borings.

Two geologic cross-sections were developed to aid in the description of the site stratigraphy. Section A-A' provides an east-west transect, as shown on Figure 6. Section B-B' provides a north-south transect, as shown on Figure 7. Generally, the horizontal extent of individual layers of clay, sand, and gravel is limited in the upper 20 ft bgs, as would be expected in a coastal alluvial depositional environment. Between 20 and 44 ft bgs, less variation in lateral extent is observed, although this could be an artificial result of fewer borings to define the deeper horizons.

4.0 HYDROLOGY

As presented in the previous section, the geologic materials encountered at the site included clays, silts, sands, and gravels. Generally, the coarser-grained materials are expected to transmit or yield more groundwater; however, most of the gravels and sands contained a silt/clay fraction which may severely inhibit groundwater flow or yield. A few exceptions were encountered where cleaner sand lenses occurred, which were classified in the field as well-graded and poorly-graded sands. In the upper 20 ft bgs, these sand lenses only occurred over short lateral distances. Based on the limited number of deeper borings, a more continuous thin layer of sand may be present between depths of 35 and 40 ft bgs.

As presented in Section 2.0, 51 piezometers were installed throughout the site. Because of the somewhat uniform spacing and broad coverage of the piezometer locations, comprehensive groundwater flow directions were determined. Figure 4 and Figure 5 show the groundwater elevations measured on November 1, 2010 and February 10, 2011, respectively, and the resulting contours from the shallow piezometers. The November groundwater elevations are likely representative of the dry season since no major rainfall had occurred 6 months prior to their measurement. The February measurements represent the mid-point of the wet season. Groundwater generally flows onto the site from the northeast and across the site to the southwest. Groundwater elevations will continue to be collected quarterly and a more thorough assessment of seasonal variation in groundwater flow will be presented in a future monitoring report.

The horizontal groundwater gradient or slope is estimated from the November groundwater contours. The gradient within the northeast portion of the site is approximately 0.008 ft/ft. The gradient within the central portion of the site is slightly flatter at 0.002 ft/ft. The gradient in the southern portion of the site is approximately 0.004 ft/ft. The variation in gradients is likely influenced by local areas of recharge due to varying surface cover and features and the variation in hydraulic conductivity of the soil. A localized variation in the groundwater gradient was encountered near location B175W, where the groundwater elevations were higher than nearby piezometers. This variation is likely due to discharge from a broken freshwater pipe that was recently identified and repaired. Although this variation is still present in the February contours, the water levels for the center of the mounding area only rose 0.2 feet while the nearby wells rose approximately 1.5 to 2 feet. Based on this observation, the water levels in this area are dissipating. As discussed in Section 3.0, the RFS is predominately made of clayey soil with inherently low permeability; therefore the dissipation of this area could take several months to over a year.

Vertical groundwater gradients were also determined from the November contours at the shallow/deep well pairs. Two of the well pairs had a calculated an upward gradient (480 at 0.25 ft/ft and B38 at 0.015 ft/ft) and two of the well pairs had a calculated downward gradient (CTP at 0.038 ft/ft and B128 at 0.031 ft/ft). The upward gradient at piezometer 480 was significantly higher than the other three calculated vertical gradients. Further assessment of seasonal variation of vertical groundwater gradients will be presented in a future monitoring report.

5.0 DATA QUALITY ASSESSMENT

5.1 DATA QUALITY OBJECTIVES

Data quality objectives (DQO) were developed during the FSW planning process to help ensure the collection of data appropriate for support of defensible decisions. The DQOs stated the need for additional groundwater data collection at the RFS to develop a hydrogeologic model of the site and to improve overall understanding of groundwater quality. The implementation of this objective was achieved through the strategic placement of the 51 groundwater monitoring piezometers that spanned the RFS from fenceline to fenceline and also targeted specific locations defined as data gaps in the Current Conditions Report. The data collected was adequate to create a hydraulic gradient map and help gain a better understanding of the general hydrology at the RFS. Additionally, the chemical data collected improved site knowledge of areas identified as data gaps as well as areas previously uncharacterized. With the exception of piezometer B450, the 50 piezometers located in the shallow groundwater zone were sampled according to the sampling plan and quality assurance project plan in the FSW (Tetra Tech 2010). The analytical data achieved appropriate method detection levels (MDL) to be compared to relevant State and Federal groundwater criteria.

5.2 LABORATORY DATA REVIEW

Assignment of data qualification flags for analytical data from both the EPA Region 9 laboratory and Curtis and Tompkins conformed to EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 2008) and Inorganic Data Review (EPA 2010). Data review specifications require that various data qualifiers be assigned when a deficiency is detected or when a result is less than its detection limit. If no qualifier is assigned to a result that has been reviewed, the data user is assured that no technical deficiencies were identified during validation. The qualification flags used are defined as follows:

- U Indicates that the chemical was not detected at the numerical detection limit (sample-specific detection limit) noted. Non-detected results from the laboratory are reported in this manner.
- UJ Indicates that the chemical was not detected; however, the detection limit (sample-specific detection limit) is considered to be estimated based on problems encountered during laboratory analysis. The associated numerical detection limit is regarded as inaccurate or imprecise. This qualifier is also added to a positive result (reported by the laboratory) if the detected concentration is determined to be attributable to contamination introduced during field sampling or laboratory analysis.
- J Indicates that the chemical was detected; however, the associated numerical result is not a precise representation of the concentration that is actually present in the sample. The laboratory reported concentration is considered to be an estimate of the true concentration.

• R – Indicates that the chemical may or may not be present. The non-detected analytical result reported by the laboratory is considered to be unreliable and unusable. This qualifier is applied in cases of gross technical deficiencies (for example, a holding time missed by a factor of two times the specified time limit, severe calibration non-compliance, or extremely low analyte recovery in quality control [QC] spike samples).

The preceding data qualifiers may be categorized as indicating major or minor problems. Major problems are defined as issues that result in the rejection of data and qualification with R qualifiers. These data are considered invalid and are not used for decision-making unless they are used in a qualitative way and the use is justified and documented. Minor problems are defined as issues resulting in the estimation of data and qualification with U, J, and UJ qualifiers. Estimated analytical results are considered suitable for decision-making unless the data use requirements are stringent and the qualifier indicates a deficiency that is incompatible with the intended data use. A U qualifier does not indicate that a data deficiency exists because all non-detect values are flagged with the U qualifier regardless of whether a quality deficiency has been detected.

5.3 DATA QUALITY REVIEW FINDINGS

A review of the inorganic data quality determined that quality assurance (QA)/QC objectives for bias and precision were met for most analytical results with the following exceptions:

- Matrix spike (MS) recoveries resulted in qualification of results as "estimated" ("J") for aluminum and copper in one sample.
- MS/matrix spike duplicate (MSD) recoveries and relative percent difference percentages between the MS and MSD resulted in qualification of results as estimated ("J") for one mercury result in one sample.
- Several inorganic sample results were estimated because they were reported at concentrations between the MDL and the laboratory quantitation limit (QL). The analytical instrument can make reliable qualitative identification of analytes' MDL but below the QL, however, detected results below the QL are considered quantitatively uncertain. Approximately 12 percent of the inorganic groundwater data was affected; however, these results are considered usable as qualified.

A review of the organic data quality determined that QA/QC objectives for bias and precision were met for most analytical results with the following exceptions:

- MS/MSD and Laboratory Control Sample (LCS) spike recoveries resulted in qualification of results as estimated ("J") for several organic compounds in multiple samples. Less than 2 percent of the organic groundwater data was affected.
- Relative percent difference percentages between the MS and MSD resulted in qualification of results as estimated ("J") for several organic compounds in a few samples. Less than 1 percent of the organic groundwater data was affected.

- Polychlorinated biphenyl results were "J" qualified as estimated due to surrogate QC violations in nine samples. Less than 1 percent of all the organic groundwater data was qualified due to these criteria violations.
- A few organic results were "J" qualified as estimated due to calibration QC violations in multiple samples. Approximately 3 percent of all the organic groundwater data was qualified due to these criteria violations.
- Due to laboratory blank contamination, bis(2-ethylhexyl)phthalate results in three samples, pyrene result in one sample, and acetone results in five samples are considered nondetect and "UJ" qualified. Less than 1 percent of the organic groundwater data was qualified due to laboratory blank contamination problems.
- The results for several organic compounds in a few samples were estimated because they were reported at a concentration between the MDL and the QL. The analytical instrument can make reliable qualitative identification of analytes' MDL but below the QL; however, detected results are considered quantitatively uncertain. Less than 1 percent of the organic groundwater data was affected.

Although some qualifiers were added to the data, a final review of the data set against the EPA data quality parameters indicated that the data are of high overall quality. The data meet all the requirements of the precision, accuracy, representativeness, completeness, and comparability described in EPA guidance for quality assurance project plans and the Richmond Field Station quality assurance plan (EPA 2002, Tetra Tech 2010) and are usable for meeting the project data quality objectives and future risk assessments. The overall assessment of the sampling program, quality assurance and quality control data, and data review, indicate the data from this investigation are of acceptable precision, accuracy, representativeness, completeness, and comparability.

5.4 **DEVIATIONS**

During the FSW planning process, piezometer locations were proposed prior to site-specific site reconnaissance or utility clearance. During the siting and utility clearance processes, five locations were relocated to avoid underground or overhead utilities. Location B38 was moved 50 feet east and CCC3 was moved 50 feet northwest due to overhead utilities. Location B158 was moved approximately 60 feet west due to an underground utility. The database coordinates for existing piezometer PZ-8 were incorrect and after the actual piezometer location was surveyed, its location on site figures was adjusted to be approximately 75 feet southeast of its originally displayed location. Location WTA was incorrectly sited in the field and was placed 100 feet northeast of its intended location.

Due to the tight lithologic formations where the shallow piezometers were screened, the piezometers often became dry during the development and sampling processes. Some of the piezometers were successfully developed using a low-flow peristaltic pump while still others required additional time to recharge over several days in order to supply the minimum required amount of purge water.

At locations CTPS and EERC, the piezometers could not yield the required sample volume during sampling. The field sampling team returned to these locations in the next few days allowing the piezometers time to recharge. The piezometers were once again purged until stabilization occurred and the remaining sampling volume was collected. Although CTPS was sampled on three different occasions, there was not enough sample volume to analyze for TPH-E; therefore, no data is available for TPH-E for this location. As previously described, piezometer B450 yielded insufficient groundwater following development and no sample could be collected from this location. The field sampling team returned to this location on numerous occasions; however, the piezometer would not yield groundwater after less than 1 gallon was purged.

The deviations identified do not impact the DQOs or usability of the data consistent with the purpose of the FSW.

6.0 DATA EVALUATION

This section provides an overview of the compounds detected during the groundwater sampling conducted between September 3 and October 18, 2010. State and Federal water quality criteria consistent with the groundwater data evaluation at the adjacent Campus Bay site were identified to help evaluate the groundwater data, as presented in Table 5. The comparisons are solely intended to provide a baseline and are not intended to represent remedial or cleanup criteria or triggers for further sampling. Tables 5 though 10 provide summaries of the detected data. No pesticides or PCBs were detected; therefore, no discussion of these compounds or summary tables is provided. Complete analytical results are included in Attachment 6. Figure 8 presents TDS results and contours.

6.1 VOLATILE ORGANIC COMPOUNDS

Groundwater samples were submitted to the EPA Region 9 laboratory for analysis of VOCs by EPA Method 8260. While VOCs were detected at many sampling locations, only 17 of the 62 target analytes analyzed by this method were detected at the RFS. These results are presented in Table 6. Of the VOCs detected, four compounds, 1,2-dichloroethane, carbon tetrachloride, tetrachloroethlyene (PCE), and tricloroethlyene (TCE), exceeded the maximum contaminant level (MCL). 1,2-Dichloroethane was detected at six of the 50 sampling locations, and one location, B163, exceeded the MCL of 5 micrograms per liter $(\mu g/L)$ at a concentration of 8.5 $\mu g/L$. Carbon tetrachloride was also detected at six locations across the RFS. At one location, CTP, carbon tetrachloride was detected at concentrations of 19 and 20 μ g/L (there are two values because a duplicate sample was collected at this location), which exceed the MCL of $5 \mu g/L$. PCE was detected at 13 locations. At two of these locations, B163 and PZ-11, PCE was detected at concentrations of 8.4 and 67 μ g/L, respectively, which exceeds the MCL (5 μ g/L). TCE was detected at 27 locations, 22 of which exceeding the MCL of 5 µg/L. Reported concentrations ranged from 6.0 to 690 μ g/L. The concentrations of TCE that exceeded the MCL were predominantly found along the eastern RFS property boundary, with the two highest concentrations of 360 and 690 µg/L reported in samples collected from B178 and PZ-11, respectively.

6.2 SEMI-VOLATILE ORGANIC COMPOUNDS

Groundwater samples were submitted to the EPA Region 9 laboratory for analysis of SVOCs and PAHs by EPA Method 8270. SVOCs were detected infrequently across the RFS with only 3 of the 62 target analytes analyzed by this method were detected. These results are presented in Table 7. Only one SVOC, bis(2-ethylhexyl) phthalate, exceeded its MCL ($6.0 \mu g/L$) at two locations. The sample collected from location B128 had a reported bis(2-ethylhexyl) phthalate concentration of $6.2 \mu g/L$, while the duplicate for this sample was undetected at an MDL of 1.0 $\mu g/L$. The sample collected from location MFA had a reported concentration of 27 $\mu g/L$. Other samples near the MFA had lower reported concentrations of bis(2-ethylhexyl) phthalate , but did not exceed its MCL. The compound 1,4-dioxane was detected at concentrations less than its MCL at 11 locations. 3,4-Methylphenol was reported at a concentration of 13 $\mu g/L$ in the primary sample and at a concentration of 9 $\mu g/L$ in the duplicate sample collected from location CTP; there is no MCL for this analyte.

PAHs are a subset of SVOCs, analyzed by EPA Method 8270-SIM (selective ion monitoring) to obtain a lower QL and MDL. PAHs were detected in groundwater samples collected from 6 of the 50 sampling locations across the RFS. The detected PAH results are presented in Table 7. None of the six detected analytes, 1-Methylnapthalene, acenaphthene, fluoranthene, fluorene, naphthalene, and pyrene has an MCL. The other ten analytes were not detected in any samples.

6.3 METALS

With the exception of antimony, silver, and thallium, metals were detected in all samples submitted for analysis. A summary of all detected metals are presented in Table 8.

Aluminum. Aluminum was detected at 44 of the 50 sampling locations, ranging in concentrations from 12 to 770 μ g/L. There were two outlier detections at 1,600 and 30,000 μ g/L in samples collected at locations ETA and FG respectively. There is no MCL for aluminum.

Arsenic. Arsenic was detected in all samples with concentrations ranging from 0.89 to 9.8 μ g/L. Additionally, at three locations (ETA, EERC, and Bulb1) the concentrations ranged from 11 to 22 μ g/L and exceeding the MCL of 10 μ g/L.

Barium. Barium was detected in all samples with concentrations ranging from 6.3 to 540 μ g/L. No detection exceeded the MCL of 2,000 μ g/L.

Beryllium. Beryllium was detected at one location, FG, at a concentration of 2.6 μ g/L which was less than the MCL of 4.0 μ g/L. Beryllium was not detected at any other location.

Boron. Boron was detected in all samples at concentrations ranging from 62 to 1700 μ g/L. There is no MCL for boron.

Cadmium. Cadmium was detected at four locations at concentrations ranging from 0.75 to 2.7 μ g/L. At one location, B163, cadmium was detected at a concentration of 5.2 μ g/L, which exceeds the MCL of 5.0 μ g/L.

Chromium. Chromium was detected at 37 locations at concentrations ranging from 0.52 to 50 μ g/L. No concentrations exceeded the Federal MCL of 100 μ g/L; however at one location, FG, chromium was detected at 50 μ g/L, which is the California Department of Public Health MCL.

Cobalt. Cobalt was detected at 36 locations with concentrations ranging from 0.28 to 11 μ g/L, with one outlier at 49 μ g/L for location FG. There is no MCL for cobalt.

Copper. Copper was detected at 41 locations at concentrations ranging from 1.1 to 56 μ g/L. No concentrations exceeded the MCL of 1,300 μ g/L.

Lead. Lead was detected at two locations, ETA and Bulb2, at concentrations of 9.8 and $3.2 \mu g/L$ (duplicate sample) and $3.9 \mu g/L$, respectively. Lead was also detected at a third location, FG, at a

concentration of 33 μ g/L, exceeding the MCL of 15 μ g/L. Lead was not detected at any other sampling location.

Manganese. Manganese was detected at all sampling locations ranging in concentrations from 7.2 to $17,000 \mu g/L$. There is no MCL for manganese.

Mercury. Mercury was detected at 15 locations at concentrations ranging from 0.015 to 0.33 μ g/L. Mercury was also detected at three locations (B195 at 10.0 μ g/L; ETA at 2.3 μ g/L and 1.3 μ g/L [duplicate sample]; and RFS-GW-Bulb2 at 2.5 μ g/L) which exceeded the MCL of 2.0 μ g/L.

Nickel. Nickel was detected in almost every sample collected with concentrations ranging from 0.62 to 46 μ g/L. At three locations, B163, FG, and PZ-11, nickel concentrations ranged from 130 to 170 μ g/L, exceeding the California Department of Public Health MCL of 100 μ g/L.

Selenium. Selenium was detected at five locations, with concentrations ranging from 1.1 to 8.6 μ g/L. No reported concentrations exceeded the MCL of 50 μ g/L.

Vanadium. Vanadium was detected at 27 locations at concentrations ranging from 2.0 to $90 \mu g/L$. There is no MCL for vanadium.

Zinc. Zinc was detected at almost every location with concentrations ranging from 2.5 to $430 \ \mu g/L$. There is no MCL for zinc.

6.4 TOTAL PETROLEUM HYDROCARBONS

All shallow samples were submitted for TPH analysis. A summary of detected TPH results are provided in Table 9. There were no detections of motor oil-range organics in any of the samples. There were eight detections of diesel-range organics, with concentrations ranging from 120 to 370 μ g/L. TPH as gasoline was detected in 12 samples, with concentrations ranging from 36 to 310 μ g/L. There are no established MCLs for TPH.

6.5 EXPLOSIVES AND PERCHLORATES

Based on previous site use, the groundwater samples collected from three sampling locations near the former dry house and test pit areas (DH, TP1, and TP2) were submitted for laboratory analysis of explosive residue and perchlorates. The detected results for these samples are provided in Table 10. For all three locations, perchlorates were not detected. The explosive RDX, was detected at the former dry house location at an estimated concentration of $1.0 \mu g/L$. There are no MCLs identified for RDX.

7.0 REFERENCES

- Tetra Tech EM Inc. (Tetra Tech). 2008. Current Conditions Report, University of California, Berkeley, Richmond Field Station, Richmond, California. November 21.
- Tetra Tech. 2010. Phase I Groundwater Sampling, Field Sampling Workplan, University of California, Berkeley, Richmond Field Station, Richmond, California. June 2.
- U.S. Environmental Protection Agency (EPA). 2002. Guidance for Quality Assurance Project Plans. Document Number EPA QA/G-5. December.
- EPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review." Document Number EPA-540-R-08-01. June.
- EPA. 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review." Document Number EPA-540-R-10-011. January.

TABLES

Location ID	Data Gap Addressed	Sampling Strategy
FG	The alleged pesticide spill by front gate needs further investigation.	This sample will be collected near the front gate and run for a full suite of analytes, potentially with low DL for pesticides. This sample will characterize groundwater conditions in the northeast corner of the property, along the property boundary, north of Building 478.
B490	Sewer line from B 490 to former digester ponds	This sample will be collected near the beginning of the former line, which will help to determine potential impacts to the line, as well as providing flow direction in the northern area of the property.
NRLF	Sanitary sewer lines and off-site impacts	This sample will provide information about flow direction in the northern end of the property, as well as for potential impacts from off-site sources (PG&E) or the northern lateral sewer line.
B280B	PCB-containing transformers were historically stockpiled at B280B	This sample will be collected near the area where PBC-containing materials were formerly stored.
СТР		This sample will provide information about the flow and direction in this area of the property, and potentially for impacts from off-site contamination.
CTPdeep	Investigation of the intermediate groundwater zone for gradient	This piezometer will be sampled for flow and direction of lower aquifer; however, chemical data will not be collected during the first round of sampling.
B450	Former transportation studies machine shop	Sampling will occur south of the building to test for potential impacts from previous site activity.
B460	UC Berkeley chemical storage, CCC stored vehicles here	Sampling will occur south of the building to test for potential impacts from previous site activity.
B480	Building 482, Asphalt testing building needs to be investigated for SVOCs and metals	This sample will be collected southeast of asphalt testing building and materials storage area to test for potential impacts from previous site activity.
B480deep	Investigation of the intermediate groundwater zone for gradient	This piezometer will be sampled for flow and direction of lower aquifer; however, chemical data will not be collected during the first round of sampling.
PZ-9	Characterize area west of B478 for evidence of contamination	This is a piezometer previously installed by Zeneca on the RFS site. This location will be sampled for GW data including flow direction and chemical analysis to test for potential impacts from previous site activity, as well as for potential impacts from off-site sources.
B474	B474 formerly and currently used for chemical storage	This sample will be collected from the drainage area to the southwest of the building to test for potential impacts from previous site activity.
B473	Former PBC-containing transformer location	This sample will be collected beneath the area where these transformers were formerly located.

TP1	Former Test Pit area	This sample will be collected from the northern area of the former test pit. For this sample, perchlorates, PAHs, and explosives residue will be added to the list of COCs.
TP2	Former Test Pit area, and CCC tram line	This sample will be collected from the southern area of the former test pit. For this sample, perchlorates, PAHs, and explosives residue will be added to the list of COCs. This sample also represents an area where the CCC tram line ran; therefore, creosote will be added to the list of COCs.
EERC	The earthquake engineering building has been used to store hydraulic oil	This sample will be collected from the courtyard of the earthquake engineering building to test for the presence of hydraulic oil as well as for potential impacts from the two current ASTs.
GEO	Geosciences well field	This sample will be collected to investigate any potential impacts from the well field or experiments performed in the well field.
B300	Geosciences well field and former chemical storage area	This sample will be collected to test for potential impacts from the well field as well as chemical storage in Building 300.
RWF	Research well field	This sample will be collected to investigate any potential impacts from the former research well field.
PZ-11	Property boundary	This piezometer, installed by Zeneca on the RFS site, will be sampled for flow direction and chemical data to investigate conditions along the property boundary.
B280A	B280A formerly used for chemical storage	This sample will be collected south of Building 280A to test for any impacts from former chemical storage, as well as potential impacts from the current AST.
B277	Former PBC containing transformer location	This area will be sampled for potential impacts from the formerly PCB- containing transformers located here. Also, this sample is located along a major sewer line and will test for impacts to groundwater from the sewer line.
B38	This sample lies in the former California Cap Company Blasting Cap Area.	Not much is known about the California Cap Company operations. This sample will be collected to help identify potential impacts from previous site activities.
B38deep	Investigation of the intermediate groundwater zone for gradient	This piezometer will be sampled for flow and direction of lower aquifer; however, chemical data will not be collected during the first round of sampling.
B194	Property boundary	This sample will be collected to obtain information about the flow and direction in this area, potential impacts from the current AST, and other potential impacts to groundwater.
B180	GW information in the core of the field station	Not much is known about the California Cap Company operations. This sample will be collected to help identify potential impacts from previous activities.

PZ-8	Ground water flow and direction across the field station	This sample will be collected for information about the flow and direction in this area, potential impacts from previous site activity, and other potential impacts to groundwater.
B195	This shed has been used for chemical storage, this location is also along the property boundary	This sample will be collected for information about groundwater flow direction along the property boundary and to assess for potential impacts to groundwater.
B177	This location is in the core of the field station – there is also an unused well southwest of the building	Sampling will occur south of the building to test for potential impacts from previous site activity.
B158	Buildings 151 and 158 have both been identified as data gaps	Sampling will occur south of these buildings to test for potential impacts from these buildings.
CTPsouth	Ground water flow and direction across the field station	This sample will collected to provide information about the flow and direction of groundwater near the west property boundary. Chemical data will also be collected.
B278	B 278 was previously used for chemical storage	This building is no longer on site, but a sample will be collected near where the building was formerly located to test for potential impacts.
CCC1	The locations of California Cap Company operations are not certain, therefore, these three samples are placed in the core areas of activities.	Not much is known about the California Cap Company operations. This sample will be collected to help identify potential impacts from previous activities.
B150	B150 was previously used for chemical storage	Sampling will occur in the courtyard area of the building to test for potential impacts from previous site activity, including the former California Cap Company tram line and hydraulic line, which appear to run through this location.
B175W	Location of a previously PCB-containing transformer	A sample will be collected from beneath the area where this formerly PCB- containing transformer was located.
B175S	There are two wells south of B175, also the B175 parking lot area has been identified as a data gap	Sampling will occur south of the building in the parking lot area to test for potential impacts from previous site activity.
B197	Building 197 and fuel pump island were previously used for chemical and waste oil storage	This sample will be collected from the west of the building in the parking lot area to test for potential impacts from previous site activity (including potential corp yard impacts, potential impacts from the current AST or former UST) as well as other potential impacts to groundwater.
B120	The courtyard of B120 has been identified as a data gap	This sample will be collected to test for potential impacts from previous site activities, which includes chemical storage and light vehicle maintenance. This sample will also provide information about property boundary flow direction and other potential impacts to groundwater.
СССТ	This is the location of a California Cap Company transformer house (as identified from a Sanborn map)	It is unknown if the transformer contained PCBs (although unlikely), however, a sample will be collected from this location to test for potential impacts.

B121	B121 and B118 have both been identified as data gaps	A sample will be collected from the courtyard between these buildings to test for potential impacts from these buildings.
CCC2	The locations of California Cap Company operations are not certain, therefore, these three samples are placed in the core areas of activities.	Not much is known about the California Cap Company operations. This sample will be collected to help identify potential impacts from previous activities.
DH	Former California Cap Company dry house explosion area	This sample will be collected to test for impacts from the former dry house explosion. Perchlorates, PAHs, and explosives residue will be added to the list of standard COCs for this sample location.
EPA	The soil pile west of the EPA lab has been identified as a data gap	This sample will be collected to provide information about the soil pile area as well as groundwater conditions along the western property boundary.
B128	This sample has been placed over previous California Cap Company activity.	Not much is known about the California Cap Company operations. This sample will help to identify potential impacts from previous activities.
B128deep	Investigation of the intermediate groundwater zone for gradient	This piezometer will be sampled for flow and direction of lower aquifer; however, chemical data will not be collected during the first round of sampling.
CCC3	The locations of California Cap Company operations are not certain, therefore, these three samples are placed in the core areas of activities.	Not much is known about the California Cap Company operations. This sample will be collected to help identify potential impacts from previous activities.
B178	The corp yard storage area has been identified as a data gap	This sample will be collected for information about groundwater flow direction along the property boundary, potential impacts from previous site activity, and other potential impacts to groundwater.
B185	The corp yard storage area has been identified as a data gap	This sample will be collected for information about groundwater flow direction along the property boundary, potential impacts from previous site activity, and other potential impacts to groundwater.
B163	The former US Briquette Co has been identified as a data gap	This sample will be collected from the parking lot of B163 (the location of the former US Briquette Co) to test for potential impacts from previous site activity.
WTA	The transition area has been identified as a data gap	This sample will be collected from the area south of the core of California Cap Company activity, as well as along the sewer line lateral (part of which was previously removed) to test for potential impacts from previous site activity.
MFA	The former mercury fulminate plant has been identified as a data gap	This sample will be collected to test for potential impacts to groundwater from the MFA.
ETA	The transition area has been identified as a data gap	This sample will be collected south of the core of California Cap Company activity, as well as along the sewer line lateral (part of which was previously removed). This sample will also provide information about groundwater flow and direction south of the former seawall (fill area).

Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan University of California, Berkeley, Richmond Field Station, Richmond, California

Bulb1	During the WTA TCRA excavation, incidental debris was discovered in this area	This sample will be collected to test for potential impacts from previous site activity.
Bulb2	The magnetic anomaly detected in the bulb has been identified as a data gap	This sample will be collected to test for potential impacts from previous site activity.

Notes:

AST	Above ground storage tank
В	Building
CCC	California Cap Company
COC	Chemical of concern
CTP	Costal terrace prairie
EERC	Earthquake engineering research center
EPA	Environmental Protection Agency
ETA	Eastern transition area
GW	Groundwater
ID	Identification
MFA	Mercury fulminate area
NRLF	Northern research library facility
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls
PG&E	Pacific Gas and Electric
RFS	Richmond Field Station
SVOC	Semivolatile organic compounds
TCRA	Time critical removal action
UC	University of California
UST	Underground storage tank

WTA Western transition area

 Table 2: Groundwater Sampling Registry

 Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan

 University of California, Berkeley, Richmond Field Station, Richmond, California

	Groundwater Samples													
			Analysis	TPH-P (EPA Method 8015B modified)	VOCs (EPA Method 8260B)	TPH-E (EPA Method 8015B modified)	SVOCs (EPA Method 8270C)	Metals (EPA Method 6020A/7400 series)	PAH (EPA Method 8270-SIM)	PCB (EPA Method 8082)	Pesticides (EPA Method 8081A)	Perchlorates (EPA Method 314)	Explosive residue (EPA Method 8330)	TDS (EPA Method 160.1)
			Sample Container	2 40mL Amber VOA vials with HCl	2 40mL Amber VOA vials with HCl	1 Liter Amber	1 Liter Amber	500mL Poly with HNO3	1 Liter Amber	1 Liter Amber	1 Liter Amber	250mL poly	1 Liter Amber	250mL poly
			Holding Time	14 Days	14 Days	14 Days	7/40 days	Metals – 6 Months (except Mercury – 28 Days)	7/40 days	7/40 days	7/40 days	28 days	7/40 days	7 days
Sample ID	Point Location ID	Sampling Date	Depth (feet bgs)											
RFSGWB12001	B120	9/9/2010	4-14	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB12101	B121	9/8/2010	8-18	X	X	X	X	X	X	X	X	X		X
RFSGWB12801 RFSGWB12801-D	B128 B128	9/23/2010	6-16	X	X	X	X	X	X	X	X	X		X
RFSGWB128D01	B128 B128deep	10/15/2010	30-40	A	A	А		А		A	А	А		X
RFSGWB15001	B150	9/8/2010	5.5-15.5	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB15801	B158	9/8/2010	5-15	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB16301	B163	9/2/2010	7-17	X	X	X	X	X	X	X	X	X		X
RFSGWB175S01	B175S	9/3/2010	5-15	X	X	X	X	X	X	X	X	X		X
RFSGWB175W01	B1/5W B177	9/23/2010	9-19	X	X	X	X	X	Х	X	X	X		X
RFSGWB17801	B178	9/2/2010	4.5-14.5	X	X	X	X	X	X	X	X	X		X
RFSGWB18001	B180	9/15/2010	6-16	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB18501	B185	9/2/2010	4-14	Х	Х	Х	Х	Х	Х	Х	Х	Х		X
RFSGWB19401	B194	9/9/2010	7-17	X	X	X	X	X	X	X	X	X		X
RFSGWB19501 RFSGWB19701	B195 B197	9/9/2010	0-10 4-14	X	X	X	X	X	X	X	X	X		X
RFSGWB19701-D	B197 B197	9/9/2010	4-14	X	X	X	X	X	X	X	X	X		X
RFSGWB27701	B277	9/15/2010	7-17	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB27801	B278	9/16/2010	6-16	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB280A01	B280A	9/16/2010	4-14	X	X	X	X	X	X	X	X	X		X
RFSGWB280B01	B280B	10/1/2010	6-16	X	X	X	X	X	X	X	X	X		X
RFSGWB3801	B300	9/15/2010	7-17	X	X	X	X	X	X	X	X	X		X
RFSGWB38D01	B38deep	10/18/2010	31-41								**			X
RFSGWB46001	B460	9/15/2010	8-18	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB47301	B473	9/24/2010	7-17	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWB47401	B474	9/23/2010	6-16	X	X	X	X	X	X	X	X	X		X
RFSGWB48001 RFSGW480D01	B480 B480deep	9/24/2010	35-40	Λ	A	А	Λ	Λ	А	A	А	А		X
RFSGWB49001	B490	9/16/2010	8-18	Х	Х	Х	Х	Х	Х	Х	Х	Х		X
RFSGWBULB101	Bulb1	10/19/2010	8-18	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWBULB201	Bulb2	10/19/2010	9-19	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWCCC101	CCC1	9/8/2010	3.5-13.5	X	X	X	X	X	X	X	X	X		X
RFSGWCCC201 PFSGWCCC201	CCC2	9/8/2010	4-14	X	X	X	X	X	X	X	X	X		X
RESGWCCC301-D	CCC3	9/3/2010	4-14	X	X	X	X	X	X	X	X	X		X
RFSGWCCCT01	CCCT	9/3/2010	5.5-15.5	X	X	X	X	X	X	X	X	X		X
RFSGWCTP01	CTP	9/30/2010	7-17	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWCTP01-D	CTP	9/30/2010	7-17	Х	Х	Х	X	Х	Х	Х	Х	Х		X
RFSGWCTPD01	CTPdeep	10/15/2010	30-40	37	v			v		- 37		 		Х
RESGWCTPS01A	CTPS	9/30/2010	4-14 A-14	X	Х		x	X		X		+		
RFSGWCTPS01B	CTPS	10/18/2010	4-14	<u> </u>	1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Х		Х			
RFSGWDH01	DH	9/30/2010	3.5-13.5	Х	Х	Х	Х	Х	X	Х	X	Х	Х	Х
RFSGWEERC01	EERC	10/1/2010	7-17	Х	Х	Х	Х	Х		Х				
RFSGWEERC01A	EERC	10/15/2010	7-17					~~	X		X			X
RFSGWEPA01	EPA ETA	9/16/2010	4-14	X	X	X	X	X	X	X	X	X		X
RFSGWETA01-D	ETA	9/24/2010	3.5-13.5	X	X	X	X	X	Х	X	X	X		X
RFSGWFG01	FG	9/23/2010	6-16	X	X	X	X	X	X	X	X	X		X
RFSGWGE001	GEO	9/3/2010	6.5-16.5	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWMFA01	MFA	9/24/2010	3.5-13.5	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
RFSGWNRLF01	NRLF	9/16/2010	9-19	X	X	X	X	X	X	X	X	X		X
RESGWPZ1101	PZ-11 P7-8	10/1/2010	9-19	X	X	X	X	X	X	X	X	X		X
RFSGWPZ901	PZ-9	9/24/2010	9-20	X	X	X	X	X	X	X	X	X		X
RFSGWRWF01	RWF	9/15/2010	8-18	X	X	X	X	X	X	Х	X	X		X
RFSGWTP101	TP1	9/29/2010	7-17	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RFSGWTP201	TP2	9/29/2010	6-16	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X
RFSGWWTA01	WTA	9/30/2010	4-14	Х	X	X	Х	Х	X	X	X	X		X

Notes: bgs

bgs	below ground surface
EPA	U.S. Environmental Protection Agency
HCl	Hydrocloric acid
HNO3	Nitric Acid
ID	Identification

ml PAH PCB SVOC Polyaromatic hydrocarbons Polychlorinated biphenyl Semivolatile organic compound TDS Total dissolved solids

millileters

Total extractable petroleum hydrocarbons Total purgeable petroleum hydrocarbons

Volatile organic compound

THP-E

Table 3: Piezometer Completion Summary

Piezometer Name	Well Installation Date	Total Depth (ft bgs)	Casing Diameter (inches)	Screen Interval	Development Date	Development Gallons Purged	Sampling Date	TOC (a)	Approximate Ground Surface Elevation (a)
B120	8/2/10	14	2.0 PVC	4-14	8/19/10	26	9/9/10	11.72	12.12
B120	8/3/10	18	2.0 PVC	8-18	8/16/10	53	9/8/10	14.77	15.55
B128	8/12/10	16	2.0 PVC	6-16	8/31/10	33	9/23/10	11.62	12.22
B128deep	8/12/10	40	2.0 PVC	30-40	9/1/10	65	10/15/10	12.15	12.21
B150	8/3/10	15.5	2.0 PVC	5.5-15.5	8/17/10	28	9/8/10	17.24	17.51
B158	8/11/10	15	2.0 PVC	5-15	8/18/10	19	9/8/10	15.88	16.33
B163	7/26/10	17.5	2.0 PVC	7-17	8/16/10	53	9/2/10	10.37	10.60
B175S	8/3/10	15	2.0 PVC	5-15	8/17/10	22	9/3/10	15.16	15.45
B175W	8/3/10	15	2.0 PVC	5-15	8/17/10	32	9/8/10	16.57	17.21
B177	8/11/10	19	2.0 PVC	9-19	8/31/10	32	9/23/10	17.57	17.81
B178	8/2/10	14.5	2.0 PVC	4.5-14.5	8/19/10	32	9/2/10	10.67	11.33
B180	8/11/10	16	2.0 PVC	6-16	8/24/10	24	9/15/10	15.02	15.30
B185	8/2/10	14	2.0 PVC	4-14	8/20/10	31	9/2/10	10.01	10.08
B194	7/30/10	17	2.0 PVC	7-17	8/23/10	34	9/9/10	18.30	18.84
B195	7/30/10	16	2.0 PVC	6-16	8/20/10	29	9/9/10	14.28	14.91
B197	7/30/10	14	2.0 PVC	4-14	8/19/10	25	9/9/10	13.01	13.37
B277	7/29/10	17.5	2.0 PVC	7-17	8/19/10	25	9/15/10	14.82	15.69
B278	7/29/10	16.5	2.0 PVC	6-16	8/18/10	26	9/16/10	12.75	13.17
B280A	7/29/10	14.5	2.0 PVC	4-14	8/19/10	13	9/16/10	14.04	14.21
B280B	8/6/10	16	2.0 PVC	6-16	8/26/10	6	10/1/10	19.59	19.89
B300	7/29/10	17	2.0 PVC	7-17	8/24/10	21	9/9/10	18.16	18.72
B38	8/10/10	17	2.0 PVC	7-17	8/24/10	24	9/15/10	15.78	16.08
B38deep	8/10/10	41	2.0 PVC	31-41	8/24/10	47	10/18/10	15.84	16.09
B450	8/5/10	16	2.0 PVC	6-16	8/25/10	10	NS	21.34	21.76
B460	8/5/10	18	2.0 PVC	8-18	8/25/10	12	9/15/10	21.42	21.96
B473	8/9/10	17	2.0 PVC	7-17	8/31/10	12.5	9/24/10	22.29	22.50
B474	8/9/10	16	2.0 PVC	6-16	8/27/10	17.5	9/23/10	23.67	21.85
B480	8/5/10	16	2.0 PVC	6-16	8/27/10	10	9/24/10	20.84	21.04
B480deep	8/12/10	40	2.0 PVC	35-40	8/27/10	52	10/15/10	21.07	21.19
B490	8/6/10	18	2.0 PVC	8-18	8/30/10	27	9/16/10	24.41	24.95
Bulb1	9/29/10	18	2.0 PVC	8-18	10/19/10	30	10/19/10	7.19	7.83
Bulb2	9/29/10	19	2.0 PVC	9-19	10/19/10	35	10/19/10	7.46	7.91
CCC1	7/27/10	14	2.0 PVC	3.5-13.5	8/18/10	11.5	9/8/10	15.38	15.67
CCC2	7/27/10	14	2.0 PVC	4-14	8/16/10	19	9/8/10	14.60	14.75
CCC3	7/27/10	15	2.0 PVC	4-14	8/16/10	27	9/3/10	11.67	12.13
CCCT	8/2/10	15.5	2.0 PVC	5.5-15.5	8/20/10	31	9/3/10	12.13	13.19

Table 3: Piezometer Completion Summary

Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan University of California, Berkeley, Richmond Field Station, Richmond, California

	Well								Approximate Ground
	Installation	Total Depth	Casing Diameter	Screen Interval		Development	~		Surface
Piezometer Name	Date	(ft bgs)	(inches)	(ft bgs)	Development Date	Gallons Purged	Sampling Date	TOC (a)	Elevation (a)
CTP	7/30/10	17	2.0 PVC	7-17	8/26/10	20	9/30/10	17.27	18.26
CTPdeep	8/12/10	40	2.0 PVC	30-40	8/26/10	47	10/15/10	17.67	18.16
CTDS	7/28/10	14	2.0 BVC	4.14	8/10/10	7	9/30/2010, 10/1/10 and 10/18/10	15.25	15 42
	7/28/10	12.5	2.0 FVC	4-14	8/19/10	12	0/20/10	13.25	13.43
DH	//2//10	13.5	2.0 PVC	3.3-13.5	8/18/10	15	9/30/10	13.25	15.55
							10/1/2010 and		
EERC	8/9/10	17	2.0 PVC	7-17	8/31/10	7.5	10/15/10	21.84	22.01
EPA	7/28/10	14	2.0 PVC	4-14	8/19/10	13.5	9/16/10	10.59	11.20
ETA	7/28/10	14	2.0 PVC	3.5-13.5	9/2/10	32	9/24/10	7.54	7.72
FG	8/6/10	16	2.0 PVC	6-16	8/30/10	7	9/23/10	25.31	25.79
GEO	7/26/10	17.5	2.0 PVC	6.5-16.5	9/1/10	20	9/3/10	16.37	16.73
MFA	7/28/10	13.5	2.0 PVC	3.5-13.5	9/2/10	37	9/24/10	8.23	8.51
NRLF	7/26/10	19.5	2.0 PVC	9-19	8/26/10	10	9/16/10	22.62	22.99
PZ-11	10/6/09	19	2.0 PVC	9-19	unk	unk	10/15/10	21.48	21.73
PZ-8	4/12/07	21	2.0 PVC	8-21	unk	unk	10/1/10	14.12	14.52
PZ-9	4/12/07	20	2.0 PVC	9-20	unk	unk	9/24/10	23.29	23.72
RWF	8/4/10	18	2.0 PVC	8-18	8/23/10	30	9/15/10	16.46	16.78
TP1	8/5/10	17	2.0 PVC	7-17	8/23/10	13	9/29/10	19.33	19.91
TP2	8/4/10	16	2.0 PVC	6-16	8/23/10	20	9/29/10	18.91	19.24
WTA	7/27/10	14	2.0 PVC	4-14	8/18/10	28	9/30/10	8.61	8.93

Notes:

Total depth of boring assumed to be bottom of screen unless otherwise specified on boring log or well completion form.

(a) Ground surface elevation and TOC given in feet above mean sea level

ft bgsFeet below ground surfaceNSNot SampledPVCPolyvinyl chlorideTOCTop of casingunkUnknown

Table 4: Groundwater Sampling Parameters Summary

Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan University of California, Berkeley, Richmond Field Station, Richmond, California

F					/				/
				/				/ /	
		/	wedal	· /	Je C	.e	ATU /		/
			Disso, 118		eratur	ite netante chi	dity	mell m	
	Sample ID	Total	Solit of	Tem	R	ond unit in	^{br} 00	or OBR	
-	RFSGWB16301	2900	5.7	20.52	3402	NA	0.38	170	
	RFSGWB17801	1800	6.62	19.62	2379	NA	0.55	156.6	
	RFSGWB18501	1700	6.47	18.76	2162	NA	0.6	159.7	
	RFSGWB175S01	590	7.19	19.27	0.978	14.3	0.42	206	
	RFSGWCCC301	730	7.94	18.4	1.21	15.7	0.92	204	
	RFSGWCCC301-D	710	NA	NA	NA	NA	NA	NA	
	RFSGWCCCT01	1100	7.28	16.09	1.64	17.5	0.48	212	
	RFSGWGEO01	510	7.63	17.49	0.9	13.8	2.7	204	
	RFSGWB12101	520	7.34	17.32	0.856	21.1	0.42	210	
	RFSGWB15001	290	6.76	18.98	0.432	15.5	0.43	200	
	RFSGWB15801	200	7.04	17.06	0.256	30.5	3.23	192	
	RFSGWB175W01	270	7.11	19.77	0.486	29.1	1.08	199	
	RFSGWCCC101	440	7.81	18.13	0.714	17.4	0.77	201	
	RFSGWCCC201	630	7.72	17.37	10.77	21.1	0.37	207	
	RFSGWB12001	1900	7.25	17.77	2.48	21.7	0.79	220	
	RFSGWB19401	670	7.41	19.19	0.003	46.8	1.54	206	
	RFSGWB19501	1600	7.22	18.14	1.92	24.9	0.47	213	
	RFSGWB19701	1500	7.26	19.15	2.02	18.6	0.48	215	
	RFSGWB19701-D	1500	NA	NA	NA	NA	NA	NA	
	RFSGWB30001	1100	7.22	16.96	2.34	17.5	0.68	211	
	RFSGWB18001	360	7.59	19.4	0.496	40.3	6.28	203	
	RFSGWB27701	400	7.86	17.96	0.725	31.3	0.59	209	
	RFSGWB3801	310	6.91	17.65	0.587	43.1	0.86	207	
	RFSGWB46001	290	7.6	16.84	0.771	10.1	1.67	211	
	RFSGWRWF01	720	7.12	17.24	1.172	44	0.42	213	
	RFSGWB27801	2300	7.27	18.19	3.75	16.2	1.38	218	
	RFSGWB280A01	510	7.49	19.6	0.878	4.3	0.24	209	
	RFSGWB49001	540	7.4	17.05	0.918	18.9	1.16	207	
	RFSGWEPA01	710	7.75	18.03	1.467	11.8	2.7	215	
	RFSGWNRLF01	400	7.46	17.82	0.731	4.7	0.5	201	
	RFSGWB12801	800	7.33	18.77	1.319	24	3.09	226	
	RFSGWB12801-D	970	NA	NA	NA	NA	NA	NA	
	RFSGWB17701	190	6.19	19.3	0.277	80.8	0.97	200	
	RFSGWB47401	430	7.66	17.51	1.06	22.6	1.36	220	
	RFSGWFG01	1300	7.2	19.22	2.23	256	0.53	224	
	RFSGWB47301	460	7.42	17.73	0.925	50.6	2.3	217	
	RFSGWB48001	670	7.57	19.14	1.083	17.6	0.27	211	
	RFSGWETA01	1300	7.19	18.74	1.92	50.2	0.27	219	
	RFSGWETA01-D	1300	NA	NA	NA	NA	NA	NA	
L	RFSGWMFA01	900	7.64	17.87	1.45	109	0.18	215	
	RFSGWPZ901	400	7.11	19.26	0.651	10.7	0.19	206	
	RFSGWTP101	720	7.43	19.04	1.26	19.8	0.53	24	
	RFSGWTP201	830	7.3	18.9	1.331	50.1	0.54	73	
	RFSGWCTP01	490	7.72	16.74	0.88	19.1	2.79	-80	
L	RFSGWCTP01-D	500	NA	NA	NA	NA	NA	NA	
	RFSGWDH01	5500	7.12	16.15	0.52	18.3	1.91	183	
	RFSGWWTA01	1000	7.92	16.6	1.93	12	0.56	22	
	RFSGWB280B01	650	8.21	17.6	1.078	21.1	4.23	-108	
	RFSGWPZ1101	2500	7.2	15.82	3.03	12.8	0.39	-36	
1	RFSGWB480D01	360	10.52	184	0.625	8	107	20	

RFSGWB128D01	440	8.62	18.28	0.795	74.2	1.02	-95
RFSGWCTPD01	370	9.18	16.88	0.656	34.8	0.3	-170
RFSGWEERC01	NA	7.11	17.07	6.99	12.4	0.64	-70
RFSGWEERC01A	4800	7.05	17.12	6.92	33.1	0.73	-19
RFSGWPZ801	510	7.22	18.37	0.814	46.6	0.63	123
RFSGWB38D01	350	8.73	17.14	0.639	6.4	0.53	-141
RFSGWBULB101	25000	7.82	18.11	38.6	21	6.32	67
RFSGWBULB201	5900	7.81	18.37	10.42	35.9	5.88	-56
RFSGWCTPS01B	NA	7.54	16.98	2.01	5.3	3.43	-51
RFSGWCTPS01	NA	7.45	17.87	2.1	16.5	3.19	9
RFSGWCTPS01A	NA	7.44	17.74	2.11	14	4.8	-34

Notes:

С	Celsius
mg/L	Milligrams per liter
mV	Millivolts
NA	Not available
NTU	Nephelometric Turbidity Units
umhos/cm	Micromhms per cemtimeter

Final, R1 Phase I Groundwater Sampling Results UC Berkeley, Richmond Field Station

Page 1 of 1

Table 5: State and Federal Water Quality Criteria in ug/L

Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan University of California, Berkeley, Richmond Field Station, Richmond, California

	Human	Health Risk-Ba	sed SSGs (1)		Aquatic Criteria	a (2)											
		Unland		Near BAPR	Unlands	Lower boizon			MCL (4)			SWRC	R	FPA 200	4 PRC	FPA 2	11 PSL
Chemical	On-Site Residential	On-Site Commerical /Industrial Worker	On-Site Groundskeeper/ Maintenance Worker	5x Aquatic Criteria	40x Aquatic Criteria	160x Aquatic Criteria	Drinking Water Standard (3)	California	EPA	Secondary	Drinking Water Criteria (5)	Non- Drinking Water Criteria (6)	Surface Water Screening Levels, Estuary Habitats (7)	Cancer (8)	Non-cancer (8)	Tapwater (Cancer) (9)	Tapwater (Non-cancer) (9)
VOUS	1.900	8900	630,000	160	1 200	5 100		6	7		6	25	2				340
1.2-Dichloroethane	1,900	360	2 900	5,000	40,000	160,000		0.5	5		0.5	200	99			0.15	540
1.2-Dichloropropane	120	370	1,900	2.000	16,000	62,000		5	5		5	100	10			0.39	
2-Butanone (MEK)	2,800,000	13,000,000	140,000,000								4,200	14,000	8,400				
Acetone	7,900,000	37,000,000	220,000,000								1,500	1,500	1,500				22,000
Benzene	20	61	440	3,600	28,000	110,000		1	5		1	46	71			0.41	
Carbon tetrachloride	2.8	8.5	160	220	1,800	7,000		0.5	5		0.5	9.3	4			0.44	
Chlorobenzene	250,000	1,100,000	140,000	1,100,000	8,400,000	34,000,000			100		25	25	50				91
Chloroform	130	400	2,500	24,000	190,000	750,000					70	330	470			0.91	
cis-1,2-Dichloroethene	7,200	34,000	270,000					6	70		6	590	22,000				73
Dichloromethane					ļ			5	5	<u> </u>					<u> </u>		ļ
Naphthalene	210	640	90	110	2,500	14.000				ł	17	24	21		ł	0.14	ł
Tetrachloroethene	38	110	22	440	3,500	14,000		5	5	ł	5	120	9		ł	0.11	2 200
Toluene	3,500	160,000	570,000	10,000,000	80,000,000	320,000,000		150	1,000		40	130	40				2,300
trans-1,2-Dichloroethene	6,700	51,000	310,000	7,000,000	30,000,000	120,000,000		10	100		10	390	260			2	110
Vinul aklasida	100	340	2,700	4,100	210,000	840,000		0.5	2		0.5	300	520			0.016	
SVOC	1.2	5.0	500	20,000	210,000	840,000		0.5	4		0.5	5.8	550			0.010	
1-Methylnanhthalene																2.3	
1 4-Dioxane											3	5000	5000			0.67	
Acenaphthene											-		2000				2.200
Bis(2-ethylhexyl) phthalate									6		4	32	5.9			4.8	
Fluoranthene											8	8	8				1,500
Fluorene											3.9	3.9	30				1,500
Naphthalene											17	24	21			0.14	
Pyrene											2	2	2		180		1,100
Metals																	
Aluminum								1,000		200							37,000
Antimony			150,000	220,000	1,700,000	6,900,000	6	6	6		6	30	500				15
Arsenic			110	180	1,400	5,800	10	10	10		36	36	0.14	0.071		0.045	
Barium			75,000,000				1,000	1,000	2,000		1,000	1,000	1,000				7,300
Beryllium								4	4		0.53	0.53	0.53				/3
Boron			100.000	47	270	1.500	5	5	5		1.0	1.0	1.0				/,500
Calainm			190,000	47	570	1,500	5	5	3		0.23	0.23	9.5				18
Chromium			560.000.000				50	50	100		50	180	180				
Cobalt			500,000,000				50	50	100		3	3	3				11
Copper		1	15,000,000	16	120	500	1.300	1.300	1.300	1.000	3.1	3.1	3.1		1		1.500
Iron		1					-,	-,	-,	300					1		26,000
Lead				41	320	1300	15	15	15		2.5	2.5	5.6				
Magnesium																	
Manganese										50							880
Mercury			110,000	11	84	340	2	2	2		0.025	0.025	0.025				.63
Molybdenum											35	240	240				180
Nickel			93,000,000	41	330	1,300	100	100			8.2	8.2	8.2				180
Potassium		ļ	1 000 000	25	200	000	50	50	50	<u> </u>			71		<u> </u>		100
Selenium			1,900,000	25	200	800	50	50	50	100	5	5	71				180
Silver			3,100,000	9.5	76	300	100			100	0.19	0.19	0.19				180
Sodium			25.000	320	2 500	10.000	2	2	2		2	4	4				
Vanadium		1	25,000	520	2,500	10,000	4	4	4	ł	15	4	4		ł		180
7 anadium 7 inc		1	180,000,000	410	3 200	13 000	5.000			5.000	13	81	19		1		11 000
Hardness as CaCO3 IN mg/I			100,000,000	410	5,200	15,000	5,000			5,000	01	01	01				11,000
TPH					1					1	1				1		1
TPH as Gasoline		1									100	210					
TPH - Diesel Range Organics	İ	1	İ	İ	İ		İ			I			1		I	İ	İ
TPH - Oil Range Organics	1	1	1	1			1								1	1	
Explosive Residue																	
PDV		1	1					1	1						1		

Groundwater SSGs are developed in Appendix G of the Campus Bay Revised HHRA (EK12008a). The formulas used to calculate the SSGs are presented in Appedix H of the Revised HHI
 The aquatic criteria are the more stringent of the 10x Human Consumption of Aquatic organisms value and the Salt Water Aquatic Criteria Value, presented in the Quaterly Groundwater and Surface Water Monitoring Report (Arcadis 20 The dilution factors of 5, 40, and 160 for groundwater are developed and presented in Appedix I of the Draft Feasibility Study and Remedial Action Plans for Lots 1, 2, and 3 (EK1 200
 The drinking water criteria are the more stringent of the federal (US EPA 2005) and California (CDHS) primary and secondary maximum contaminant levels (MC: http://www.cdph.ca.gov/certic/c/inkingwater/Documents/DFAdocuments/EPA AndCDPH -11-28-2008.p.
 http://www.cdph.ca.gov/sanfranciscobay/water jisues/available_documents/ESL_May_2008.pdf)
 values taken from the California Regional Water Quality Control Board 2008 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F (http://www.swrcb.ca.gov/sanfranciscobay/water_isues/available_documents/ESL_May_2008.pdf)
 values taken from the California Regional Water Quality Control Board 2008 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F (http://www.swrcb.ca.gov/sanfranciscobay/water_isues/available_documents/ESL_May_2008.pdf)
 values taken from the California Regional Water Quality Control Board 2008 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F (http://www.swrcb.ca.gov/sanfranciscobay/water_isues/available_documents/ESL_May_2008.pdf)
 values taken from the California Regional Water Quality Control Board 2008 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F (http://www

(a) EPA 2011 Regional Screening Levels (formerly Preliminary Remediation Goals) (http://www.epa.gov/region9/superfund/pr
 (9) EPA 2011 Regional Screening Levels (formerly Preliminary Remediation Goals) (http://www.epa.gov/region9/superfund/pr
 (9) EPA 2011 Regional Screening Levels (or tap water (http://www.epa.gov/reg3hwmd/risk/humar

Biologically active permeable barrie: U.S. Environmental Protection Agenc; Maximum contaminant leve Preliminary remediation goal: Regional screening level: Site specific goal State Water Resources Control Board Senivolatile organic compound Total petroleum hydrocarbon: Volatile organic compound: Volatile organic compound:

BAPB EPA MCL PRG RSL SSG SWRCB SVOC TPH VOC

F

 Table 6: VOC Dectected Results Summary in ug/L

 Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan

 University of California, Berkeley, Richmond Field Station, Richmond, California

		/														
/			The				ide			mene					rethene	
. Internet	sethene lorg	settiant in	ropropa	BE ONER			-etrachlory	Mene	110	ichloroett	methane	tene	Inroethene		Dichloro	sethene
Sample ID 1.100	12.Dichte	12-Dichte	2.Butan	S. Scetone	Benter	e Carbo	Chlorob	Chlorof	or is her	Di Dich	perot.	Dat. Tetra	and Tomene	transi	.2 Trieb	arb Vinyle
a site Residential 1,900	120	120	2.8E+06	7.9E+06	20	2.8	2.5E+05	130	7,200	/	210	38	3,500	6,700	180	1.2
a site comm/indestrial 8,900	360	370	1.3E+07	3.7E+07	61	8.5	1.1E+06	400	3.4E+04		640	110	1.6E+05	3.1E+04	540	3.6
site groundskeeper/maintenance 630,000	2,900	1,900	1.4E+08	2.2E+08	440	160	1.4E+05	2,500	2.7E+05		90	22	5.7E+05	5.1E+05	2,700	300
aquatic criteria 160	5,000	2,000			3,600	220	1.1E+06	2.4E+04		_		440	1.0E+07	7.0E+06	4,100	26,000
deral EPA MCL 7	5	5			5	5	100		70	5		5	1000	100	5	2
lifornia MCL 6	0.5	5	4 200	1500	1	0.5	25	70	6	5	17	5	150	10	5	0.5
RCB GW (arinking water source) 0	200	5 100	4,200	1500	1	0.5	25	70	0 500		24	5 120	40	500	5 360	0.5
A 2011 DSL tanwater (cancer)	0.15	0.30	14,000	1500	40	9.5	25	0.91	390		0.14	0.11	150	390	200	0.016
A 2011 RSL tapwater (cancer) 340	0.15	0.57		22.000	0.41	0.44	91	0.91	73		0.14	0.11	2.300	110	2	0.010
				,									,			
RFSGWB16301 0.3 J 8	.5 0.	.5 U -	4.0 U	2.7 J	0.2 J	0.5 U	6.5	2.1	3.0	0.5 U	0.5 U	8.4	0.5 U	0.3 J	100	0.7
RFSGWB17801 0.5 U 0	.5 0.	.5 U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.2 J	2.5	0.5 U	0.5 U	0.2 J	0.5 U	0.4 J	360	0.5 U
RFSGWB18501 0.5 U 1	.4 0.	.5 U 4	4.0 U	4.0 U	0.5 U	4.3	1.2	1.3	1.0	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	150	0.2 J
RFSGWB175S01 0.5 U 0	.5 U 0.	.5 U 4	4.0 U	2.5 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U	7.9	0.5 U
RFSGWCCC301 0.5 U 0	.5 U 0.	.5 U .	30	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.0	0.5 U
RFSGWCCC301-D 0.5 U 0	.5U 0.	.5U .	52	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.2 120	0.5 U
RESOUCCEDI 0.5 U 0	.2 J 0.	.SU 1	5.2 J 4 O U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	120	0.5 U
RESGWB12101 0.5 U 0	5U 0.	50 4	4.0 U 4.0 U	4.0 U 2 O I	0.5 U	1.1 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.3 U	0.5 U	0.5 U	0.4 J 0.8	0.5 U
RFSGWB15001 0.5 U 0	5U 0	5U	40U	401	0.5 U	0.5 U	0.5 U	14	0.5 U	0.5 U	0.5 U	051	0.5 U	05U	0.5 U	0.5 UI
RFSGWB15801 0.5 U 0	5U 0	5U 4	40U	40U	0.5 U	0.5 U	0.5 U	4.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UI
RFSGWB175W01 0.5 U 0	.5U 0.	.5U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 UJ
RFSGWCCC101 0.5 U 0	.5 U 0.	.5 U	4.0 U	2.3 J	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
RFSGWCCC201 0.5 U 0	.5 U 0.	.5 U	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.6	0.5 U	0.5 U	0.5 U	0.5 UJ
RFSGWB12001 0.5 U 0	.6 0.	.5 U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	3.1	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	210	0.5 U
RFSGWB19401 0.5 U 0	.5 U 0.	.5 U	2.1 J	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.0	0.5 UJ
RFSGWB19501 0.5 U 1	.0 0.	.5 U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	3.7	0.5 U	0.5 U	3.1	0.5 U	0.4 J	140	0.5 UJ
RFSGWB19701 0.5 U 0	.5 0.	.5 U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	2.8	0.5 U	0.5 U	1.0	0.5 U	0.4 J	200	0.5 U
RFSGWB19701-D 0.5 U 0	.5 0.	.5 U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	2.9	0.5 U	0.5 U	1.0	0.5 U	0.4 J	170	0.5 U
RFSGWB30001 0.5 U 0	<u>.5 U 0.</u>	<u>.5U</u>	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.7	0.5 UJ
RFSGWB18001 0.5 U 0	.5U 0.	.5U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	1.8	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWB27/01 0.5 U 0	5U 0.	.5U 4	4.0 U 4.0 U	4.0 U	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RESGWB46001 0.5 U 0	5U 0.	50 5	4.0 U 27	4.0 0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWRWF01 0.5 U 0	5U 0	5U 4	40U	40U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	44	0.5 U
RFSGWB27801 0.5 U 0	.5 U 0.	.5 U	12	4.0 U	0.5 U	0.5 U	0.5 U	1.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	13 J	0.5 U
RFSGWB280A01 0.5 U 0	.5 U 0.	.5 U 4	4.0 U	4.0 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWB49001 0.5 U 0	.5 U 0.	.5 U	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWEPA01 0.5 U 0	.5 U 0.	.5 U 4	4.0 U	4.0 U	0.5 U	1.8	0.5 U	2.3	0.5 U	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.6	0.5 U
RFSGWNRLF01 0.5 U 0	.5 U 0.	.5 U 🛛	200	4.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWB12801 0.5 U 0	.5 U 0.	.5 U	43	11 J	0.5 U	0.5 U	0.5 U	0.3 J	0.5 U	0.5 U	0.5 U	0.3 J	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWB12801-D 0.5 U 0	.5 U 0.	.5 U 4	49	14 J	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.6	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWB17701 0.5 UJ 0	.5U 0.	.5U 4	4.0 U	4.0 UJ	0.5 U	0.5 U	0.5 U	9.5 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
KFSGWE4/401 0.5 U 0		5.0	180	40 J 2 7 I	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RESGWB47301 0.5 U 0	5U 0.	51	4.0 U	2.7 J	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	12	0.5 U
RFSGWB48001 0.5 U 0	.50 0. 5U 0	.5U 4	4.0 U	3.2 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10	0.5 U
RFSGWETA01 0.5 U 0	.5U 0	.5 U	4.0 U	4.0 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	12	0.5 U
RFSGWETA01-D 0.5 U 0	.5 U 0.	.5 U	4.0 U	4.0 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	14	0.5 U
RFSGWMFA01 0.5 U 0	.5 U 0.	.5 U	4.0 U	4.0 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5.7	0.5 U
RFSGWPZ901 0.5 U 0	.5 U 0.	.5 U 4	4.0 U	4.0 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	16	0.5 U
RFSGWTP101 0.5 U 0	.5 U 0.	.5 U -	4.0 U	4.0 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	13	0.5 U
RFSGWTP201 0.5 U 0	.5 U 0.	.5 U 4	4.0 U	4.0 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U	15	0.5 U
RFSGWCTP01 0.5 U 0	.5 U 0.	.5 U	35 J	7.0 J	0.5 U	19	0.5 U	8.6	0.5 U	0.4 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWCTP01-D 0.5 U 0	.5 U 0.	.5 U	17 J	4.4 J	0.5 U	20	0.5 U	8.7	0.5 U	0.3 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWCTPS01 0.5 U 0	.5 U 0.	.5 U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	6.1	0.5 U	0.5 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWDH01 0.5 U 0	.5U 0.	.5U 4	4.0 U	2.4 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RESGWEIAUI 0.5 U 0	.5U 0.	1.5 4	4.0 U 4 O U	2.0 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	3.2	0.5 U	0.5 U	0.4 J	0.5 U
RESGWEERCOL 0.5 U 0	5U 0.	511	4.0 U 4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.3 U	0.5 U	0.5 U	1.0	0.5 U
RESGWPZ1101 1.5 0	511 0	511	4011	401	0.5 U	0.5 U	0.5 U	0.5 U	20	0.5 U	0.5 U	67	0.5 U	24	690	0.5 01
RFSGWPZ801 0.5 UL 0	.5U 0	.5U 4	4.0 U	4.0 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.5 UI	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
RFSGWBULB101 0.5 U 0	.5U 0.	.5 U	4.0 U	2.3 J	2.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	3.4	0.5 U	0.5 U	0.5 U
	_ 0.	-														

Notes: EPA MCL RSL

SWRCB ug/L VOC

U.S. Environmental Protection Agency Maximum contaminant level Regional Screening Level State Water Resources Control Board Micrograms per liter Volatile organic compound

Table 7: SVOC Dectected Results Summary in ug/L

Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan University of California, Berkeley, Richmond Field Station, Richmond, California

		/			/			/	/
		lene				Thingart			
		aphthate	~ /	withhend.	nene	Inexylip	one		TE /
	Mei	nyin	HOTEL	A.Meth	and the second second	Lethy tora	with work	ne Joh	thate rene
Sample ID Federal EPA MCL		¥	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* / 10	<u> </u>	FIL.	FIL	Har.	P.1
SWRCB GW (drinking water source)		3		20	4	8	3.9	17	2
SWRCB GW (not drinking water source)		5000		23	32	8	3.9	24	2
EPA 2011 RSL tapwater (cancer)	2.3	0.67			4.8			0.14	
EPA 2011 RSL tapwater (non-cancer)				2,200		1,500	1,500		1,100
EPA 2004 PRGs (non-cancer)				370					180
RFSGWB16301	0.047 U	0.5 J	5.0 U	0.047 U	0.5	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB17801	0.050 U	1.0 U	5.0 U	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB18501	0.050 U	0.5	4.7 U	0.050 U	0.5 J	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB175S01	0.047 U	0.9 U	4.7 U	0.047 U	0.9 U	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWCCC301	0.047 U	0.9 U	4.7 U	0.047 U	0.9 U	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWCCC301-D	0.047 U	0.9 U	4.7 U	0.047 U	1.0 J	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWCCC101	0.047 U	0.9 U	4.7 U	0.047 U	0.9 U	0.047 U	0.047 U	0.047 U	0.047 U
KF5GWGEUUI DESCW/B12101	0.047 U	0.9 U 0.0 I	4./U	0.047 U	0.9 U 0.0 I II	0.047 U	0.047 U 0.048 U	0.047 U	0.047 U
RFSGWB12101	0.048 U	0.9 U 1.0 U	4.7 U 4 8 II	0.048 U 0.048 U	0.9 UJ 1.0 III	0.048 U	0.048 U	0.048 U	0.048 U
RFSGWB15801	0.047 U	1.0 U	5.0 U	0.047 U	1.0 UJ	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB175W01	0.050 U	1.0 U	5.0 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWCCC101	0.047 U	0.9 U	4.7 U	0.047 U	0.9 UJ	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWCCC201	0.047 U	1.0 U	4.8 U	0.047 U	0.6 J	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB12001	0.047 U	0.9 U	4.7 U	0.047 U	0.9 UJ	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB19401	0.047 U	0.9 U	4.7 U	0.047 U	0.9 UJ	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB19501	0.047 U	0.9 U	4.7 U	0.047 U	0.9 UJ	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB19701	0.047 U	0.9 U	4.7 U	0.047 U	0.9 UJ	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB19701-D	0.047 U	1.0 U	4.8 U	0.047 U	1.0 UJ	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB30001	0.047 U	1.4	4.7 U	0.047 U	0.9 UJ	0.0470	0.047 U	0.047 U	0.047 U
RESGWB18001	0.050 U	1.0 U	4.8 U 5 O U	0.030 U	1.0 UJ 1.0 UI	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB3801	0.050 UI	1.0 U	5.0 U	0.050 U	1.0 UJ	0.050 UI	0.050 UI	0.050 UI	0.050 UI
RFSGWB46001	0.050 U	1.0 U	5.0 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWRWF01	0.050 U	0.7 J	5.0 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB27801	0.050 U	1.4	5.0 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB280A01	0.050 U	1.0 U	5.0 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.035 J	0.050 U
RFSGWB49001	0.050 U	1.0 U	5.0 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWEPA01	0.050 U	1.0 U	5.0 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.042 J	0.050 U
RFSGWNRLF01	0.050 U	1.0 U	4.8 U	0.050 U	1.0 UJ	0.050 U	0.050 U	0.029 J	0.050 U
RFSGWB12801	0.047 U	1.0 U	5.0 U	0.047 U	6.2	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB12801-D	0.050 U	1.0 U	5.0 U	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB17701	0.047 U	0.9 U	4.7 U	0.047 U	0.9 U	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWB47401 DESGWEG01	0.050 U	1.0 U 1.0 U	5.0 U 5.0 U	0.050 U	1.0 U 1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB47301	0.050 U	0.5.1	5.0 U	0.050 U	0.5.1	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWB48001	0.050 U	1.0 U	5.0 U	0.050 U	0.8 J	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWETA01	0.033 J	12	4.7 U	0.11	1.1	0.041 J	0.17	0.050 U	0.088
RFSGWETA01-D	0.032 J	12	5.0 U	0.11	0.5 J	0.035 J	0.16	0.050 U	0.074
RFSGWMFA01	0.050 U	2.3	5.0 U	0.050 U	27	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWPZ901	0.050 U	1.6	5.0 U	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWTP101	0.050 U	1.0 U	5.0 U	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.036 J
RFSGWTP201	0.050 U	1.1	5.0 U	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWCTP01	0.050 U	1.0 U	13	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWCTP01-D	0.050 U	1.0 U	9.0	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
KFSGWDHUI DESGWDVTADI	0.04/U	1.0 U 1.0 U	5.0 U 5.0 U	0.04/U	1.0 U 1.0 U	0.047U	0.047U	0.047U	0.047U
KF5GWW1AUI RESCWR280R01	0.050 U	1.0 0	5.0 U 5.0 U	0.050 U	1.0 0	0.050 U	0.050 U	0.050 U	0.050 U
RESGWCTPS01A	0.050 U NS	1.0 0	5.0 U 6 0 U	NS	1.0 0	0.050 U NS	0.050 U NS	0.050 U NS	0.050 U NS
RFSGWEERC01	NS	1.0 U	5.0 U	NS	1.0 U	NS	NS	NS	NS
RFSGWPZ1101	0.050 U	0.7 J	5.0 U	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWEERC01A	50 U	NS	NS	0.050 U	NS	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWPZ801	0.050 U	1.0 U	5.0 U	0.050 U	1.0 U	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWCTPS01B	50 U	NS	NS	0.050 U	NS	0.050 U	0.050 U	0.050 U	0.050 U
RFSGWBULB101	0.047 U	0.9 U	4.7 U	0.047 U	0.6 J	0.047 U	0.047 U	0.047 U	0.047 U
RFSGWBULB201	0.033 J	1.3	5.0 U	0.062	1.0 U	0.050 U	0.050 U	0.19	0.050 U

MCL	Maximum contaminant level
PRG	Preliminary remediation goals
RSL	Regional screening levels
SVOC	Semivolatile organic compounds
SWRCB	State Water Resources Control Board
ug/L	Micrograms per liter

 Table 8: Metals Dectected Results Summary in ug/L

 Technical Memorandum:
 Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan

 University of California, Berkeley, Richmond Field Station, Richmond, California

				/		/		/						/	/		/							/	/	
	/	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/	/ /	/ /	/ /	/ /			/ /		/ /	/ /	/ /	/ /	/ /	/ /	/ /	scent
Sample ID	Juni	MUN Spin	ony see	sic cari	IN DEST	, hum	a cadr	aium calé	un (br	omium	alt cop	yet top	, est		nesium . tai	Mennese . her	cury . Main	pdenut side	2 (1910)	sium coleri	un ave		IN THAT	inn (an	adium tine	1970 198 19 19 19
	<u> </u>	150.000	110	7.50E+05	/ %	/ \$ [*]	100.000	/ 0	5.600.0	~ ~ ~	1.500.00	<u> </u>		<u>,</u>	× *	110.000	<u> </u>	0.200	<u> </u>	1.00E.04	2 105 06	7 5	25.000	270.000	1 80E 1 05	
On site groundskeeper/maintenance		220,000	100	7.50E+07			190,000		3.00E+0	0	1.501+0	/	41			110,000	,	9.30E+07		1.901-00	0.5	,	23,000	570,000	1.80E+00	
5x aquatic criteria		220,000	180				47				10		41			11		41		25	9.5		320		410	
40x aquatic criteria		1.70E+06	1,400				370				120		320			84		330		200	76		2,500		3,200	
160x aquatic criteria		6.90E+06	5,800				1,500				500		1,300			340		1,300		800	300		10,000		13,000	
Federal EPA MCL		6	10	2000	4		5		100		1,300		15			2				50			2			
California MCL	1000	6	10	1000	4		5		50		1300		15			2		100		50			2			
SWRCB GW (drinking water source)		6	36	1.000	0.53	1.6	0.25		50	3	3.1		2.5			0.03	35	8.2		5	0.19		2	15	81	
SWRCD CW (non drinking water source)		30	36	1,000	0.53	1.6	0.25		180	3	3.1		2.5			0.03	240	8.2		5	0.10		-	10	81	
SWRCB GW (non drinking water source)		50	0.071	1,000	0.55	1.0	0.25		180	5	5.1		2.5			0.05	240	0.2		5	0.19		4	19	81	
Cal-modified 2004 PRGs (cancer)			0.071																							
EPA 2011 RSL tapwater (cancer)			0.045																							
EPA 2011 RSL tapwater (non-cancer)	37,000	15		7,300	73	7,300	18			11	1,500	26,000			880	0.63	180	180		180	180			180	11,000	
RFSGWB16301	44	1.0 U	1.6	17	0.50 U	240	5.2	260000	5.0 U	6.0	2.5	100 J	2.0 U	200000	17000	0.083	0.95	170	2800	2.0 U	0.50 U	230000	2.0 U	4.0 U	9.2	1500
RFSGWB17801	20 U	101	1.8	25	0.50 U	130	101	170000	101	0.87	2.2	100 U	2011	140000	570	0.030 U	2.4	75	2800	2011	0.50 U	150000	2011	291	47 I	990
RESCWB18501	10 1	101	1.0	15	0.50 U	120	101	160000	0.57 1	0.63	161	100 U	2.0 U	130000	330	0.030 U	1.0	7.1	2400	2.0 U	0.50 U	130000	2.00	401	361	920
DESCWD177501	17.1	1.0 U	1.7	15	0.50 U	120	1.0 U	52000	0.373	0.05	1.0 J	100 U	2.0 0	12000	350	0.050 0	1.0	7.1	2400	2.00	0.50 0	130000	2.0 U	4.00	3.03	210
KF50WB1/5801	1/J	1.0 U	1.0	50	0.50 U	9/J	1.0 U	53000	0.81 J	0.36 J	1.4 J	100 U	2.0 U	43000	250	0.072	1.5	3.3	2100	2.0 U	0.50 U	91000	2.0 U	4.0 U	2.5 J	510
RFSGWCCC301	390	1.0 U	5.9	27	0.50 U	190	1.0 U	68000	2.8	2.1	2.4	550	2.0 U	47000	940	0.019 J	4.0	6.5	4200	2.0 U	0.50 U	110000	2.0 U	3.5 J	3.9 J	560
RFSGWCCCT01	55	1.0 U	3.9	28	0.50 U	210	1.0 U	100000	1.0 U	2.0	1.8 J	260	2.0 U	81000	1400	0.015 J	2.5	6.6	5000	2.0 U	0.50 U	150000	2.0 U	4.0 U	3.3 J	590
RFSGWGE001	12	1.0 U	1.8	56	0.50 U	120	1.0 U	59000	1.6	0.50 U	1.1 J	100 U	2.0 U	30000	43	0.030 U	2.6	1.5	2800	2.0 U	0.50 U	85000	2.0 U	2.5 J	5.0 U	270
RFSGWB12101	33	1.0 U	1.8	57	0.50 U	86 J	1.0 U	49000	1.5	0.31 J	2.0 U	100 U	2.0 U	39000	320	0.020 J	1.7	4.3	1600 J	2.0 U	0.50 U	75000	2.0 U	2.5 J	6.4	280
RFSGWB15001	14 I	101	0.89.1	12	0.50 U	95 I	101	27000	101	0.50 U	161	100 U	2.011	19000	30	0.030 U	0361	53	1300 I	32	0.50 U	36000	2.0 U	401	311	150
RESGWR15801	590	101	63	13	0.50 11	64 I	101	4200	28	0.50 U	141	500	2011	2600	13	0.030 U	0.87	1.8	1100 T	2011	0.50 U	52000	2.0 U	64	301	21
DESCWD175W01	00	1.0 U	1.7	15	0.50 U	120	1.0 U	4200	1.2	0.50 U	1.4 J	120	2.0 U	12000	17	0.030 U	0.87	2.5	2700	2.0 U	0.50 U	52000	2.0 U	4.0.11	2.0 J	02
KFSGWB1/5W01	99	1.0 U	1./	26	0.50 U	130	1.0 U	17000	1.5	0.50 U	1.0 J	120	2.0 U	12000	17	0.030 U	0.54	2.5	2700	2.0 0	0.50 0	56000	2.0 0	4.0 U	3.8 J	92
RFSGWCCC101	72	1.0 U	3.0	6.3	0.50 U	91 J	1.0 U	27000	0.84 J	0.50 U	1.5 J	88 J	2.0 U	17000	4.1	0.030 U	2.2	1.2	2500	2.0 U	0.50 U	98000	2.0 U	3.3 J	3.5 J	140
RFSGWCCC201	20 U	1.0 U	2.3	24	0.50 U	140	1.0 U	48000	32	0.50 U	1.5 J	100 U	2.0 U	32000	42	0.030 U	2.4	1.6	3600	6.6	0.50 U	120000	2.0 U	2.0 J	3.4 J	250
RFSGWB12001	33	1.0 U	2.2	26	0.50 U	100	1.0 U	170000	1.2	0.40 J	2.2	59 J	2.0 U	150000	92	0.030 U	2.7	7.1	1600 J	2.0 U	0.50 U	170000	2.0 U	4.6	15	1000
RFSGWB19401	64	1.0 U	2.6	55	0.50 U	160	1.0 U	55000	0.97 J	0.42 J	1.7 J	84 J	2.0 U	39000	180	0.030 U	2.3	1.8	4400	2.0 U	0.50 U	120000	2.0 U	2.4 J	5.0 U	300
RFSGWB19501	53	10U	2.0	34	0 50 U	110	10U	150000	073 I	045 I	18 I	73 I	2.0 U	110000	63	10	11	3.1	2900	2.0 U	0 50 U	130000	2.0 U	40U	43I	830
PESCWB10701	17 I	101	1.8	26	0.50 U	08 1	1.0 U	140000	1.1	0.45 J	1.0 5	100 U	2.0 0	120000	36	0.030 U	1.1	28	2000	2.0 U	0.50 U	130000	2.0 0	271	5.8	830
RF30 w B19701	17 J	1.0 U	1.0	20	0.50 0	90 J	1.0 U	140000	1.1	0.30 J	1.7 J	100 U	2.0 0	120000	30	0.030 U	1.5	2.0	2000	2.00	0.50 0	110000	2.0 0	2.7 J	5.011	830
RFSG w B30001	23	1.0 U	2.0	90	0.50 U	150	1.0 U	150000	1./	0.48 J	1.3 J	100 U	2.0 0	82000	110	0.030 U	1.0	2.8	4100	2.0 0	0.50 U	110000	2.0 0	4.0 U	5.0 0	720
RFSGWB18001	380	1.0 U	3.8	22	0.50 U	74 J	1.0 U	5600	2.9	0.50	3.6	400	2.0 U	5200	20	0.030 U	1.2	2.2	2000 U	2.0 U	0.50 U	92000	2.0 U	9.6	4.2 J	35
RFSGWB27701	35	1.0 U	1.9	34	0.50 U	110	1.0 U	54000	1.8	0.50 U	2.0 U	100 U	2.0 U	23000	9.9	0.030 U	1.0	1.0 U	2000	2.0 U	0.50 U	58000	2.0 U	2.5 J	5.0 U	230
RFSGWB3801	44	1.0 U	1.2	50	0.50 U	150	1.0 U	31000	2.3	0.50 U	3.3	72 J	2.0 U	23000	37	0.030 U	0.58	3.9	1600 J	2.0 U	0.50 U	57000	2.0 U	4.0 U	3.6 J	170
RFSGWB46001	160	1.0 U	3.2	13	0.50 U	82 J	1.0 U	31000	0.53 J	1.2	1.9 J	280	2.0 U	17000	500	0.030 U	0.65	2.8	3300	2.0 U	0.50 U	44000	2.0 U	4.0 U	8.2	150
RESGWRWE01	54	1011	13	120	0.50 U	100	1011	72000	16	0.50 U	16 I	83 I	2011	60000	88	0.030 U	0.71	2.8	2000	2011	0.50 U	77000	2011	211	381	430
PESCWR27801	22 1	1.0 U	2.0	56	0.50 U	140	1.0 U	280000	1.0	0.50 0	1.0 5	100 U	2.0 0	150000	150	0.015 I	0.62	2.0	2000	2.0 U	0.50 U	100000	2.0 U	2.1 J 4.0 U	5.05	1200
RF36WB27801	23 J	1.0 U	2.0	50	0.50 0	140	1.0 U	280000	1.0	0.57	1.8 J	100 U	2.0 U	130000	150	0.013 J	0.02	2.7	3900 1200 I	2.00	0.30 U	190000	2.0 0	4.00	0.4	1300
RFSGWB280A01	20 U	1.0 U	1.4	66	0.50 U	94 J	1.0 U	68000	0.93 J	0.50 U	1.1 J	100 U	2.0 U	29000	15	0.030 U	1.6	0.//J	1200 J	2.0 U	0.50 U	66000	2.0 U	2.4 J	5.0 U	290
RFSGWB49001	21	1.0 U	2.2	53	0.50 U	130	1.0 U	52000	2.6	0.50 U	1.1 J	100 U	2.0 U	54000	86	0.030 U	0.66	2.1	1600 J	2.0 U	0.50 U	55000	2.0 U	3.2 J	5.0 U	350
RFSGWEPA01	130	1.0 U	3.2	50	0.50 U	190	1.0 U	88000	2.1	0.74	2.7	230	2.0 U	39000	700	0.017 J	2.5	2.1	5100	2.0 U	0.50 U	130000	2.0 U	4.0 U	6.2	380
RFSGWNRLF01	25	1.0 U	3.3	13	0.50 U	110	1.0 U	50000	1.0 U	0.57	2.0 U	300	2.0 U	26000	440	0.030 U	1.1	1.9	2400	2.0 U	0.50 U	57000	2.0 U	4.0 U	5.0 U	230
RFSGWB12801	55	1.0 U	5.7	23	0.50 U	320	1.0 U	69000	1.1	0.58	1.3 J	250	2.0 U	46000	360	0.048	2.8	2.7	6400	2.0 U	0.50 U	180000	2.0 U	4.0 U	2.8 J	360
RFSGWB17701	22	1.0 U	1.1	32	0.50 U	77 J	1.0 U	12000	0.91 J	0.50 U	1.7 J	100 U	2.0 U	9900	3.9	0.030 U	0.27 J	1.8	2000 U	1.1 J	0.50 U	32000	2.0 U	4.0 U	4.0 J	71
RESGWB47401	450	101	9.8	25	0.50 11	200	101	24000	17	16	2.0	1400	2011	24000	540	0.024 1	21	53	3500	2011	0.50 U	120000	2011	241	6.4	160
PESCWECOI	20000	1.0 U	0.7	100	26	120	1.0 0	120000	50	40	56	24000	2.0 0	120000	4200	0.0157	0.02	120	2700	2.00	0.50 U	120000	2.00	01	170	820
DECOUD 47201	190	1.0 U	2.1	190	2.0	140	1.7	120000	20	47	17	220	2011	130000	4200	0.010 J	0.93	2.0	2700 1000 T	0.0 U	0.50 U	100000	2.0 U	91 4.1	170	170
Kr5GWB4/301	180	1.0 U	2.0	04	0.50 U	140	1.0 U	25000	3.9	0.31 J	4./	330	2.0 U	20000	42	0.030 U	0.95	2.0	1900 J	2.0 U	0.50 U	100000	2.0 U	4.1	23	1/0
RFSGWB48001	22	1.0 U	6.5	41	0.50 U	110	1.0 U	53000	0.68 J	1.5	2.0 U	420	2.0 U	46000	480	0.030 U	1.5	2.0	3900	2.0 U	0.50 U	110000	2.0 U	2.0 J	3.3 J	320
RFSGWETA01	1600	1.0 U	22	39	0.50 U	150	0.93 J	110000	5.8	3.8	22	3300	9.8	86000	4600	2.3	2.7	10	1900 J	2.0 U	0.50 U	150000	2.0 U	5.4	110	630
RFSGWMFA01	160	1.0 U	2.3	33	0.50 U	140	1.0 U	75000	0.65 J	1.1	1.8 J	220	2.0 U	61000	580	0.18	5.2	7.9	1400 J	2.0 U	0.50 U	150000	2.0 U	3.9 J	4.4 J	440
RFSGWPZ901	20 U	1.0 U	2.7	79	0.50 U	62 J	1.0 U	36000	1.0 U	0.29 J	2.0 U	100 U	2.0 U	36000	260	0.17	0.95	3.5	2000 U	2.0 U	0.50 U	54000	2.0 U	2.3 J	4.9 J	240
RFSGWTP101	22	1.0 U	1.9	29	0.50 U	90 I	1.0 U	67000	1.0 U	0.28 I	1.3 I	100 U	2.0 U	60000	260	0.33	1.3	5.8	2000	2.0 U	0.50 U	92000	2.0 U	2.3 I	7.2	410
RESGWTP201	90	101	13	110	0.50 11	110	101	87000	10	0.201	2011	150	2011	72000	120	0.030 11	1.1	8.6	1600 I	2011	0.50 U	88000	2.0 U	2.05	5.011	510
DESCUPETDO1	22	1.0 U	1.5	20	0.50 0	120	1.0 U	57000	1.7	0.393	2.00	150	2.0 0	72000	120	0.030 U	1.1	0.0	1000 J	2.00	0.50 U	76000	2.00	2.7 J	5.00	240
KFSGWCIP01	25	1.0 U	2.6	38	0.50 U	120	1.0 U	50000	1.1	0.54	2.0 U	150	2.0 U	27000	400	0.030 U	1.2	2.1	2000	2.0 U	0.50 U	/6000	2.0 U	4.0 U	5.0 U	240
RFSGWCTPS01	36	1.0 U	3.6	82	0.50 U	260	1.0 U	130000	1.4	1.6	1.8 J	240	2.0 U	69000	1000	0.030 U	1.3	4.4	7500	2.0 U	0.50 U	150000	2.0 U	4.0 U	2.7 J	610
RFSGWDH01	20 U	1.0 U	3.5	41	0.50 U	320	0.75 J	530000	1.0 U	1.2	2.8	100 U	2.0 U	340000	1300	0.030 U	2.2	37	6700	2.0 U	0.50 U	520000	2.0 U	4.0 U	5.0	2700
RFSGWWTA01	30	1.0 U	2.2	36	0.50 U	150	1.0 U	110000	9.5	0.33 J	2.0 U	100 U	2.0 U	66000	48	0.030 U	1.4	1.5	2100	2.0 U	0.50 U	150000	2.0 U	3.0 J	5.0 U	550
RFSGWB280B01	19 J	1.0 U	3.4	8.0	0.50 U	280	1.0 U	51000	1.5	0.50 U	2.0 U	100 U	2.0 U	25000	7.2	0.030 U	3.8	0.62 J	8900	2.0 U	0.50 U	130000	2.0 U	4.0 U	3.2 J	230
RFSGWEERC01	10 J	1.0 U	11	39	0.50 U	480	1.0 U	450000	1.0 U	11	2.9	840	2.0 U	350000	5500	0.015 J	2.9	18	9800	2.0 U	0.50 U	480000	2.0 U	4.0 U	7.5	2500
RESGW071101	20 11	101	2.5	11	0.50 U	77 1	27	200000	101	1.0	2.2	100 11	2011	210000	1700	0.020 11	3.8	140	1100 T	2.0 U	0.50 U	170000	2.0 U	3.9.1	/30	1400
N150 WFZ1101	20 0	1.0 U	2.5	11	0.50 U	//J	2.7 1.0 T	44000	1.0 U	1.0	151	110	2.0 U	40000	1700	0.030 U	J.0	140	1100 J	2.00	0.50 U	170000	2.0 U	3.0 J	430	270
KFSGWPZ801	08	1.0 U	1.0	90	0.50 U	9/J	1.0 U	44000	1.5	0.29 J	1.5 J	110	2.0 U	40000	21	0.030 UJ	0.49 J	2.5	2000 U	2.0 U	0.50 U	00000	2.0 U	3.3 J	3.4 J	270
RFSGWBULB101	70	10 U	17	230	1.0 U	1700	10 U	370000	2.1	18	6.6	100	20 U	850000	5600	0.090	33	46	150000	8.6	5.0 U	7700000	20 U	10 U	20	4400
RFSGWBULB201	770	1.0 U	8.9	540	0.50 U	850	1.0 U	130000	3.0	8.1	5.6 J	2800	3.9	190000	5600	2.5	7.9	25	40000	3.0	0.50 U	1900000	2.0 U	2.8 J	22	1100

Notes

EPA U.S. Environmental Protection Agency MCL Maximum contaminant level

Preliminary remediation goals

RSL

- Regional screening levels SWRCB State Water Resources Control Board
- Micrograms per liter ug/L

PRG

Table 9: TPH Dectected Results Summary in ug/L

Technical Memorandum: Sampling Results for Phase I Groundwater Sampling, Field Sampling Workplan University of California, Berkeley, Richmond Field Station, Richmond, California

			/ /	
		/		
				, / /
			reanic	mic
			nge Or	Orest
		soline	elBar	Range
		25 G22	Diese C	MI
Sample ID	IPH	. IB	I IPH	
SWRCB GW (drinking water source)	100		*	1
SWRCB GW (not drinking water source)	210			
RFSGWB16301	46 J	200 J	1000 U	
RFSGWB17801	63 J	250 U	1000 U	
RFSGWB18501	36 J	240 I	950 U	
RFSGWB175S01	50 U	240 U	950 U	
RFSGWCCC301	50 U	240 U	950 U	
RESGWCCC301-D	50 U	250 U	1000 U	+
RESGWCCCT01	30 U 38 I	230 U 240 U	940 U	
RESGWGE001	50 J	240 U	950 U	
RESGWB12101	50 U	240 U 250 U	930 U 1000 U	
DESCWD15001	50 U	230 U 240 U	1000 U	
DESCWD15901	50 U	240 U	930 U	$\frac{1}{2}$
RFSGWB15801	50 U	240 U	950 U	
RFSGWB1/5W01	50 U	250 U	1000 U	
RFSGWCCC101	50 U	240 U	950 U	
RFSGWCCC201	50 U	250 U	1000 U	
RFSGWB12001	70 J	240 U	950 U	-
RFSGWB19401	50 U	240 U	950 U	
RFSGWB19501	59 J	240 U	950 U	
RFSGWB19701	73 J	250 U	1000 U	
RFSGWB19701-D	74 J	240 U	950 U	
RFSGWB30001	50 U	240 U	950 U	
RFSGWB18001	50 U	250 U	1000 U	
RFSGWB27701	50 U	250 U	1000 U	
RFSGWB3801	50 U	250 U	1000 U	
RFSGWB46001	50 U	250 U	1000 U	
RFSGWRWF01	50 U	240 U	950 U	
RFSGWB27801	50 U	250 U	1000 U	1
RFSGWB280A01	50 U	250 U	1000 U	
RFSGWB49001	50 U	250 U	1000 U	
RFSGWEPA01	50 U	250 U	1000 U	
RFSGWNRLF01	41 J	120 J	1000 U	
RFSGWB12801	50 U	250 U	1000 U	Ť
RFSGWB12801-D	50 U	250 U	1000 U	
RFSGWB17701	50 U	240 U	950 U	
RESGWB47401	49 I	270 I	1000 U	
RESGWEG01	50 U	250 U	1000 U	
RESGWB47301	50 U	250 U	1000 U	+
RESGWB48001	50 U	250 U	1000 U	
RESGWETA01	50 U	120 I	1000 U	
PESCWETA01 D	50 U	120 J 120 J	1000 U	
DESCWMEA01	50 U	120 J 250 U	1000 U	
DESCWDZ001	50 U	250 U	1000 U	+
RF5UWF2501 DESCW77D101	50 U	230 U	1000 U	
KF5UW IF101	50 0	240 U 250 U	930 U 1000 U	
	50 U	250 U	1000 U	
KESGWCTP01	50 U	250 U	1000 U	
KFSGWCTP01-D	50 U	250 U	1000 U	ł
RFSGWCTPS01	NA	NA	1000 U	
RFSGWDH01	50 U	250 U	1000 U	
RFSGWWTA01	50 U	250 U	1000 U	
RFSGWB280B01	50 U	250 U	1000 U	
RFSGWEERC01	50 U	160 J	1000 U	ļ
RFSGWPZ1101	310 J	250 U	1000 U	
RFSGWPZ801	50 U	250 U	1000 U	
RFSGWBULB101	38 J	240 U	950 U	
RFSGWBULB201	77	170 J	1000 U	

Notes:

SWRCB	State Water Resources Control Board
ug/L	Micrograms per liter

Final, R1 Phase I Groundwater Sampling Results UC Berkeley, Richmond Field Station

Table 10: Explosive Residue and Perchlorate Dectected Results Summary ug/L

Sample ID	THAT	. 405	1.25	Trained and Labor	Martin Barrene Friter	Berne Terry	245	rinternee 2.50	Market Barrow Barrow	Maria Antonio Maria Caral	Notreast 2,675	Julinouse 22.50	and a state	underst 3.50	numers Pression	¢ /
RFSGWTP101	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	2.0 U	
RFSGWTP201	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U	2.0 U	
RFSGWDH01	1.3 U	1.0 J	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	2.0 U	

RESPONSE TO COMMENTS

APPENDIX A

Department of Toxic Substances Control

Linda S. Adams Acting Secretary for Environmental Protection Deborah O. Raphael, Director 700 Heinz Avenue Berkeley, California 94710-2721

Edmund G. Brown Jr. Governor

July 21, 2011

Mr. Greg Haet EH&S Associate Director, Environmental Protection 317 University Hall, No 1150 Berkeley, California 94720

Dear Mr. Haet:

The Department of Toxic Substances Control (DTSC) has reviewed the document entitled *Final Phase 1 Groundwater Sampling Results Technical Memorandum, University of California, Berkeley, Richmond Field Station, Richmond, California* (Tech Memo). The May 11, 2011 Tech Memo was prepared by Tetra Tech EM Inc. for the University of California (UC).

The Tech Memo summarizes the construction and sampling of 50 shallow waterbearing zone piezometers at the Richmond Field Station (Field Station). The piezometers were constructed at locations considered to be down gradient from areas where on-site or off-site activities may have resulted in releases of contaminants to the subsurface. The Tech Memo was amended in response to DTSC comments dated March 7, 2011.

Based on our review of the amended Tech Memo, we have the following comments:

1. The response to DTSC comment 2 states "Suggested text regarding additional Investigation will not be included in the summary memorandum, because the continued groundwater monitoring program was approved by DTSC on March 29, 2011." The text in the DTSC comment was "Therefore, the last sentence of this section should state that additional investigation is needed to address previously indentified data gaps as well as new data gaps identified by this phase of investigation." Data gaps remain regarding known and potential contamination of soil, soil gas, and ground water at the field station. Accordingly, additional investigation is needed to address previously identified data gaps as well as new data gaps identified by this or other phases of investigation regardless of the ongoing ground water monitoring program. No revision to the memorandum is necessary. Mr. Greg Haet July 21, 2011 Page 2

- 2. The response to DTSC comment 3 states "Text has been updated to state that piezometers are located in critical downgradient locations from previously identified data gaps." We are unable to locate the statement in the amended Tech Memo. Please provide the specific location where this revision was made.
- DTSC comment 4 asks if there is a ground water elevation error resulting from UC and Zeneca using the North American Vertical Datum of 1988 (NAVD 88) and the National Geodetic Vertical Datum of 1929 (NGVD 29), respectively. No revision to the memorandum is necessary; however, please provide a date when this issue will be resolved and DTSC will be notified.
- 4. DTSC comment 8 stated that the MCL for chromium be revised from 100 ug/l to 50 ug/l in Section 6.3. This revision was not made. In addition, revisions that were made to Table 5 (originally Table 4) as requested in DTSC's original comment 9 were not made to the text in Section 6.3 (Metals). Please revise the text in Section 6.3 to reflect the revised Table 5.
- 5. Page 4, Section 2.2., Drilling and Completion: The last paragraph of this section states that piezometer was completed using steel well casings, while earlier text and tables indicate that PVC casing was used. Please revise the document to resolve this inconsistency.
- 6. Table 5, State and Federal Water Quality Criteria: A review of Table 5 (originally Table 4) revealed incorrect or missing values. For example, the Human Health Risk Based SSGs and aquatic criteria for all receptors is missing the values for carbon tetrachloride and toluene; the values for the 40x and 160x Aquatic Criteria are incorrect (they are all less than the 5x criteria); and California MCLs are missing for 1,1-dichloroethene, 1,2-dichlorethane, and dichloromethane. DTSC did not confirm the other values listed on the table; however, all values should be checked and any necessary revisions made to the table. Please note that as US EPA updated their RSL values in June 2011, Table 4 should be compared to the updated values.

Please resubmit a response to comments and revised document within 30 days of the date of this letter. If you need more information regarding this matter, please contact Lynn Nakashima at (510) 540-3839 or Inakashi@dtsc.ca.gov.

Sincerely, Jum Makashn

Lynn Nakashima, Project Manager Senior Hazardous Substances Scientist Brownfields and Environmental **Restoration Program** Berkeley Office - Cleanup Operations

Mark Vert

Mark Vest, P.G. Senior Engineering Geologist Brownfields and Environmental **Restoration Program** Sacramento Office - Geologic Services

Phase I Groundwater Sampling Results Technical Memorandum University of California, Richmond Field Station Site January 12, 2011

Response to Comments Department of Toxic Substances Control, July 21, 2011

August 22, 2011

Page 1 of 2

UC Berkeley			
Ref. No.	Page/ Sect No.	DTSC Comment	UC Berkeley Response
1		The response to DTSC comment 2 states "Suggested text regarding additional Investigation will not be included in the summary memorandum, because the continued groundwater monitoring program was approved by DTSC on March 29, 2011." The text in the DTSC comment was "Therefore, the last sentence of this section should state that additional investigation is needed to address previously Indentified data gaps as well as new data gaps identified by this phase of investigation." Data gaps remain regarding known and potential contamination of soil, soil gas, and ground water at the field station. Accordingly, additional investigation is needed to address previously identified data gaps as well as new data gaps identified by this or other phases of investigation regardless of the ongoing ground water monitoring program. No revision to the memorandum is necessary.	Comment noted.
2	Page 2, Section 1.2	The response to DTSC comment 3 states "Text has been updated to state that piezometers are located in critical down gradient locations from previously identified data gaps." We are unable to locate the statement in the amended Tech Memo. Please provide the specific location where this revision was made.	Section 1.2 has been amended to state "The Phase I FSW field effort was conducted to address these data gaps through the installation of piezometers throughout the RFS (see Figure 3), which were strategically sited at critical down gradient locations from previously identified data gaps (see Figures 4 and 5)."
3		DTSC comment 4 asks if there is a ground water elevation error resulting from UC and Zeneca using the North American Vertical Datum of 1988 (NAVD 88) and the National Geodetic Vertical Datum of 1929 (NGVD 29), respectively. No revision to the memorandum is necessary; however, please provide a date when this issue will be resolved and DTSC will be notified.	UC Berkeley consulted with their surveyor and discovered that they had mistakenly labeled the survey as referencing the NAVD 88 datum, when in fact the survey was conducted using the NGVD 29 datum. RFS and Campus Bay surveys will continue to use the NGVD 29 datum to eliminate future discrepancies.
4	Page 15, Section 6.3	DTSC comment 8 stated that the MCL for chromium be revised from 100 ug/l to 50 ug/l in Section 6.3. This revision was not made. In addition, revisions that were made to Table 5 (originally Table 4) as requested in DTSC's original comment 9 were not made to the text in Section 6.3 (Metals), Please revise the text in Section 6.3 to reflect the revised Table 5.	The current California MCL is 50ug/L and the current Federal MCL for total chromium is 100ug/L. Table 5 and Table 8 in the Final Technical Memorandum include these values. Section 6.3 has been amended to state, "No concentrations exceeded the Federal MCL of 100 μ g/L; however at one location, FG, chromium was detected at 50 μ g/L, which is the California Department of Public Health MCL."
5	Page 4, Section 2.2	Page 4, Section 2.2., Drilling and Completion: The last paragraph of this section states that piezometer was completed using steel well casings, while earlier text and tables indicate that PVC casing was used. Please revise the document to resolve this inconsistency.	Section 2.2 has been amended to state, "Steel well christy boxes were used to complete the piezometers."

Phase I Groundwater Sampling Results Technical Memorandum University of California, Richmond Field Station Site January 12, 2011

Response to Comments Department of Toxic Substances Control, July 21, 2011

August 22, 2011

Page 2 of 2

UC Berkeley Ref. No.	Page/ Sect No.	DTSC Comment	UC Berkeley Response
6		rable 5, State and Federal Water Quality Criteria: A review of Table 5 (originally Table 4) revealed incorrect or missing values. For example, the Human Health Risk Based SSGs and aquatic criteria for all receptors is missing the values for carbon tetrachloride and toluene; the values for the 40x and 160x Aquatic Criteria are incorrect (they are all less than the 5x criteria); and California MCLs are missing for 1 ,1-dichloroethene, 1 ,2-dichlorethane, and dichloromethane. DTSC did not confirm the other values listed on the table; however, all values should be checked and any necessary revisions made to the table. Please note that as US EPA updated their RSL values in June 2011, Table 4 should be compared to the updated values.	The values in Table 5 have been reviewed and updated from the Arcadis October 2010 Quarterly Groundwater and Surface Water Monitoring Report for the Human Health Risk Based SSGs and Aquatic Criteria, the California Department of Public Health's website comparing California and Federal MCLs (http://www.cdph.ca.gov/certlic/drinkingwater/Do cuments/DWdocuments/EPAandCDPH-11-28- 2008.pdf), and the EPA's website for the 2011 RSLs (http://www.epa.gov/region9/superfund/prg/).