EM009358.0017.00001

March 11, 2011

Ms. Barbara Cook, P.E. Acting Assistant Deputy Director, Cleanup Program Site Mitigation Branch c/o Lynn Nakashima Department of Toxic Substances Control 700 Heinz Avenue, Suite 200 Berkeley, California 94710

Subject: Transmittal of Groundwater Data Collected in Select Areas at the University of California Richmond Field Station, Richmond, California

Dear Ms. Cook:

ARCADIS U.S., Inc. (ARCADIS) is submitting this letter on behalf of Zeneca Inc. (Zeneca), a respondent to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) Site Investigation Order, Docket No. 06/07-004 ("DTSC Order")¹. This letter report summarizes monitoring well installation and groundwater sampling activities and transmits the analytical results of groundwater samples collected in select areas at the University of California Richmond Field Station (UCRFS) located in Richmond, California ("the Site"; Figure 1). The well installation and sampling activities were required by the DTSC in its September 16, 2010 letter to Zeneca. The activities discussed in this letter were conducted in accordance with the procedures set forth in the following ARCADIS documents previously approved by the DTSC:

- "Revised Work Plan to Evaluate Groundwater in Select Areas at the University of California Richmond Field Station, Richmond, California," dated November 24, 2010 ("the Work Plan")
- "Lot 3 Field Sampling and Analysis Plan, Campus Bay Site, Former Zeneca, Inc., Richmond Facility, Richmond, California," dated November 2, 2005 ("the Lot 3 FSAP")
- "Revised Health and Safety Plan, Environmental and Associated Activities, Campus Bay Site, Former Zeneca, Inc., Richmond Facility, Richmond, California," dated January 7, 2008
- "Revised Quality Assurance Project Plan Approval, Former Zeneca Property, Campus Bay Site," dated July 18, 2005

In accordance with the Work Plan, five upper-horizon groundwater monitoring wells were installed in and around the biologically active permeable barrier (BAPB) on the UCRFS to evaluate the groundwater quality in the vicinity BAPB (Figure 2). The upper horizon has been defined as the shallow water-bearing sediments present from the ground surface to approximately

¹ The Regents of the University of California (UC) is also a respondent to the DTSC Order.

20 feet below ground surface (bgs). The newly installed groundwater monitoring wells are labeled MW-34 through MW-38.

In addition, a grab groundwater sample was collected from a direct-push boring west of the slurry wall on the UCRFS property (Figure 2). The grab groundwater sample, labeled UCB-SL-GGW, was collected from the first water-bearing sediments located below the slurry wall. The purpose of this data was to assess the potential presence of volatile organic compound (VOC) concentrations in groundwater beneath the slurry wall located on the UCRFS.

The approximate locations of the monitoring wells and the grab groundwater sample are illustrated on Figure 2. The construction details for the monitoring wells and grab groundwater sample are provided in Table 1. A discussion of the monitoring well installation and groundwater sample collection procedures is provided below.

INSTALLATION AND SAMPLING ACTIVITIES

Pre-Fieldwork Activities

Prior to implementing field activities, Underground Service Alert (USA) was notified 48 hours in advance of mobilization to the field. A private utility locator was contracted to identify underground utilities at each monitoring well and grab groundwater location. Ground penetrating radar (GPR) was also used in an attempt to assess the exact location of the BAPB prior to initiating subsurface drilling and sampling activities. In addition, ARCADIS obtained the applicable drilling and well permits required for the work from the Contra Costa County Environmental Health Division (CCCEHD).

Monitoring Well Installation

On December 15 through 17, 2010, five groundwater monitoring wells were installed within the BAPB and the upper-horizon sediments at the approximate locations illustrated on Figure 2. The purpose of these wells is to provide data regarding the groundwater quality in the vicinity of the BAPB and assess the effectiveness of the BAPB in reducing dissolved metals (and to a lesser extent VOCs) in upper-horizon groundwater as it migrates towards the marsh on the UCRFS.

Three groundwater monitoring wells (MW-34, MW-35, and MW-36) were installed in a line perpendicular to the BAPB, one each at a location upgradient from, within, and downgradient from the BAPB, respectively (see Figure 2). The upgradient and downgradient wells were installed approximately 10 feet from the well located within the BAPB. The two additional wells (MW-37 and MW-38) were installed within the BAPB to the east and west of the well cluster at the approximate locations indicated on Figure 2. The approximate location of the BABP was determined in the field prior to installation of the monitoring wells using a global positioning system (GPS), historical site maps and documents, and GPR. The location of the BAPB near the ground surface at wells MW35, MW37, and MW38 was verified by observing BAPB material that was removed from the subsurface using a hand auger prior to drilling.

At each well location a pilot soil boring was advanced using the direct-push drilling method for the purpose of determining the subsurface lithology and desired well screen interval. Soil samples were collected continuously for the total depth of the boring. The lithology was recorded onto soil boring logs in general accordance with the Unified Soil Classification System (USCS) by an ARCADIS field geologist. Soil samples were screened in the field using a portable photoionization detector (PID). The PID measurements were also recorded onto the soil boring logs. The soil boring logs have been provided in Attachment 1.

The monitoring well borings were then drilled over the pilot borings using a drilling rig equipped with 8-inch hollow-stem augers in accordance with the procedure outlined in the Work Plan. At each location, the monitoring wells were constructed using flush threaded 2-inch-diameter schedule 40 polyvinyl chloride (PVC) well casing with 10 feet of PVC 0.010-inch slotted well screen installed at various depths depending on observed lithology in the soil cores. For wells MW-35, MW-37, and MW-38, installed within the BAPB, the bottom of the well screen was set at the base of the BAPB. As the augers were removed, the annular space between the well and the formation was filled with No. 2/12 sand to a depth of approximately 1 foot above the screened interval. An approximately 2-foot-thick layer of bentonite chips was then placed above the sand pack and hydrated to form a coherent seal. The remaining annular space above the bentonite was filled with cement grout. A locking well cap was then placed on top of the well casing. The monitoring wells were completed with a riser pipe extending approximately 3 feet above grade. A metal casing was then installed to protect the PVC riser pipe. The monitoring well construction details are included on the soil boring logs provided in Attachment 1. A summary of the well construction details are provided in Table 1.

In accordance with county permits, the monitoring wells were completed under the oversight of a representative of the CCCEHD. All five monitoring wells were developed on January 4, 2010 in accordance with the procedures provided in the Lot 3 FSAP. The well development logs are provided in Attachment 2. The elevation, northing, and easting of each newly installed monitoring well were then surveyed by a California-licensed surveyor.

Grab Groundwater Sample

A single grab groundwater sample was collected from the first groundwater-bearing sediments located beneath the slurry wall from a location approximately 25 feet to the west of the slurry wall (UCB-GW-SL; Figure 2). The purpose of this sample was to provide data to assess for the potential presence of VOCs in groundwater below the slurry wall on the UCRFS. The grab groundwater sample was collected from approximately 25 and 30 feet bgs. The sample interval is approximately 5 to 10 feet below the base of the slurry wall and approximately 3 to 8 feet below the upper-horizon water-bearing sediments (see the soil boring in Attachment 1).

The grab groundwater sample was collected using a limited-access direct-push rig. The drilling contractor used a hand auger to advance the first 5 feet to verify that no utilities would be affected. During the advancement of the boring, soil samples were collected continuously to a total depth 30

feet bgs to identify the first water-bearing zone beneath the slurry wall. The slurry wall is completed to approximately 20 feet bgs.

The lithology was recorded onto soil boring logs in general accordance with the USCS. The soil boring log has been provided in Attachment 1.

To prevent cross-contamination from the shallow groundwater zone, a separate hydropunch boring was advanced approximately 3 feet to the south of the original soil boring to 30 feet bgs. The hydropunch tooling was then pulled up approximately 5 feet exposing a screened sample interval of 25 to 30 feet bgs. The groundwater sample was collected by lowering a small-diameter (0.75-inch) stainless steel bailer down into the hydropunch sampler. The groundwater was then transferred from the bailer into clean laboratory-provided sample containers, stored in an ice-chilled cooler, and transported under chain-of-custody protocol to the laboratory for analysis.

The grab groundwater sample was submitted to Curtis & Tompkins, Ltd. (C&T), a state-certified laboratory. In accordance with the Work Plan, the sample was analyzed for VOCs by U.S. Environmental Protection Agency (EPA) Method 8260B. VOCs detected in the grab groundwater sample are presented in Table 2.

After the groundwater sample was collected, the hydropunch sampler was removed and the soil borings were abandoned using the procedures described in the Lot 3 FSAP under the oversight of the CCCEHD.

Monitoring Well Sampling

Groundwater samples were collected from the newly installed monitoring wells on January 7, 2011 using low-flow purging techniques in accordance with the procedures described in the Lot 3 FSAP.

Groundwater samples were collected in sample containers provided by the analytical laboratory and temporarily stored in an ice-chilled cooler for transport to the laboratory. Sample containers were labeled with the collector's initials, sample identification number (well identification), time of sample collection, date, location, sample type, analytical method, and preservative used. Complete chain-of-custody (COC) forms accompanied the samples to C&T.

During low-flow purging from groundwater monitoring wells, the following field parameters are measured and recorded on water quality field sheets prior to sample collection using a YSI 556 Multiparameter Water Quality Meter equipped with a flow-through cell:

- Dissolved oxygen (DO)
- oxidation-reduction potential (ORP)
- pH
- specific conductance

- temperature
- turbidity

In accordance with the Work Plan, groundwater samples were collected in laboratory-supplied containers and submitted to C&T for the following chemical analyses:

- Title 22 Metals using EPA Method 6010 (EPA Method 7470 for mercury)
- VOCs using EPA Method 8260B
- Zeneca proprietary pesticides (OPPs) using EPA Method 8270SIM
- Ferrous iron using Standard Method 3500 FeB
- Dissolved sulfide using Standard Method 4500S2-D
- Alkalinity using Standard Method 2320B
- Chloride using EPA Method 300.0
- Sulfate using EPA Method 300.0
- Total dissolved solids (TDS) using Standard Method 2540C

Analytical results and field measurements for groundwater samples collected on January 7, 2011 are presented in Tables 2 through 5. Table 6 presents a summary of key parameters in analyzing the effectiveness of the BAPB.

Additional Groundwater Quality Data

In accordance with the Work Plan "relevant data from UC sampling at the UCRFS" is to be included in this transmittal. As such, the analytical results for samples collected from piezometers RFS-GW-ETA and RFS-GW-B163 located on the UCRFS are included in Tables 2 through 5 and the locations of piezometers RFS-GW-ETA and RFS-GW-B163 are illustrated on Figure 3. This data represents upper-horizon groundwater quality at locations in the upgradient direction relative to the groundwater samples collected on January 7, 2011 from the wells installed in the vicinity of the BABP. Piezometers RFS-GW-ETA and RFS-GW-B163 are reported to be screened from 3.5 to 13.5 feet bgs and 7 to 17 feet bgs, respectively (Table 1). UCRFS provided this data in the technical memorandum prepared by Tetra Tech Inc. entitled: "Draft Phase I Groundwater Sampling Results, Technical Memorandum, University of California, Berkeley, Richmond Field Station, Richmond, California," dated January 12, 2011.

In addition, ARCADIS has included the analytical results for grab groundwater samples collected in the vicinity of the BABP in 2001. This data is presented on a figure included as Attachment 3 to this letter. The figure was included in the report prepared by URS Corporation on behalf of UCRFS entitled: "Final Report, Results of Additional Soil and Groundwater Investigations and Surface Water Monitoring Plan, Marsh Portion of Subunit 2A, Richmond Field Station, Richmond, California (Tasks 3A & 3B, Regional Water Quality Control Board (RWQCB) Order No. 01-102)," dated November 21, 2001. As indicated, this figure presents historical metals

concentrations collected just upgradient of the marsh on the UCRFS prior to the installation of the BAPB.

If you have any questions regarding the information provided above, please do not hesitate to call the undersigned at (510) 652-4500.

Sincerely,

ARCADIS U.S., Inc.

Ronald Goloubow, P.G. (8655) Principal Geologist

~ C RO

Daren Roth Senior Geologist

cc: Ms. Lynn Nakashima, DTSC
Mr. Doug Mosteller
Mr. Bill Marsh, Esq.
Mr. Anthony Garvin, University Counsel for UC
Mr. Nicholas Targ, Esq.
Mr. Karl Hans, UC

Attachments:

- Table 1: UC BAPB Well Construction Details
- Table 2: UC BAPB Sampling Analytical Results, Volatile Organic Compounds in Groundwater
- Table 3: UC BAPB Sampling Analytical Results, Metals in Groundwater
- Table 4: UC BAPB Sampling Analytical Results, Proprietary Pesticides
- Table 5: UC BAPB Sampling Analytical Results, General Minerals and Field Parameters
- Table 6:
 Summary of UC BAPB Cluster Wells Indicator Parameters

Figure 1: Site Vicinity Map

Figure 2: Approximate Monitoring Well and Grab Groundwater Locations at the Richmond Field Station

Attachment 1: Soil Boring Logs with Well Construction Details

Attachment 2: Monitoring Well Development Logs

Attachment 3: Figure 6 of 2001 URS Report

Table 1 UC BAPB Well Construction Details UC Richmond Field Station Campus Bay, Richmond, CA

Area	Well Name	Installation Date	Approximate Total Depth (feet bgs)	Casing Diameter (inches)	Approximate Screen Interval (feet bgs)	TOC Elevation	Ground Surface Elevation	Approximate Screen Elevation	Screen Size and Material	Surface Mount
				ARCADI	S Monitoring We	lls				
	MW-34	12/17/10	19.0	2.0 PVC	9.0 - 19.0	7.18	4.74	-4.26 to -14.26	0.010 PVC	Monument
	MW-35	12/16/10	16.0	2.0 PVC	6.0 - 16.0	6.98	4.24	-1.76 to -11.76	0.010 PVC	Monument
Near BAPB	MW-36	12/16/10	17.0	2.0 PVC	7.0 - 17.0	6.78	4.07	-2.93 to -12.93	0.010 PVC	Monument
	MW-37	12/17/10	15.0	2.0 PVC	5.0 - 15.0	7.92	4.92 -0.08 to -10.08		0.010 PVC	Monument
	MW-38	12/15/10	18.0	2.0 PVC	8.0 - 18.0	8.23	6.00	-2.0 to -12.0	0.010 PVC	Monument
			Gra	b Groundwat	er Sample Near S	lurry Wall				
West of Slurry Wall	UCB-SL-GGW-30	12/17/10	30.0	NA	25.0 - 30.0	NA	9.84	NA	NA	NA
				Tetra Teo	ch Monitoring We	lls				
	RFS-GW-B163*	7/26/10	17.5	2.0	7.0 - 17.0	7.68	7.91	0.91 to -9.09	NA	Flush
Upgradient of BAPB	RFS-GW-ETA*	7/28/10	14.0	2.0	3.5 - 13.5	4.85	5.03	1.53 to -8.47	NA	Flush

Notes:

BAPB = Biologically Active Permeable Barrier

feet bgs = feet below ground surface

NA = Information not applicable or available

PVC = Polyvinyl chloride

TOC = Top of Casing Elevation (based on the National Geodetic Vertical Datum 29 Standard)

* = Well installed by Tetra Tech on behalf of the University of California (UC), Berkeley.

Table 2 UC BABP Sampling Analytical Results Volatile Organic Compounds in Groundwater UC Richmond Field Station Campus Bay, Richmond, CA

All results in micrograms per liter (µg/l)*

Sample ID	Sample Type	Sample Date	1,1,2,2-Tetrachloroethane	1, 1-Dichloroethene	1,2-Dichloroethane	Acetone	Benzene	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl Chloride
MW-34	Primary	1/7/2011	< 0.5	< 0.5	3.1	<10	0.3J	92	2.0	1.8	13	< 0.5	20	< 0.5
MW-35	Primary	1/7/2011	< 0.5	< 0.5	0.6	7.7J	0.7	26	< 0.5	4.5	< 0.5	0.5	0.7	0.4J
MW-36	Primary	1/7/2011	<1.3	<1.3	3	<25	1.1J	160	2.6	1.1J	11	<1.3	9.3	<1.3
MW-37	Primary	1/7/2011	< 0.5	0.5J	3.9	< 10	0.4J	29	< 0.5	24	87	1.9	32	< 0.5
MW-38	Primary	1/7/2011	<1	<1	13	< 20	1.6	300	1.7	41	190	0.8J	86	3.3
	Duplicate	1/7/2011	<2.5	< 2.5	12	< 50	1.5J	280	1.5J	38	180	<2.5	82	3.4
UCB-SL-GGW-30	Primary	12/17/2010	8.9	< 8.3	47	<170	11	3600	62	11	1200	< 8.3	260	< 8.3
RFS-GW-B163*	Primary	9/2/2010	< 0.5	0.3J	8.5	2.7J	0.2J	6.5	2.1	3	8.4	0.3J	100	0.7
RFS-GW-ETA*	Primary	9/24/2010	< 0.5	< 0.5	< 0.5	<4.0	< 0.5	< 0.5	< 0.5	0.9	< 0.5	< 0.5	12	< 0.5
	Duplicate	9/24/2010	< 0.5	< 0.5	< 0.5	<4.0	< 0.5	< 0.5	< 0.5	0.9	< 0.5	< 0.5	14	< 0.5
Equipment Blank	Primary	1/7/2011	< 0.5	< 0.5	< 0.5	< 10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trip Blank	Primary	1/7/2011	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

<0.5 = Concentration not detected at or above indicated laboratory reporting limit

BAPB = Biologically Active Permeable Barrier

J = estimated value

MW = monitoring well

* = Sample Collected by Tetra Tech on behalf of the University of California (UC), Berkeley.

Bold values indicate concentrations above laboratory detection limits. Only chemicals with at least one detection in the current sampling event are shown in this table.

Table 3 UC BAPB Sampling Analytical Results Metals in Groundwater UC Richmond Field Station Campus Bay, Richmond, CA

All results in micrograms per liter (µg/l)*

Sample ID	Sample Type	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-34	Primary	1/7/2011	<10	<5	19	<2	<5	6.9	<5	<5	<5	< 0.2	<5	30	13	7.1	< 10	<5	<20
MW-35	Primary	1/7/2011	<10	<5	75	<2	<5	7.7	6.2	<5	<5	< 0.2	5.2	11	65	6.3	< 10	<5	<20
MW-36	Primary	1/7/2011	< 10	<5	31	<2	<5	12	160	<5	<5	< 0.2	<5	460	43	7.6	<10	<5	310
MW-37	Primary	1/7/2011	< 10	<5	53	<2	<5	7.9	320	<5	<5	< 0.2	<5	360	25	<5	<10	<5	23,000
MW-38	Primary	1/7/2011	<10	63	100	<2	<5	11	19	<5	<5	< 0.2	6.4	90	47	7.1	<10	<5	590
	Duplicate	1/7/2011	<10	61	100	<2	<5	11	19	<5	<5	< 0.2	6.4	91	41	7.2	<10	<5	590
RFS-GW-B163*	Primary	9/2/2010	<1.0	1.6	17	< 0.5	5.2	< 5.0	6	2.5	<2.0	0.083	0.95	170	< 2.0	< 0.5	<2.0	<4.0	9.2
RFS-GW-ETA*	Primary	9/24/2010	<1.0	22	39	< 0.5	0.93J	5.8	3.8	22	9.8	2.3	2.7	10	< 2.0	< 0.5	<2.0	5.4	110
	Duplicate	9/24/2010	<1.0	13	28	< 0.5	<1.0	2.6	2.4	8	3.2	1.3	2.9	4.9	< 2.0	< 0.5	< 2.0	<4.0	50
Equipment	Primary	1/7/2011	<10	<5	<5	<2	<5	<5	<5	<5	<5	< 0.2	<5	<5	<10	<5	< 10	<5	<20

Notes:

<0.2 = Concentration not detected at or above indicated laboratory reporting limit

BAPB = Biologically Active Permeable Barrier

J = Estimated Value

MW = monitoring well

* = Sample Collected by Tetra Tech on behalf of the University of California (UC), Berkeley.

Bold values indicate concentrations above laboratory detection limits.

Table 4 UC BAPB Sampling Analytical Results Proprietary Pesticides UC Richmond Field Station Campus Bay, Richmond, CA

All results in micrograms per liter (µg/l)*

Well ID	Sample Type	Sample Date	Butylate	Cycloate	EPTC	Molinate	Napropamide	Pebulate	Vernolate
MW-34	Primary	1/7/2011	< 2.5	<2.5	<5	<2.5	<2.5	<2.5	<2.5
MW-35	Primary	1/7/2011	< 2.5	<2.5	<5	<2.5	<2.5	<2.5	<2.5
MW-36	Primary	1/7/2011	< 2.5	<2.5	<5	<2.5	<2.5	<2.5	<2.5
MW-37	Primary	1/7/2011	< 2.5	<2.5	<5	<2.5	<2.5	<2.5	<2.5
MW-38	Primary	1/7/2011	< 2.5	<2.5	<5	<2.5	<2.5	<2.5	<2.5
	Duplicate	1/7/2011	< 2.5	<2.5	<5	<2.5	<2.5	<2.5	<2.5
Equipment Blank	Primary	1/7/2011	<2.5	<2.5	<5	<2.5	<2.5	<2.5	<2.5

Notes:

<0.5 = Concentration not detected at or above indicated laboratory reporting limit

BAPB = Biologically Active Permeable Barrier

MW = monitoring well

EPTC = S-ethyl dipropylthiocarbarnate

UC = University of California

Table 5 UC BAPB Sampling Analytical Results General Minerals and Field Parameters UC Richmond Field Station Campus Bay, Richmond, CA

Sample ID	Sample Type	Sample Date	Alkalinity, Bicarbonate (mg/l)	Alkalinity, Carbonate (mg/l)	Alkalinity, Hydroxide (mg/l)	Alkalinity, Total as CaCO3 (mg/l)	Chloride (mg/l)	Conductivity (µS/cm)	Dissolved Oxygen (mg/l)	Dissolved Sulfide (mg/l)	Sulfate (mg/l)	Total Dissolved Solids (mg/l)	Oxidation Reduction Potential (mV)	pH (SU)	Temperature (C°)	Turbidity (NTU)
MW-34	Primary	1/7/2011	380	<6.7	<6.7	380	1800	9360	3.92	< 0.04	3300	7540	11.1	6.54	14.8	10
MW-35	Primary	1/7/2011	1700	<6.7	< 6.7	1700	2800	10852	3.04	< 0.04	970	7450	-42.8	6.65	13.2	25
MW-36	Primary	1/7/2011	310	<6.7	<6.7	310	2900	12896	5.18	< 0.04	3400	9560	35.5	5.97	13.6	8
MW-37	Primary	1/7/2011	340	<6.7	< 6.7	340	2200	9001	5.12	< 0.04	2200	6470	-29.3	5.97	13.3	11
MW-38	Primary	1/7/2011	830	<6.7	<6.7	830	2400	9767	3.93	< 0.04	1700	7040	-16	6.25	15.9	7
	Duplicate	1/7/2011	820	<6.7	< 6.7	820	2400	-	-	< 0.04	1700	7010	-	-	-	-
RFS-GW-B163*	Primary	9/2/2010	-	-	-	-	-	-	-	-	-	2900	-	-	-	-
RFS-GW-ETA*	Primary	9/24/2010	-	-	-	-	-	-	-	-	-	1300	-	-	-	-
	Duplicate	9/24/2010	-	-	-	-	-	-	-	-	-	1300	-	-	-	-
FIELD BLANK	Primary	1/7/2011	<1	<1	<1	<1	< 0.2	-	-	< 0.04	< 0.5	<10	-	-	-	-

Notes:

< 0.04 = Concentration not detected at or above indicated laboratory reporting limit.	NTU = Nephelometric Turbidity Units
BAPB = Biologically Active Permeable Barrier	SU = Standard units
mV = millivolts	μ g/L = Micrograms per liter
mg/L = Milligrams per liter	μ S/cm = Microsiemens per centimeter
MW = Monitoring well	- = result not available or not applicable

* = Sample Collected by Tetra Tech on behalf of the University of California (UC), Berkeley.

Bold values indicate concentrations above laboratory detection limits.

Dissolved oxygen, oxidation reduction potential, pH, specific conductance, temperature and turbidity were measured in the field.

Table 6 Summary of UC BAPB Cluster Wells Indicator Parameters UC Richmond Field Station Campus Bay, Richmond, CA

Sample ID	Sample Type	Location	Sample Date	Alkalinity, Bicarbonate (mg/L)	Ferrous Iron (Fe ²⁺) (mg/L)	Oxidation Reduction Potential (mV)	pH (SU)	Sulfate (mg/L)	Dissolved Sulfide (mg/L)	Arsenic (µg/L)	Copper (µg/L)	Nickel (µg/L)	Zinc (µg/L)
MW-34	Primary	Upgradient	1/7/2011	380	< 0.1	11.1	6.54	3,300	< 0.04	<5	<5	30	<20
MW-35	Primary	In BAPB	1/7/2011	1,700	21	-42.8	6.65	970	< 0.04	<5	<5	11	<20
MW-36	Primary	Downgradien t	1/7/2011	310	5.0	35.5	5.97	3,400	< 0.04	<5	<5	460	310
MW-37	Primary	In BAPB	1/7/2011	340	140	-29.3	5.97	2,200	< 0.04	<5	<5	360	23,000
MW-38	Primary	In BAPB	1/7/2011	830	4.7	-16.0	6.25	1,700	< 0.04	63	<5	90	590
	Duplicat e		1/7/2011	820	4.7	-16.0	6.25	1,700	< 0.04	61	<5	91	590

Abbreviations:

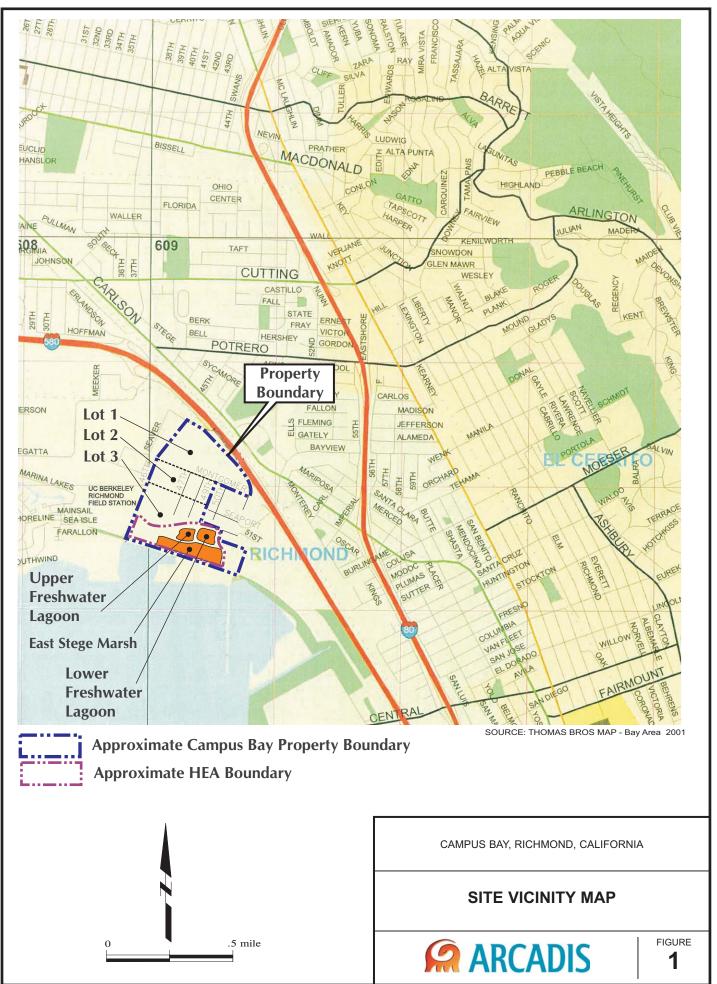
<0.1 = Concentration not detected at or above indicated laboratory reporting limit.

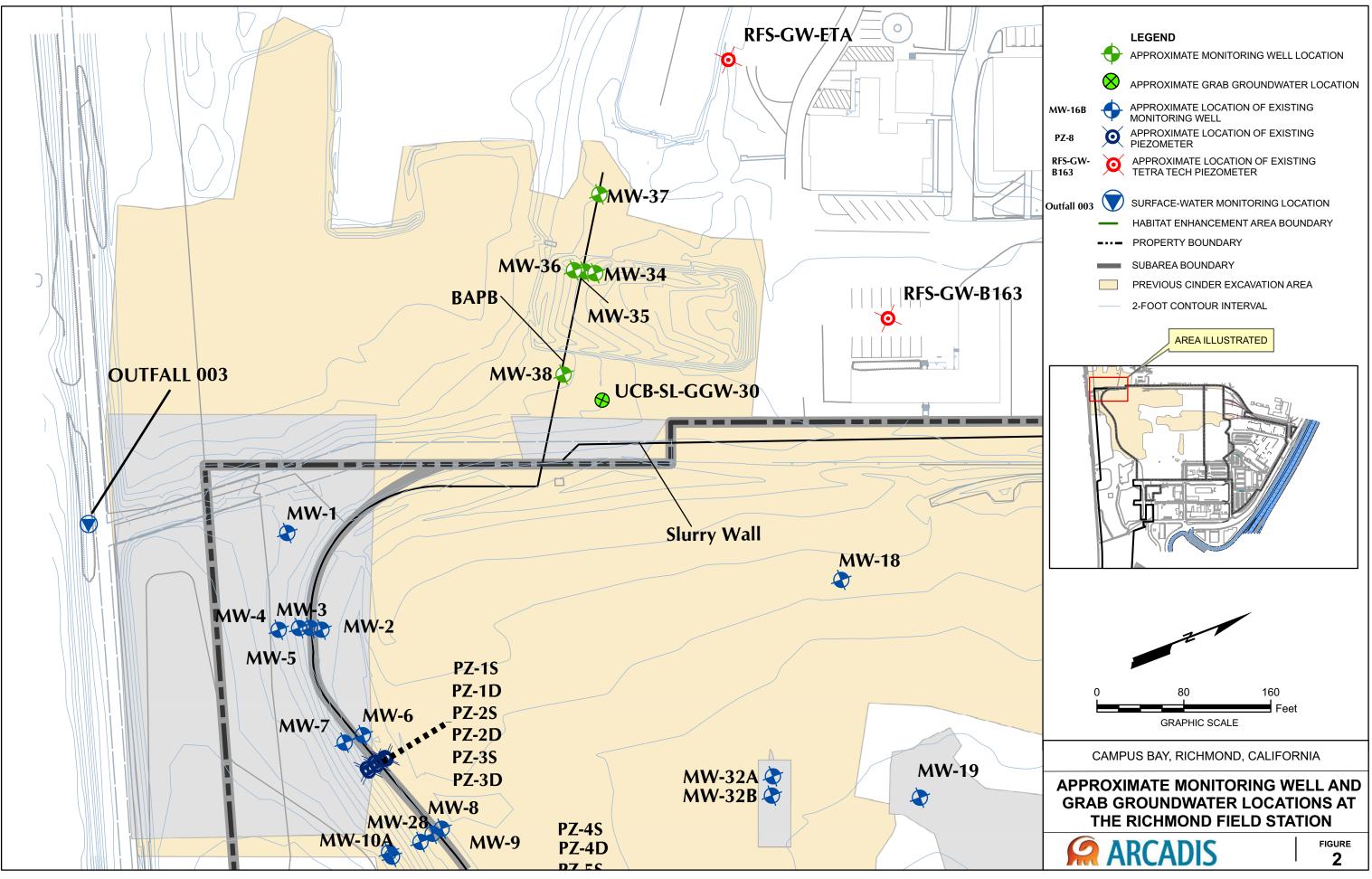
BAPB = Biologically Active Permeable Barrier

mV = millivolts

mg/L = Milligrams per liter

MW = Monitoring well


SU = Standard units


 μ g/L = Micrograms per liter

UC = University of California

Note:

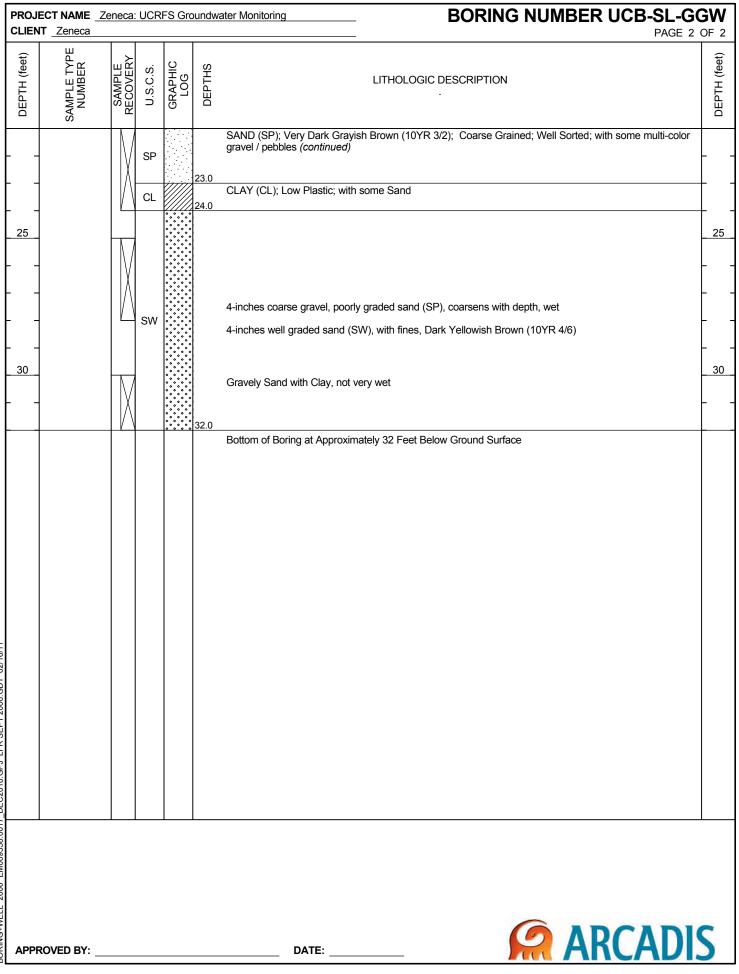
This table summarizes data presented in Tables 2 through 5 for cluster wells upgradient, within, and downgradient of the BAPB. The indicator parameters presented in this table are measured in the BAPB cluster wells to evaluate the effectiveness of the BAPB in buffering the groundwater and creating reducing conditions necessary for the precipitation of dissolved metals in groundwater.

t:001_EMV/09358_MSOU/GIS/ArcGIS/Projects/2010/PropMonWell_GG_RichmondFldStation.mxd - 2/22/2011 @ 3:38:37 المرابع ال

ATTACHMENT 1

Soil Boring Logs with Well Construction Details

	ECT NAME _Ze IT _Zeneca	eneca	I: UCF	RFS Gr	oundw	ater Monitoring	V	VELL N	UMBER MW PAGE 1				
PROJ			ampus	s Bay			DRILLING CONTRACTORGre	gg Drilling					
PROJ		EMO	00935	8.0017	.00001		DRILLING METHOD Direct Pus	sh / Hollow Ste	m Auger				
LOCA	TION Richmor	nd, C	A				_ STAMP (IF APPLICABLE) AND/	OR NOTES					
OVA	Equipment _P	hotoi	oniza	tion Me	ter		Hand augered to 5 Feet Below No PID due to rain	Ground Surfac	be and the second se				
GROL	IND ELEVATIO	N				HOLE DIAMETER 8 Inches							
ТОРО	OF CASING ELE					HOLE DEPTH _20.0 feet	_						
	RST ENCOUNTE						-						
ST	ABILIZED WAT	ER					-						
		_				TE 12/17/10	-						
							-			it)			
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS	LITHOLOGIC E	DESCRIPTION	WEI		DEPTH (feet)			
		\Box				CLAY (CL); Dark Grayish Brow	vn (10YR 4/2)						
		$ \rangle$							a a−8-inch-dia.				
									borehole 2-inch-dia. Sch.				
	Hand Auger to 5 Feet	ΙIŇ	CL						40 PVC blank casing	L .			
		/							-Grout				
		$ \rangle$											
5										5			
		IIV		<u>/////</u>	6.0	SAND (SW); Very Dark Green	ish Gray (GLEY 2 3/5BG)						
		IΛ	SW	•••••	• 7 5		-Bentonite Se						
L -					, 7.5	CLAY (CL); Dark Yellowish Bro	own (10YR 4/6)			L .			
		$ \rangle$	CL						Sand Pack #2/12	L			
10		IIV			9.5 <u>⊽</u>	SAND with Clay (SC); Wet; wit	th some Cinder		<i>"</i>	10			
		ΙİΪ	sc										
		/ \			11.0	CLAY (CL); Dark Yellowish Bro	own (10YR 4/6)		2-inch-dia. Factory Slotted				
		\vdash							PVC Screen				
		$ \rangle$											
		IIY	CL							L .			
15										15			
5		$ \rangle$			16.0								
					10.0	CLAYEY SAND (SC) above Cl (10YR 4/6)	LAY bottom; Dark Yellowish Brown			F -			
 -			sc										
					19.0	CLAY (CL); Dark Yellowish Bro	own (10YR 4/6)		Fitted End Cap				
20			CL		20.0					20			
						Bottom of Boring at Approxima	tely 20 Feet Below Ground Surface						
APPI	Roved by:					DATE:		AF	CADI	S			


	ECT NAME _Ze IT _Zeneca	eneca	UCR	FS Gro	oundwa	ater Monitoring		W	ELL NU	IMBER MW PAGE 1	
PROJ	ECT LOCATION	Ca	mpus	Bay			DRILLING CONTRACT	OR Greg	g Drilling		
PROJ		EM0	09358	3.0017.	.00001			Direct Push	n / Hollow Sten	n Auger	
LOCA	TION UCB Ma	arsh, F	Richm	ond, C	A		STAMP (IF APPLICABI	LE) AND/C	OR NOTES		
OVA		hotoid	onizati	ion Met	ter		Hand augered to 5 Fee	et Below G	Ground Surface	2	
GROL	IND ELEVATIO	N				HOLE DIAMETER 8 Inches					
						HOLE DEPTH 18.0 feet					
	RST ENCOUNTI										
	ED BY _Thoma	_									
				<u>5, IV</u>		<u>12/10/10</u>					
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS	LITHOLOGIC DESC	CRIPTION	PID (ppm)	WEL	L DIAGRAM	DEPTH (feet)
	0)				;	SAND w/ Some Clay (SC); GL	EY2 3/5B				
										 8-inch-dia. borehole 	
		IW								2-inch-dia. Sch. 40 PVC blank	L .
	Hand Auger to 5 Feet	ΙX	SC] ⊻					casing Grout	
		H						0.0		 Bentonite Seal 	
5					5.0	BAPB possible here but recove	rv is poor and sluff from	_			5
L .				× × × × × × × × × × × × × × × × × × ×	* * *	above results in about 1 foot of	Sand recovery each time.			Sand Pack #2/12	L .
				× × × × × × × × × × × × × × × × × × ×	× ×	Black organic gravel with mulch	l.				
				× × : × × : × × :	× ×						
					*			0.0			
				× × : × × : × × :	* *					-2-inch-dia.	
10					× ×					Factory Slotted PVC Screen	10
	No Recovery from 5 feet to 16 feet.				*						
					*						[
3 –					×			0.0			
					×						
					×						
15											15
5				****	16.0	Bottom of BAPB at Approximate	ely 16 Feet				
					10.0	CLAY (CL); 10YR 4/6; low plas	tic	0.0		Fitted End Cap	F -
2 – –			CL								
					18.0	Bottom of Boring at Approximat	alv 18 Feet Below Ground	0.0			
						Surface					
APP	Roved by:	I	I	1	1	DATE:		Ģ	AR	CADI	S

	ECT NAME _Ze	eneca	UCR	FS Gro	oundwa	ater Monitoring		W	ELL N	IUMBER MW PAGE 1	
PROJ		N_Ca	mpus	Bay		DRILLING	G CONTRACTOR	Greg	g Drilling		
PROJ		EM0	09358	3.0017.	.00001			ct Push	n / Hollow S	item Auger	
LOCA		arsh, F	Richm	ond, C	A		IF APPLICABLE)	AND/C	OR NOTES		
OVA		Photoic	onizati	on Met			ugered to 5 Feet E	Below G	Ground Surfa	ace	
GROL	JND ELEVATIO	N				HOLE DIAMETER 8 Inches					
						HOLE DEPTH _20.0 feet					
	RST ENCOUNTI										
	ED BY Thoma					TE 12/16/10					
								_			Ţ.
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS	LITHOLOGIC DESCRIPTION		PID (ppm)	w	ELL DIAGRAM	DEPTH (feet)
DEF	SAM NI	N M		G				Ы			DEF
						SAND (SP); Very Dark Greenish Gray (GLEY	1 3/10Y)				
		$ \rangle $							а р.ч.а а	←8-inch-dia.	
	Lland Augor to	$ \rangle $			•				A * *	² -inch-dia. Sch. 40 PVC blank	
L .	Hand Auger to 5 Feet	ΙİΪ	SP						24 A	osing a−−Grout	L -
									2 4 2 4		
5		\square			50			0.0			5
		\mathbb{N}			5.0	CLAY (CL); Yellowish Brown (10YR 5/4); Low	/ Plastic			■ Bentonite Seal	
			CL		7.0					-Sand Pack	
					<u>7.0</u> ∑	SAND (SP); Very Dark Bluish Gray (GLEY 2 3				#2/12	
		\square				with some purple cinder staining on the edges		0.0		Q inch dia	
		W	SP							 —2-inch-dia. Factory Slotted PVC Screen 	
10		ЦÅ			•			0.0		■ PVC Screen	10
					11.0					borehole	L
6						CLAY (CL) with Very Fine Sand; Dark Yellowi (10YR 4/4); Moist; Low Plastic	sh Brown				
			CL		10.0			0.0			
		$ \rangle $			13.0	SAND (SP); as above; 6-inch sections of Clay	like above				
		HX				throughout, sluff likely mixed with clay, native clay is not	sanu is wel,	0.0			
15		/	SP		•						15
		\square			16.0	No De course		0.0			L -
						No Recovery				Fitted End Cap	L _
	1							0.0			F -
	1										
					20.0	Bottom of Boring at Approximately 20 Feet Be	low Ground				20
						Surface		6			
						D		C	Δ	RCADI	S
	ROVED BY:					DATE:		11			J

	ECT NAME _Ze	eneca	UCR	FS Gro	oundwa	ater Monitoring	١	WELL NUMBER MW-37 PAGE 1 OF 1
PROJ			ampus	Bay			DRILLING CONTRACTOR _ Gre	egg Drilling
PROJ		EMO	09358	3.0017.	.00001		DRILLING METHOD Direct Pu	ush / Hollow Stem Auger
LOCA	TION Richmor	nd, C/	A				STAMP (IF APPLICABLE) AND	D/OR NOTES
OVAE		hotoi	onizati	on Met	ter		Hand augered to 5 Feet Below No PID due to rain	v Ground Surface
GROU	IND ELEVATIO	N				HOLE DIAMETER 8 Inches		
						HOLE DEPTH 16.0 feet		
			_					
	ED BY _Thoma	_						
			1					f.
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS	LITHOLOGIC DI	ESCRIPTION	WELL DIAGRAM
			CL			CLAY (CL); Dark Yellowish Bro Plastic	wn (10YR 4/6); Low to Medium	Alinch-dia. borehole Grout Cinch-dia. Sch.
	Hand Auger to 5 Feet	$ \rangle$			2.0	BAPB Black Mulchy Organic; S	andy and rocky with some mud	
	5 Feĕt			× × × × × ×	> > >	BAPB is moist/wet, groundwate from surface makes everything	er location is difficult because of rain wet	casing ← Bentonite Seal
				× × × × × × × × × × × × × × × × × × ×	> > >			Sand Pack
				· · · · · · · · · · · · · · · · · · ·	> > > > >			2-inch-dia. Factory Slotted PVC Screen
				× × × × × × × × × × × × × × × × × × ×	× ∑			B-inch-dia. borehole
10					10.0			10
			SW	•••••	11.0	SAND (SW); Very Dark Bluish		
						CLAY (CL); Dark Yellowish Bro Plastic	wn (10YR 4/6); Low to Medium	
			CL					
<u>15</u>					16.0			Fitted End Cap
						Bottom of Boring at Approximat	ely 16 Feet Below Ground Surface	
APPI	ROVED BY:					DATE:		ARCADIS

	ECT NAME _Ze	eneca	: UCR	FS Gro	oundw	ater Monitoring		W	ELL NU	MBER MW PAGE 1	
PROJ		Ca	impus	Bay			DRILLING CONTRACT	OR Greg	g Drilling		
PROJ		EM0	09358	3.0017.	.00001			Direct Push	n / Hollow Sterr	n Auger	
LOCA	TION Richmon	nd, CA	4				STAMP (IF APPLICABI	LE) AND/C	R NOTES		
OVA		hotoid	onizati	ion Met	ter		Hand augered to 5 Fee	et Below G	Fround Surface		
GROL	JND ELEVATIO	N				HOLE DIAMETER 8 Inches					
						HOLE DEPTH 20.0 feet					
	RST ENCOUNTI										
	SED BY _Thoma										
											£
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS	LITHOLOGIC DESC	CRIPTION	PID (ppm)	WELL	. DIAGRAM	DEPTH (feet)
	0)					CLAY (CL)		_			
	-									 8-inch-dia. borehole 	
	-	IW	CL							 —2-inch-dia. Sch. 40 PVC blank 	L -
	Hand Auger to 5 Feet	ΙX			3.0					casing	
					*	Start BAPB at 3 feet, little to no approximately 4-inches very so	recovery in BAPB, ft and sluffing			€ —Grout	
	-	H			, , , ,			0.0			
5				× × : × × :	, , , ,						5
	-				, , , ,					 Bentonite Seal 	
				× × × × ×	> >						L _
				× × × × × ×	, , ,					Sand Pack	
			1	× × : × × : × × :				0.0		#2/12	
	-			****	} ⊻						
10	-			× × : × × : × × :	×						_ 10
<u>-</u>	-			× × × × × × × × × × × × × × × × × × ×	× ×						
	-			× × : × × : × × :	× × ×			0.2			L _
200				× × : × × : × × :	* * *			0.2		Factory Slotted PVC Screen	
				× × : × × : × × :	× ×						[]
	-			× × × × × ×	× ×						
<u>15</u>	1			*****	} }						_ 15 _
	4) }			0.3			
	-		1)						<u> </u>
					, , ,					—Fitted End Cap	L.
				× × × × ×	, 19.0						
20	1		CL			CLAY (CL); Dark Yellowish Bro	own (10YR 4/6)	0.6			
20					20.0	Bottom of Boring at Approximat Surface	ely 20 Feet Below Ground	0.0			_ 20 _
	ROVED BY:					DATE:		<u>C</u>	AR	CADI	S

PROJECT LOCATION _Campus Bay DRILLING CONTRACTOR _Gregg Drilling PROJECT NUMBER _EM009358.0017.00001 DRILLING METHOD _Direct Push / Hollow Stem Auger LOCATION _Richmond, CA STAMP (IF APPLICABLE) AND/OR NOTES OVA EQUIPMENT _Photoionization Meter HOLE DIAMETER 2 Inches GROUND ELEVATION	DEPTH (feet)
LOCATION _Richmond, CA STAMP (IF APPLICABLE) AND/OR NOTES OVA EQUIPMENT _Photoionization Meter HOLE DIAMETER _2 Inches GROUND ELEVATION	DEPTH (feet)
OVA EQUIPMENT Photoionization Meter Hand augered to 5 Feet Below Ground Surface No PID due to rain Grab groundwater sample taken, no well constructed GROUND ELEVATION HOLE DIAMETER 2 inches Grab groundwater sample taken, no well constructed V FIRST ENCOUNTERED WATER 12.0 feet Grab groundwater sample taken, no well constructed STABILIZED WATER —	DEPTH (feet)
ON PID due to rain GROUND ELEVATION HOLE DIAMETER 2 Inches TOP OF CASING ELEVATION No PID due to rain Grab groundwater sample taken, no well constructed V FIRST ENCOUNTERED WATER HOLE DEPTH 32.0 feet STABILIZED WATER	DEPTH (feet)
GROUND ELEVATION HOLE DIAMETER 2 Inches Grab groundwater sample taken, no well constructed TOP OF CASING ELEVATION HOLE DEPTH 32.0 feet ¥ FIRST ENCOUNTERED WATER 17.0 feet STABILIZED WATER	DEPTH (feet)
	DEPTH (feet)
STABILIZED WATER LOGGED BY _Thomas R_ Collins, IV	DEPTH (feet)
LOGGED BY Thomas R. Collins, IV DATE 12/17/10 The second	DEPTH (feet)
Image: Provide state of the	DEPTH (feet)
SAND (SP) Hand Auger to 5 Feet 4.0 SAND (SP) 4.0 SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded SP SP SP	DEPTH (feet)
Hand Auger to 5 Feet - Hand Auger to 5 Feet 	DEPTH (fe
SAND (SP) Hand Auger to 5 Feet 4.0 SAND (SP) 4.0 SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded SP SP SP	DE DE
Hand Auger to 5 Feet - Hand Auger to 5 Feet 	
Hand Auger to 5 Feet SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded SP 10 10 SP SP SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded	
Hand Auger to 5 Feet 4.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
5 Feet 4.0 SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded SP 10	
SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded	
SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded	1
SAND (SP); Very Dark Greenish Gray (GLEY 2 3/5G); Well Graded	5
	10
10.8 CINDER	
CLAY (CL); Yellowish Brown (10YR 5/4)	
	_ 15
16.0 CLAYEY SAND (SC); Dark Yellowish Brown (10YR 3/4); Wet	
	20
SAND (SP); Very Dark Grayish Brown (10YR 3/2); Coarse Grained; Well Sorted; with some migravel / pebbles	iulti-color
(Continued Next Page)	DIC

ATTACHMENT 2

Monitoring Well Development Logs

			T	the state of the s			1	
Job#:	B1-11010	4	Develop	per:	J Kerns	B Myers	Client:	Arcadis
Well I	D: Hur	34	Date:	1/4/11		Site:	Campus I	Bay
	liam: 1/4"	_	3" 4" 6"	Other:	DTW:	2.77	TD Befor	re: 21.84 TD After: 21.84
	equip:				Waterra		ir Displacem	
	er <u>teflon</u>					block use		N
	h of time				• • • • • •			
	depth/							0.65 5"=1.02 6"= 1.47 Radius ² X 0.163
	TW X Mult		-		· · · · · ·	overy (TD -		s / /
1 Volum	ne = <u><i>3,</i> Ĉ</u>	<u>2 x 10</u>)= <u>30</u>	(Total F	^v urge)		Meter(s):	Ultrameter Hach
					Purge	Volume		
Time	Temp (c)°F)	рН	Cond (ms/(s))	Turbidity	Rate (gal or mL/ min)	Removed (gal / L)	DTW	Notes
1055	14.4	7.0	8299	71000		3		Hard bottom Turb, d, s, b
1058	15.3	7.0	8313	71000		U		Turbid
1103	15.6	6.7	8547	71000		9		11
1107	15.7	4.7	8817	71000		12		11
1112	16.1	6.9	8459	71000		15	10.50	11
1116	15.7	6.6	9247	71000		18		11
1120	15.8	6.6	9437	TIDOO		21	-	11
1125 A	15.9	6.6	9506	71000		24		11
1130	16.0	6.6	9660	7 1000		27		17
1134	16.0	6.6	91,70	71000		30	-	11
						~		DTW= 2. (07
				· · ·				
Didual	dewater?	VES	NO		Total vol	ume remove	<u>ر کی باہ</u>	(gal / L)
	method (if			Bailer r	ed. Tubin			t. Port Other://
		appliedu	Sample ti	/			DTW at s	
Sample		+-			/-			
Sample		/		Lab:	/		Number o	
Analysis	<u>s.</u>		/		_/		/	//////

Confluence Environmental, Inc

 \mathcal{P}_{i}^{*}

Job#:	B1-110104	4	Develop	er:	J Kerns	B Myers	Client:	Arcadis
	: Mw.		Date:	1/4/11		Site:	Campus E	Bay
			3" 4" 6"					re: /8.20 TD After: 18.23
	equip: E							ent Ext. System
disp baile	teflon	bailer	other:			olock use	d: (Y)	N
Length	of time	surgeo	l prior to	develo	pment:		10 m	
								.65 5"=1.02 6"= 1.47 Radius ² X 0.163
	W X Multi					overy (TD -		
1 Volume	e= <u>2,5</u>	_ x 10	= 25	_ (Total P	urge)		Meter(s):	Ultrameta, Hach
					Purge	Volume		
Time	Temp (°c)°F)	pН	Cond (ms) µS)	Turbidity (NTU)	Rate (gal or mL/ min)	Removed (gal / L)	DTW	Notes
1034			10.08	71000		2.5		Hard bottom, Turkid
1038	14.6		10.37	71000		5		Turbid
10:12			10.33	71000		7.5		11
1046			10,20	YOOD		10	-	//
1010	Well	1	atord		901	lais	DTW=	17,81
1139	14.7	6.5	10.45			D.5	-	clearing slowly
1143	14.8	6.6	10.54			15.0	~	0 1
1147	15.1	6.7	10.30			17.5		
	Deu	stored	e	17.5 g	ullos.	·	DTh-	17.88
1244	15.1	69	10.30	J		20.0		
1247	15.2	6.7	10.27	2/000	-	22.5	\sim	
1250	5.2	6.8	10.28	5/000		25.0		27-23.52
·	e	Deva	Ked (25.0 ga	ins	
								l
Did well	dewater?	YES	NO		Total vo	lume remov	ed: 250	(ga) / L)
100		applicat	ole): Øisp l	Bailer [ed. Tubir	ng New T		kt. Port / Other:
Sample	/		Sample ti		, adda ^{dir} t	\$ /	DTW at s	ample:
Sample				Lab;	y, * ¥ 21 € <u>1</u> 12		Number of	of bottles:
Analysis		1		/		1		//

× •

÷

L

Job#:	B1-11010	4	Develop	er:	J Kerns	B Myers	Client:	Arcadis
Well II	D: HW3	6	Date:	1/4/11		Site:	Campus E	Bay
Well d	iam: 1/4"	1" (2")	3" 4" 6"	Other:	DTW: 2	2.54	TD Befor	e:/9.67 TD After: 19.67
	equip: E			r Peri	Waterra	Positive Ai	r Displacem	
	er teflon		other:	and the second se		olock use	d: (Y)	N
Length	of time	surge	d prior to					
Pump	<u>depth/ i</u>	ntake:						.65 5"=1.02 6"= 1.47 Radius ² X 0.163
(TD - D	rW X Multi	plier = 1	Volume		80% Rec	overy (TD -	DTW X 0.2	20 + DTW)
1 Volum	e = <u>2,7</u>	<u>/</u> x 10)= <u>27</u>	_ (Total F	urge)		Meter(s):	
					Purge	Volume		
	Temp		Cond	Turbidity	Rate (gal	Removed		
Time	(°C)°F)	рН	(mS / μS)	(NTU)	or mL/ min)	(gal / L)	DTW	Notes
1000	14.6	6.6	12.41	71000		2,7	-	Have botten Turked set
1004	14.6	6.7	12.42	71000		5.4		Turbid Silty
1008	14.7	6.2	12.34	0001		8.1	9.11	Turbid
1012	14.8	6.1	12.21	71000	_	19.8	·	11
015	14.8	6.0	12,17	71000		13.5		11
1018	14.9	6.3	12.14	71000	-	16.2	-	11
1021	14.6	6.3	12.15	71000		12		11
1025		6.1	12.07	71000		21.7 20.7		/1
1027	141.7	10.1	12.01	7/000		24.4	-	11
1030	14.6	61	11.96	71000		27	_	11
							2.46	
A	Jell !	ottan	clan	F	hard			
Did wel	I dewater?	YES	(NO)		Total vo	lume remov	red: 27	(gal / L)
			ble): Disp	Bailer [Ded. Tubir	ng New T	ubing/E	kt. Port Other
Sample		/	Sample ti	/	in _ /	/	DTW at s	ample:
Sample		/	1	Lab:			Number of	of bottles:
Analysi					/	/		/
	- l	· ·	1		7			

Confluence Environmental, Inc

Job#:	B1-1101()4	Develo	per:	J Kerns	B Myers	Client:	Arcadis
Well I	D: Hw	37	Date:	1/4/11		Site:	Campus	Bay
Well d	liam: 1/4"	1" 2"	3" 4" 6"	Other:	DTW:	2,88	TD Befo	re:/7.8/ TD After: 17,84
_	equip:		Bladde		Waterra		ir Displacen	nent Ext. System
	er teflon		other:			block use		<u>N</u>
	depth/		d prior t	1				0.65 5"=1.02 6"= 1.47 Radius ² X 0.163
	TW X Mult					covery (TD -		
1 Volum	ne = <u>2,4</u>	× 10)= <u>74</u>	(Total F			Meter(s):	
Time	Temp	pН	Cond (ms / µs)	Turbidity (NTU)	Purge Rate (gal or mL/ min)	Volume Removed (gal / L)	DTW	Notes
914	13.1	5.9	9263	71000		2.4		Hard botten, Turbid, Sith
916	14.7	5.7	8618	71000		4.8	_	Hard botton, Turbid, sitty Turbid, silty
919	14.7	5.8	384 Cq	71000	_	7.2		Tu-bid
924	14.7	5.9	8947	TIOOD		9.6		
928	14.5	6.0	9186 41.00	71000		12		11
932	14.4	6.0	9297	71000		14.4		1/
936	14.2	6.0	9036	71000	_	14.8		n
940	14.0	6.0	894U	טדטוד		19.2		11 •
944	14.0	6.0	8889	71000		21.6))
948	13,6	6.0	8844	00015	-	24		Υ.
							271	
_								
* IL	al ho	Hem	loon	+ A	ard			
	dewater?	YES (NO			ume remove	ed: 24	(gal / L)
Sample	method (if	applicabl	e): Øisp E	Bailer D	éd. Tubing	g N ew Tu	bing Ex	Port Other:
Sample	date: /		Sample tir	me:		_/	DTW at sa	ample:
Sample		/	/	Lab:		/	Number of	f bottles:
Analysis	: /	/		/	/			/

Confluence Environmental, Inc

1

· · · · ·			1				1	· · · · · · · · · · · · · · · · · · ·
Job#:	B1-11010)4	Develo	per:	J Kerns	B Myers	Client:	Arcadis
Well I	D: HW	38	Date:	1/4/11	1	Site:	Campus	Bay
Well d	liam: 1/4"	1"(2")	3" 4" 6"	Other:	DTW:	3,08	TD Befo	re: 20.50 TD After: 20.80
Purge	equip:	ES - diam:	Bladde	er Peri	Waterra		r Displacen	nent Ext. System
disp bail	er <u>teflon</u>	baile	other:		Surge	block use	<u>d: (Y)</u>	N
Lengt	h of time	surge	d prior to	o develo	pment:		10	mins
Pump	depth/	intake:		Multipli	ers: 1"= 0.	04 2"= 0.16 3	"= 0.37 4"= 0	0.65 5"=1.02 6"= 1.47 Radius ² X 0.163
(TD - D	TW X Mult	iplier = 1	Volume		80% Rec	overy (TD -	DTW X 0.	20 + DTW)
1 Volum	ne = <u>2.8</u>	<u>Ø</u> x 10)=28	(Total F	Purge)	*	Meter(s):	Uthameter HACH
Time	Temp	pH (Cond (ms/@S)	Turbidity (NTU)	Purge Rate (gai or mL/ min)	Volume Removed (gal / L)	ртw	Notes
1201	15,0	7.3	7955	71000		2.8		Hord batten, Turkid, sil
1205	16.1	10.7	8788	71000	~>	5.6	·	Turbid
1208	16.6	6.5	85-94	71000		8.4	17.15	Turbid
	Wello	Peurat	uccl e	8.5	galla	ns		
1315	1Co.1	7.5	6823	71000		11.2		
1319	16.4	7,1	8821	00015		14	÷	
1323	16.6	7.0	8601	71000		168		
	Inci	1 dei	ateres	(e /7	90/1	ans	DTW=	19.87
1340	11.3	7,2	8843	71000	<u> </u>	19.6		
1348	16.7	6.6	8745	71000		22,4		
	We	11 de	water	co(e	22.5	gallas	DTC	J= 19.87
1418	16.5	7,3	6894	7/000		25.2		
1424	16.7	7.3	6821	$\rightarrow 000$		28		
							17.88	
Did well	dewater?	(YES)	NO		Total vol	ume remove	ed: 28	(gal / L)
	method (if		*	Bailer / D	ed. Tubin	g New Tu	bina Ex	t. Port Other:
Sample		/	Sample ti				DTW at sa	
Sample				Lano:			Number 9	
Analysis				/		/	/	
1			/			<u> </u>	/	

- 18C

Client: Arcac/s Site: Campus Bay Date: 1/4/11 Job #: MI~1/0104 Technician: Page of Job #: MI~1/0104 Technician: Page of Inspection Inspection Inspection Inspection Notes Mu-344 Inspection Inspection Inspection Inspection Inspection Mu-344 Inspection Inspection Inspection Inspection Inspection Inspection Inspection Mu-344 Inspection Inp Hazard Inp Hazard
No corrective Well Inspected - No Corrective Action Required No Corrective Cap non-functional Lock missing Lock missing / # total Innofered Main lissing / # total Incomplete Annular seal Incomplete Annular Incomplete Annular Incomplete Annular Incontence
No corrective Well Inspected - No Corrective Action Required No Corrective Cap non-functional Lock missing Lock missing / # total Innofered Main lissing / # total Incomplete Annular seal Incomplete Annular Incomplete Annular Incomplete Annular Incontence
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
MW36 X MW37 X MW38 X
MWST X HW38 X
4w38 ×
Notes: 14w-37 Cessing is loose - connection between
lengths is loose

Well Maintenance Inspection Form

Repair codes: rt=retap/ bolts added or replaced as=annular seal repair,

Confluence Environmental, Inc

3308 El Camino Ave, Suite 300 #148, Sacramento CA, 95821, 916-760-7641

	Comments							
	Tech init.	Rug	8 in					
	Temp CC73F)	N	14					
	Equipment Temp Tech Calibrated	X	X					
tion Log	Equipment Reading	4.0, 7.0	1413					
Equipment Calibration Log	Calibration Standards	0						
uipme	Time	Geo	-1					
Eq	Date		, <u> </u>					
	Equipment ID/ serial number							
	Equipment make/model	11/14Guncter						

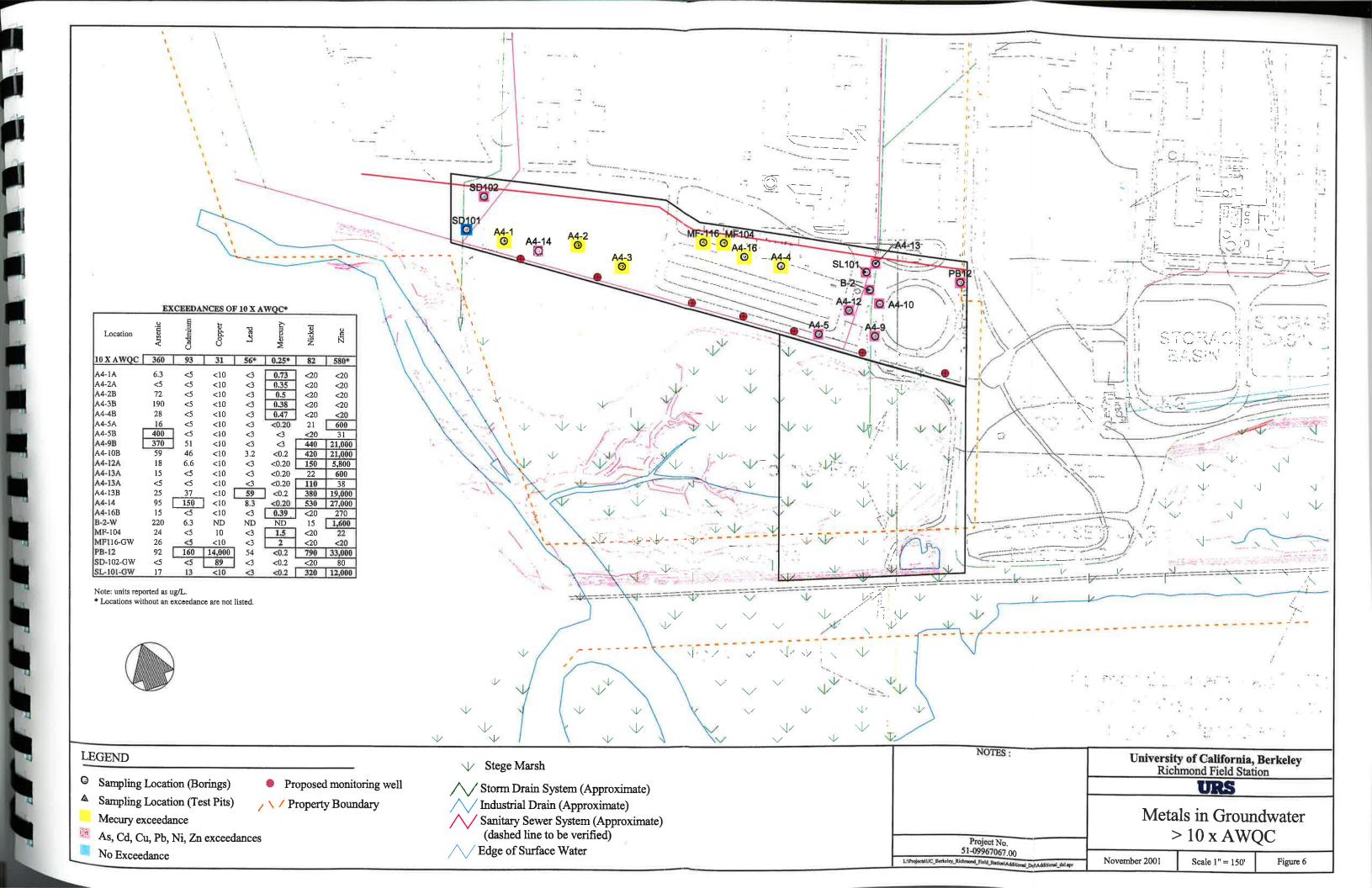
Confluence Environmental, Inc

Notes/comments:

•

Water Level Measurements

	Job Numbe	er: 141-1	1010	14	Date: //	4/11	Client:	Arcac	lis	
	Site: C	mpu	2	Ba	<u> </u>		PRE	POST		
	Well I.D.	Time	Dia	Depth to NAPL	Thickness of NAPL	Depth to water (DTW)	Total Depth (measured)	Total Depth (historical)-	Ref Point (TOC/ TOB)	
	MW-34	B 17	2			2.77	21.84	21.84	Toc	
52	Hw-35	850	2			2.50	18.20	18.23		
ul	Mw-36	8.53	2			2.54	19.67 21.84	19.67		
71	Mw-37	194 4	2			2,88	17.81	17,86		
	Mw-38	ESC	2			3,08	20.50	20.80		
	-									
			· · ·							
					*					
								1		
					, ,					


Confluence Environmental, Inc.

.

2.17

ATTACHMENT 3

Figure 6 of 2001 URS Report

